ST TS4621E User Manual

TS4621E
High-performance class-G stereo headphone amplifier
with I
2
C volume control
Features
0.6 mA/channel quiescent current
2.1 mA current consumption with
100 µW/channel (10 dB crest factor)
0.006% typical THD+N at 1 kHz
100 dB typical PSRR at 217 Hz
100 dB of SNR A-weighted at G = 0 dB
Zero pop and click
2
I
C interface for volume control
Digital volume control range from -60 dB to
+4 dB
Independent right and left channel shutdown
control
Integrated high-efficiency buck converter
Low software standby current: 5 µA max
Output-coupling capacitors removed
Thermal shutdown and short-circuit protection
Flip-chip package: 1.65 mm x 1.65 mm,
400 µm pitch, 16 bumps
Applications
Cellular phones, smart phones
Mobile internet devices
PMP/MP3 players
Description
The TS4621E is a class-G stereo headphone driver dedicated to high audio performance, high power efficiency and space-constrained applications.
It is based on the core technology of a low power dissipation amplifier combined with a high­efficiency buck converter for supplying this amplifier.
TS4621EIJT - flip-chip
Pinout (top view)
SCL
SCL
SDA
PVSS
PVSS
C1
C1
AVDD
AVDD
SDA
C2
C2
AGND
AGND
SW
SW
D
D
C
C
B
B
A
A
INR-
INR-
VOUTR
VOUTR
INR+
INR+
CMS
CMS
HPVDD
INL+
HPVDD
INL+
VOUTL
VOUTL
INL-
INL-
4321
4321
Balls are underneath
When powered by a battery, the buck converter generates the appropriate voltage to the amplifier depending on the amplitude of the audio signal to supply the headsets. It achieves a total 2.1 mA current consumption at 100 µW output power (10 dB crest factor).
THD+N is 0.02% maximum at 1 kHz and PSRR is 100 dB at 217 Hz, which ensures a high audio quality of the device in a wide range of environments.
The traditionally bulky output coupling capacitors can be removed.
A dedicated common-mode sense pin removes parasitic ground noise.
The TS4621E is designed to be used with an output serial resistor. It ensures unconditional stability over a wide range of capacitive loads.
The TS4621E is packaged in a tiny 16-bump flip-chip package with a pitch of 400 µm.
September 2011 Doc ID 022201 Rev 1 1/32
www.st.com
32
Contents TS4621E
Contents
1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.1 I²C bus operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Control register CR2 - address 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Control register CR1 - address 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Wake-up and standby time definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Common mode sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32 Doc ID 022201 Rev 1
TS4621E Absolute maximum ratings and operating conditions

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
in+,Vin-
T
R
P
ESD
CC
stg
T
thja
Supply voltage
Input voltage referred to ground +/- 1.2 V
Storage temperature -65 to +150 °C
Maximum junction temperature
j
Thermal resistance junction to ambient
Power dissipation Internally limited
d
Human body model (HBM)
All pins VOUTR, VOUTL vs. AGND
Machine model (MM), min. value
Charge device model (CDM)
All pins VOUTR, VOUTL
IEC61000-4-2 level 4, contact IEC61000-4-2 level 4, air discharge
(1)
during 1ms.
(5)
(7)
(2)
(6)
(7)
(3)
5.5 V
150 °C
200 °C/W
(4)
2 4
100 V
500 750
+/- 8
+/- 15
kV
V
kV
Latch-up Latch-up immunity 200 mA
Lead temperature (soldering, 10 sec) 260 °C
1. All voltage values are measured with respect to the ground pin.
2. Thermal shutdown is activated when maximum junction temperature is reached.
3. The device is protected from over-temperature by a thermal shutdown mechanism, active at 150° C.
4. Exceeding the power derating curves for long periods may provoke abnormal operation.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. The measurement is performed on an evaluation board, with ESD protection EMIF02-AV01F3.
Doc ID 022201 Rev 1 3/32
Absolute maximum ratings and operating conditions TS4621E

Table 2. Operating conditions

Symbol Parameter Value Unit
V
CC
Supply voltage 2.3 to 4.8 V
Buck DC output voltages
HPVDD
High rail voltage Low rail voltage
1.9
1.2
SDA, SCL Input voltage range GND to V
T
R
R
C
oper
thja
L
L
Load resistor ≥ 16 Ω
Load capacitor Serial resistor of 12 Ω minimum, R
16 Ω 0.8 to 100
L
Operating free air temperature range -40 to +85 °C
Flip-chip thermal resistance junction to ambient 90 °C/W
V
cc
V
nF
4/32 Doc ID 022201 Rev 1
TS4621E Typical application schematics

2 Typical application schematics

Figure 1. Typical application schematics for the TS4621E

Negative left in put
Positive left input
Negative rig ht input
Positive right input
I²C bus
Cin
2.2 uF
Cin
2.2 uF
Cin
2.2 uF
Cin
2.2 uF
InL+
InR-
SDA
SCL
InL-
InR+
I2C
Cs
2.2 uF
PVss
Css
2.2 uF
-
+
+
-
Negative
supply
AVdd
Vbat
detector
Positive
supply
Level
detector
Level
C12
2.2 uF
Sw
3.3 uH
HpVdd
VoutL
CMS
VoutR
AGndC1 C2
L1
Ct 10 uF
Rout
12 ohms min.
Rout
12 ohms min.
Cout
0.8 nF min.
3
J1
2
1
Cout
0.8 nF min.

Table 3. TS4621E pin description

Pin number Pin name Pin definition
A1 SW Switching node of the buck converter
A2 AVDD Analog supply voltage, connect to battery
A3 VOUTL Output signal for left audio channel
A4 INL- Negative input signal for left audio channel
B1 AGND Device ground
B2 C1 Flying capacitor terminal for internal negative supply generator
B3 HPVDD Buck converter output, power supply for amplifier
B4 INL+ Positive input signal for left audio channel
C1 C2 Flying capacitor terminal for internal negative supply generator
C2 PVSS Negative supply generator output
C3 CMS
Common mode sense, to be connected as close as possible to the ground of headphone/line out plug
C4 INR+ Positive input signal for right audio channel
D1 SDA I²C data signal, up to V
D2 SCL I²C clock signal, up to V
tolerant input
CC
tolerant input
CC
D3 VOUTR Output signal for right audio channel
D4 INR- Negative input signal for right audio channel
AM06119
Doc ID 022201 Rev 1 5/32
Typical application schematics TS4621E

Table 4. TS4621E component description

Component Value Description
Cs 2.2 µF
C12 2.2 µF
C
SS
C
in
C
out
R
out
2.2 µF
Cin
------------------------=
2π ZinFc
0.8 to 100 nF
12 Ω min.
L1 3.3 µH
Decoupling capacitors for V
. A 2.2 µF capacitor is sufficient for proper
CC
decoupling of the TS4621E. An X5R dielectric and 10 V rating voltage is recommended to minimize ΔC/ΔV when V
CC
=4.8V.
Must be placed as close as possible to the TS4621E to minimize parasitic inductance and resistance.
Capacitor for internal negative power supply operation. An X5R dielectric and
6.3 V rating voltage is recommended to minimize ΔC/ΔV when HPVDD = 1.9 V.
Must be placed as close as possible to the TS4621E to minimize parasitic inductance and resistance.
Filtering capacitor for internal negative power supply. An X5R dielectric and
6.3 V rating voltage is recommended to minimize ΔC/ΔV when HPVDD = 1.9 V.
1
Input coupling capacitor that forms with Zin/2 a first-order high-pass filter with a -3 dB cutoff frequency FC. For example, at maximum gain G = 4 dB, Zin = 12.5 kΩ, C
= 2.2 µF, therefore FC = 6 Hz.
in
Output capacitor of 0.8 nF minimum to 100 nF maximum. This capacitor is mandatory for operation of the TS4621E.
Output resistor in-series with the TS4621E output. This 12 Ω minimum resistor is mandatory for operation of the TS4621E.
Inductor for the buck convertor. References of inductors:
FDK: MIPSZ2012D3R3 (DC resistance = 0.19 Ω, rated current = 0.8 A) Murata: LQM2MPN3R3G0 (DC resistance = 0.12 Ω, rated current = 1.2 A)
Tank capacitor for internal buck convertor. An X5R dielectric and 6.3 V rating
C
t
10 µF
voltage is recommended to minimize ΔC/ΔV when HPVDD = 1.9 V. ESR of the C
capacitor must be as low as possible to obtain the best buck
t
efficiency.
6/32 Doc ID 022201 Rev 1
TS4621E Electrical characteristics

3 Electrical characteristics

Table 5. Electrical characteristics of the I²C interface
for V
= +3.6 V, AGND = 0 V, T
CC
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
V
V
V
Table 6. Electrical characteristics of the amplifier
Low level input voltage on SDA, SCL pins 0.6 V
IL
High level input voltage on SDA, SCL pins 1.2 V
IH
Low level output voltage, SDA pin, I
OL
Input current on SDA, SCL 10 µA
I
in
for V
= +3.6 V, AGND = 0 V, RL= 32 Ω + 15 Ω, T
CC
= 3mA 0.4 V
sink
V
SDA SCL,
------------------------------ -- -
600k Ω
= 25° C
amb
(unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
I
I
STBY
V
V
V
Quiescent supply current, no input signal, both channels
CC
enabled
Supply current, with input modulation, both channels enabled, HPVDD = 1.2 V, output power per channel, F=1kHz
Pout = 100 µW at 3 dB crest factor
I
s
Pout = 500 µW at 3 dB crest factor Pout = 1mW at 3dB crest factor Pout = 100 µW at 10 dB crest factor Pout = 500 µW at 10 dB crest factor Pout = 1 mW at 10 dB crest factor
Standby current, no input signal, I²C CR1 = 01h
= 0 V, V
V
SDA
Input differential voltage range
in
SCL
= 0 V
(1)
Output offset voltage
oo
No input signal
Maximum output voltage, in-phase signals
= 16 Ω, THD+N = 1% max, f = 1 kHz
R
L
= 47 Ω, THD+N = 1% max, f = 1 kHz
out
R
L
RL = 10 kΩ, Rs = 15 Ω, CL = 1 nF, THD+N = 1% max, f = 1 kHz
1.2 1.5 mA
2.3
3.7
4.7
3.5 5
6.5
2.1
3.1
3.9
0.6 5 µA
1V
-500 +500 µV
0.6
1.0
1.0
0.8
1.1
1.3
mA
V
rms
rms
THD+N
PSRR
Total harmonic distortion + noise, G = 0 dB
= 700 mVrms, F = 1 kHz
V
out
= 700 mVrms, 20 Hz < F < 20 kHz
V
out
(1)
, V
Power supply rejection ratio
= 200 mVpp, grounded
ripple
inputs
F = 217 Hz, G = 0 dB, R F = 10 kHz, G = 0 dB, R
16 Ω
L
16 Ω
L
Doc ID 022201 Rev 1 7/32
0.006
0.05
90 100
70
0.02 %
dB
Electrical characteristics TS4621E
Table 6. Electrical characteristics of the amplifier
for V
= +3.6 V, AGND = 0 V, RL= 32 Ω + 15 Ω, T
CC
amb
= 25° C
(unless otherwise specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
Common mode rejection ratio
CMRR
F = 1 kHz, G = 0 dB, V F = 20 Hz to 20 kHz, G = 0 dB, Vic = 200 mV
= 200 mV
ic
pp
65
pp
45
Channel separation
Crosstalk
SNR
ONoise
= 32 Ω + 15 Ω , G = 0 dB, F = 1 kHz, Po = 10 mW
R
L
= 10 kΩ, G = 0 dB, F = 1 kHz, V
R
L
Signal-to-noise ratio, A-weighted, V F = 1 kHz
(1)
out
out
= 1 V
=1 Vrms
G = +4 dB G = +0 dB
Output noise voltage, A-weighted
(1)
G = +4 dB
, THD+N < 1%,
rms
60 80
99
100
100 110
9119µVrms
G = +0 dB
G Gain range with gain (dB) = 20 x log[(V
Mute InL/R+ - InL/R- = 1 V
rms
L/R)/(InL/R+ - InL/R-)] -60 +4 dB
out
- Gain step size error -0.5 +0.5
-80 dB
dB
dB
dB
step-
size
- Gain error (G = +4 dB) -0.45 +0.42 dB
Z
Differential input impedance 25 34 kΩ
in
Input impedance during wake-up phase (referred to ground) 2 kΩ
Output impedance when CR1 = 00h (negative supply is ON and amplifier output stages are OFF)
Z
out
F < 40 kHz F = 6 MHz F = 36 MHz
t
t
stby
t
t
1. Guaranteed by design and parameter correlation.
2. Refer to the application information in Section 4.3 on page 27.
Wake-up time
wu
Standby time 100 µs
Attack time. Setup time between low rail buck voltage and high
atk
rail buck voltage
Decay time 50 ms
dcy
(2)
(1)
10
500
75
12 16 ms
100 µs
kΩ
Ω Ω
8/32 Doc ID 022201 Rev 1
TS4621E Electrical characteristics
Table 7. Timing characteristics of the I²C interface for I²C interface signals over
recommended operating conditions (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
f
SCL
t
d(H)
t
d(L)
t
t
t
t
t
Frequency, SCL 400 kHz
Pulse duration, SCL high 0.6 µs
Pulse duration, SCL low 1.3 µs
Setup time, SDA to SCL 100 ns
st1
Hold time, SCL to SDA 0 ns
h1
Bus free time between stop and start condition 1.3 µs
t
f
Setup time, SCL to start condition 0.6 µs
st2
Hold time, start condition to SCL 0.6 µs
h2
Setup time, SCL to stop condition 0.6 µs
st3

Figure 2. SCL and SDA timing diagram

t
d(H)
t
SCL
SDA
d(L)
t
st1
t
h1

Figure 3. Start and stop condition timing diagram

SCL
t
t
st2
h2
SDA
Start condition Stop condition
AM06113
t
f
t
st3
AM06114
Doc ID 022201 Rev 1 9/32
Electrical characteristics TS4621E
No load; No input Signal SDA=SCL = 0V Ta = 25°C
2.3 2.7 3.1 3.5 3.9 4.3 4.7
0
20
40
60
80
THD+N=10% (180°)
THD+N=10% (0°)
THD+N=1% (0°)
RL = 32Ω, F = 1kHz BW < 30kHz, Tamb = 25°C
THD+N=1% (180°)
Output power (mW)
Power Supply Voltage Vcc (V)
Figure 4. Current consumption vs. power
(mA)
CC
Quiscent Supply Current I
supply voltage
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
Power Supply Voltage Vcc (V)
No load; No input Signal Both channels enabled Ta = 25°C
Figure 5. Standby current consumption vs.
power supply voltage
Figure 6. Maximum output power vs. load Figure 7. Maximum output power vs. load
80
70
60
50
40
30
20
Output power (mW)
10
0
10 100 1k
VCC=4.8V
VCC=3.6V
VCC=2.3V
RL Load resistance ( )
Inputs = 0°, F = 1kHz THD+N = 1% Tamb = 25°C
80
70
60
50
40
30
20
Output power (mW)
10
0
10 100 1k
VCC=4.8V
VCC=3.6V
VCC=2.3V
RL Load resistance ( )
Inputs = 180°, F = 1kHz THD+N = 1% Tamb = 25°C
Figure 8. Maximum output power vs. power
supply voltage
RL = 16Ω, F = 1kHz
120
BW < 30kHz, Tamb = 25°C
100
80
60
40
Output power (mW)
20
0
2.3 2.7 3.1 3.5 3.9 4.3 4.7
10/32 Doc ID 022201 Rev 1
THD+N=10% (0°)
THD+N=1% (180°)
Power Supply Voltage Vcc (V)
Figure 9. Maximum output power vs. power
supply voltage
THD+N=10% (180°)
THD+N=1% (0°)
Loading...
+ 22 hidden pages