ST TS4621B User Manual

TS4621B
High-performance class-G stereo headphone amplifier
with I
2
C volume control
Features
0.6 mA/channel quiescent current
2.1 mA current consumption with
100 µW/channel (10 dB crest factor)
0.006% typical THD+N at 1 kHz
100 dB typical PSRR at 217 Hz
100 dB of SNR A-weighted at G = 0 dB
Zero pop and click
2
I
C interface for volume control
Digital volume control range from -60 dB to
+4 dB
Independent right and left channel shutdown
control
Integrated high-efficiency step-down converter
Low software standby current: 5 µA max
Output-coupling capacitors removed
Thermal shutdown
Flip-chip package: 1.65 mm x 1.65 mm,
400 µm pitch, 16 bumps
Applications
Cellular phones, smart phones
Mobile internet devices
PMP/MP3 players
Description
The TS4621B is a class-G stereo headphone driver dedicated to high audio performance, high power efficiency and space-constrained applications.
It is based on the core technology of a low power dissipation amplifier combined with a high­efficiency step-down DC/DC converter for supplying this amplifier.
TS4621BEIJT - flip-chip
Pinout (top view)
SCL
SCL
SDA
PVSS
PVSS
C1
C1
AVDD
AVDD
SDA
C2
C2
AGND
AGND
SW
SW
D
D
C
C
B
B
A
A
INR-
INR-
VOUTR
VOUTR
INR+
INR+
CMS
CMS
HPVDD
INL+
HPVDD
INL+
VOUTL
VOUTL
INL-
INL-
4321
4321
Balls are underneath
When powered by a battery, the internal step­down DC/DC converter generates the appropriate voltage to the amplifier depending on the amplitude of the audio signal to supply the headsets. It achieves a total 2.1 mA current consumption at 100 µW output power (10 dB crest factor).
THD+N is 0.02 % maximum at 1 kHz and PSRR is 100 dB at 217 Hz, which ensures a high audio quality of the device in a wide range of environments.
The traditionally bulky output coupling capacitors can be removed.
A dedicated common-mode sense pin removes parasitic ground noise.
The TS4621B is designed to be used with an output serial resistor. It ensures unconditional stability over a wide range of capacitive loads.
The TS4621B is packaged in a tiny 16-bump flip-chip package with a pitch of 400 µm.
September 2011 Doc ID 022194 Rev 2 1/48
www.st.com
48
Contents TS4621B
Contents
1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6
2 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 I²C bus operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Control register CR1 - address 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 Control register CR2 - address 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.4 Control register CR3 - address 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.5 Summary of output impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Wake-up and standby time definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Overview of the class-G, 2-level headphone amplifier . . . . . . . . . . . . . . . 31
4.4 External component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Step-down inductor selection (L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 Step-down output capacitor selection (Ct) . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.3 Full capacitive inverter capacitors selection (C12 and Css) . . . . . . . . . 34
4.4.4 Power supply decoupling capacitor selection (Cs) . . . . . . . . . . . . . . . . . 34
4.4.5 Input coupling capacitor selection (Cin) . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.6 Low-pass output filter (Rout and Cout) and
IEC 61000-4-2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.7 Integrated input low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.1 Layout recommendations for single-ended operation . . . . . . . . . . . . . . 38
4.6 Startup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.1 Auto zero technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.2 Input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.1 Common mode sense layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.8 Demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2/48 Doc ID 022194 Rev 2
TS4621B Contents
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Doc ID 022194 Rev 2 3/48
List of figures TS4621B
List of figures
Figure 1. Typical application schematics for the TS4621B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. SCL and SDA timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. Start and stop condition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4. Current consumption vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5. Standby current consumption vs. power supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 6. Maximum output power vs. loadin-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Maximum output power vs. loadout-of-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Maximum output power vs. power supply voltage, RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . 13
Figure 9. Maximum output power vs. power supply voltage, RL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . 13
Figure 10. Maximum output power vs. power supply voltage, RL = 47 Ω . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11. Maximum output voltage vs. power supply voltage, in-phase. . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Maximum output voltage vs. power supply voltage, out-of-phase . . . . . . . . . . . . . . . . . . . 14
Figure 13. Current consumption vs. total output power, RL = 16 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. Current consumption vs. total output power, RL = 32 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 15. Current consumption vs. total output power, RL = 47 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 16. Current consumption vs. total output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. Power dissipation vs. total output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 18. Output impedance vs. frequency in HiZ mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 19. Differential input impedance vs. gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 20. THD+N vs. output power RL = 16 Ω, in-phase, V Figure 21. THD+N vs. output power RL = 16 Ω, out-of-phase, V Figure 22. THD+N vs. output power RL = 16 Ω, in-phase, V Figure 23. THD+N vs. output power RL = 16 Ω, out-of-phase, V Figure 24. THD+N vs. output power RL = 16 Ω, in-phase, V Figure 25. THD+N vs. output power RL = 16 Ω, out-of-phase, V Figure 26. THD+N vs. output power RL = 32 Ω, in-phase, V Figure 27. THD+N vs. output power RL = 32 Ω, out-of-phase, V Figure 28. THD+N vs. output power RL = 32 Ω, in-phase, V Figure 29. THD+N vs. output power RL = 32 Ω, out-of-phase, V Figure 30. THD+N vs. output power RL = 32 Ω, in-phase, V Figure 31. THD+N vs. output power RL = 32 Ω, out-of-phase, V Figure 32. THD+N vs. output power RL = 47 Ω, in-phase, V Figure 33. THD+N vs. output power RL = 47 Ω, out-of-phase, V Figure 34. THD+N vs. output power RL = 47 Ω, in-phase, V Figure 35. THD+N vs. output power RL = 47 Ω, out-of-phase, V Figure 36. THD+N vs. output power RL = 47 Ω, in-phase, V Figure 37. THD+N vs. output power RL = 47 Ω, out-of-phase, V Figure 38. THD+N vs. frequency RL = 16 Ω, in-phase, V Figure 39. THD+N vs. frequency RL = 16 Ω, out-of-phase, V Figure 40. THD+N vs. frequency RL = 16 Ω, in-phase, V Figure 41. THD+N vs. frequency RL = 16 Ω, out-of-phase, V Figure 42. THD+N vs. frequency RL = 16 Ω, in-phase, V Figure 43. THD+N vs. frequency RL = 16 Ω, out-of-phase, V Figure 44. THD+N vs. frequency RL = 32 Ω, in-phase, V Figure 45. THD+N vs. frequency RL = 32 Ω, out-of-phase, V Figure 46. THD+N vs. frequencyRL = 32 Ω, in-phase, V
CC
Figure 47. THD+N vs. frequency RL = 32 Ω, out-of-phase, V Figure 48. THD+N vs. frequency RL = 32 Ω, in-phase, V
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 15
CC
CC
CC
CC
CC
CC
CC
CC
CC
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 19
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . 19
CC
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . 19
CC
= 2.5 V . . . . . . . . . . . . . . . . . . . . 15
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 16
= 3.6 V . . . . . . . . . . . . . . . . . . . . 16
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 16
= 4.8 V . . . . . . . . . . . . . . . . . . . . 16
CC
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 16
= 2.5 V . . . . . . . . . . . . . . . . . . . . 16
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 17
= 3.6 V . . . . . . . . . . . . . . . . . . . . 17
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 17
= 4.8 V . . . . . . . . . . . . . . . . . . . . 17
CC
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 17
= 2.5 V . . . . . . . . . . . . . . . . . . . . 17
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 18
= 3.6 V . . . . . . . . . . . . . . . . . . . . 18
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 18
= 4.8 V . . . . . . . . . . . . . . . . . . . . 18
CC
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 18
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 19
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 19
CC
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 19
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 20
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 20
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . 20
CC
4/48 Doc ID 022194 Rev 2
TS4621B List of figures
Figure 49. THD+N vs. frequency RL = 32 Ω, out-of-phase, V Figure 50. THD+N vs. frequency RL = 47 Ω, in-phase, V
CC
Figure 51. THD+N vs. frequency RL = 47 Ω, out-of-phase, V Figure 52. THD+N vs. frequency RL = 47 Ω, in-phase, V
CC
Figure 53. THD+N vs. frequency RL = 47 Ω, out-of-phase, V Figure 54. THD+N vs. frequency RL = 47 Ω, in-phase, V
CC
Figure 55. THD+N vs. frequency RL = 47 Ω, out-of-phase, V
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 20
CC
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . 20
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 20
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 21
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 21
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . 21
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 21
CC
Figure 56. THD+N vs. frequency RL = 10 kΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 57. THD+N vs. frequency RL = 600 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 58. THD+N vs. output voltage RL = 10 kΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 59. THD+N vs. output voltage RL = 600 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 60. THD+N vs. input voltage, HiZ left and right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 61. CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 62. PSRR vs. frequencyV Figure 63. PSRR vs. frequencyV Figure 64. PSRR vs. frequencyV
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
CC
Figure 65. Output signal spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 66. Crosstalk vs. frequencyRL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 67. Crosstalk vs. frequencyRL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 68. Crosstalk vs. frequencyRL = 47 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 69. Crosstalk vs. frequencyRL = 10 kΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 70. Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 71. Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 72. I²C write operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 73. I²C read operations1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 74. Flowchart for short-circuit detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 75. TS4621B architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 76. Efficiency comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 77. Class-G operating with a music sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 78. Typical application schematic with IEC 61000-4-2 ESD protection . . . . . . . . . . . . . . . . . . 36
Figure 79. Single-ended input configuration1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 80. Single-ended input configuration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 81. Incorrect ground connection for single-ended option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 82. Correct ground connection for single-ended option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 83. Common mode sense layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 84. Demonstration board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 85. Copper layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 86. Copper layer and overlay layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 87. TS4621B footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 88. Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 89. Marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 90. Flip-chip - 16 bumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 91. Device orientation in tape pocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Doc ID 022194 Rev 2 5/48
Absolute maximum ratings and operating conditions TS4621B

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
in+,Vin-
T
R
P
ESD
CC
stg
T
thja
Supply voltage
Input voltage referred to ground +/- 1.2 V
Storage temperature -65 to +150 °C
Maximum junction temperature
j
Thermal resistance junction to ambient
Power dissipation Internally limited
d
Human body model (HBM)
All pins VOUTR, VOUTL vs. AGND
Machine model (MM), min. value
Charge device model (CDM)
All pins VOUTR, VOUTL
IEC61000-4-2 level 4, contact IEC61000-4-2 level 4, air discharge
(1)
during 1ms.
(5)
(7)
(2)
(6)
(7)
(3)
5.5 V
150 °C
200 °C/W
(4)
2 4
100 V
500 750
+/- 8
+/- 15
kV
V
kV
Lead temperature (soldering, 10 sec) 260 °C
1. All voltage values are measured with respect to the ground pin.
2. Thermal shutdown is activated when maximum junction temperature is reached.
3. The device is protected from over-temperature by a thermal shutdown mechanism, active at 150° C.
4. Exceeding the power derating curves for long periods may provoke abnormal operation.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. The measurement is performed on an evaluation board, with ESD protection EMIF02-AV01F3.
6/48 Doc ID 022194 Rev 2
TS4621B Absolute maximum ratings and operating conditions

Table 2. Operating conditions

Symbol Parameter Value Unit
V
CC
Supply voltage 2.3 to 4.8 V
internal step-down DC output voltages
HPVDD
High rail voltage Low rail voltage
1.9
1.2
SDA, SCL Input voltage range GND to V
T
R
R
C
oper
thja
L
L
Load resistor ≥ 16 Ω
Load capacitor Serial resistor of 12 Ω minimum, R
16 Ω 0.8 to 100
L
Operating free air temperature range -40 to +85 °C
Flip-chip thermal resistance junction to ambient 90 °C/W
V
cc
V
nF
Doc ID 022194 Rev 2 7/48
Typical application schematics TS4621B

2 Typical application schematics

Figure 1. Typical application schematics for the TS4621B

Negative left in put
Positive left input
Negative rig ht input
Positive right input
I²C bus
Cin 1 uF
Cin 1 uF
Cin 1 uF
Cin 1 uF
InL+
InR-
SDA
SCL
InL-
InR+
I2C
Cs
2.2 uF
PVss
Css
2.2 uF
-
+
+
-
Negative
supply
AVdd
Vbat
Positive
detector
detector
C12
2.2 uF
supply
Level
Level
Sw
3.3 uH
HpVdd
VoutL
CMS
VoutR
AGndC1 C2
L1
Ct 10 uF
Rout
12 ohms min.
Rout
12 ohms min.
Cout
0.8 nF min.
3
J1
2
1
Cout
0.8 nF min.

Table 3. TS4621B pin description

Pin number Pin name Pin definition
A1 SW Switching node of the buck converter
A2 AVDD Analog supply voltage, connect to battery
A3 VOUTL Output signal for left audio channel
A4 INL- Negative input signal for left audio channel
B1 AGND Device ground
B2 C1 Flying capacitor terminal for internal negative supply generator
B3 HPVDD Buck converter output, power supply for amplifier
B4 INL+ Positive input signal for left audio channel
C1 C2 Flying capacitor terminal for internal negative supply generator
C2 PVSS Negative supply generator output
C3 CMS
Common mode sense, to be connected as close as possible to the ground of headphone/line out plug
C4 INR+ Positive input signal for right audio channel
D1 SDA I²C data signal, up to V
D2 SCL I²C clock signal, up to V
tolerant input
CC
tolerant input
CC
D3 VOUTR Output signal for right audio channel
D4 INR- Negative input signal for right audio channel
AM06119
8/48 Doc ID 022194 Rev 2
TS4621B Typical application schematics

Table 4. TS4621B component description

(1)
Component Value Description
Decoupling capacitors for V
. A 2.2 µF capacitor is sufficient for proper
CC
decoupling of the TS4621B. An X5R dielectric and 10 V rating voltage is
Cs 2.2 µF
recommended to minimize ΔC/ΔV when V Must be placed as close as possible to the TS4621B to minimize parasitic
inductance and resistance.
Capacitor for internal negative power supply operation. An X5R dielectric and 6.3 V rating voltage is recommended to minimize ΔC/ΔV when
C12 2.2 µF
HPVDD = 1.9 V. Must be placed as close as possible to the TS4621B to minimize parasitic
inductance and resistance.
Filtering capacitor for internal negative power supply. An X5R dielectric and
C
SS
2.2 µF
6.3 V rating voltage is recommended to minimize ΔC/ΔV when HPVDD = 1.9 V.
Cin
C
in
C
out
R
out
----------------------------------------- -=
2 π Rin Fc×××
0.8 to 100 nF
12 Ω min.
L1 3.3 µH
1
Input coupling capacitor that forms with Rin Rindiff/2 a first-order high­pass filter with a -3 dB cutoff frequency Fc. For example, at maximum gain G=4dB, Rin=12.5kΩ, C
= 1 µF, therefore Fc = 13 Hz.
in
Output capacitor of 0.8 nF minimum to 100 nF maximum. This capacitor is mandatory for operation of the TS4621B.
Output resistor in-series with the TS4621B output. This 12 Ω minimum resistor is mandatory for operation of the TS4621B.
Inductor for internal DC/DC step-down converter. References of inductors: refer to Section 4.4.1 for more information.
Tank capacitor for internal DC/DC step-down converter. An X5R dielectric
C
t
10 µF
and 6.3 V rating voltage is recommended to minimize ΔC/ΔV when HPVDD = 1.9 V. Refer to Section 4.4.2 for more information.
1. Refer to Section 4.4 for a complete description of each component.
CC
=4.8V.
Doc ID 022194 Rev 2 9/48
Electrical characteristics TS4621B

3 Electrical characteristics

Table 5. Electrical characteristics of the I²C interface
for V
= +3.6 V, AGND = 0 V, T
CC
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
V
V
V
Table 6. Electrical characteristics of the amplifier
Low level input voltage on SDA, SCL pins 0.6 V
IL
High level input voltage on SDA, SCL pins 1.2 V
IH
Low level output voltage, SDA pin, I
OL
Input current on SDA, SCL 10 µA
I
in
for V
= +3.6 V, AGND = 0 V, RL= 32 Ω + 15 Ω, T
CC
= 3mA 0.4 V
sink
V
SDA SCL,
------------------------------ -- -
600k Ω
= 25° C
amb
(unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
I
I
STBY
V
V
V
Quiescent supply current, no input signal, both channels
CC
enabled
Supply current, with input modulation, both channels enabled, HPVDD = 1.2 V, output power per channel, F=1kHz
Pout = 100 µW at 3 dB crest factor
I
s
Pout = 500 µW at 3 dB crest factor Pout = 1mW at 3dB crest factor Pout = 100 µW at 10 dB crest factor Pout = 500 µW at 10 dB crest factor Pout = 1 mW at 10 dB crest factor
Standby current, no input signal, I²C CR1 = 01h
= 0 V, V
V
SDA
Input differential voltage range
in
SCL
= 0 V
(1)
Output offset voltage
oo
No input signal
Maximum output voltage, in-phase signals
= 16 Ω, THD+N = 1% max, f = 1 kHz
R
L
= 47 Ω, THD+N = 1% max, f = 1 kHz
out
R
L
RL = 10 kΩ, Rs = 15 Ω, CL = 1 nF, THD+N = 1% max, f = 1 kHz
1.2 1.5 mA
2.3
3.7
4.7
3.5 5
6.5
2.1
3.1
3.9
0.6 5 µA
1V
-500 +500 µV
0.6
1.0
1.0
0.8
1.1
1.3
mA
V
rms
rms
Total harmonic distortion + noise, G = 0 dB
THD+N
PSRR
= 700 mVrms, F = 1 kHz
V
out
= 700 mVrms, 20 Hz < F < 20 kHz
V
out
Power supply rejection ratio inputs
F = 217 Hz, G = 0 dB, R F = 10 kHz, G = 0 dB, R
L
L
(1)
, V
16 Ω
16 Ω
= 200 mVpp, grounded
ripple
10/48 Doc ID 022194 Rev 2
0.006
0.05
90 100
70
0.02 %
dB
TS4621B Electrical characteristics
Table 6. Electrical characteristics of the amplifier
for V
= +3.6 V, AGND = 0 V, RL= 32 Ω + 15 Ω, T
CC
amb
= 25° C
(unless otherwise specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
Common mode rejection ratio
CMRR
F = 1 kHz, G = 0 dB, V F = 20 Hz to 20 kHz, G = 0 dB, Vic = 200 mV
= 200 mV
ic
pp
65
pp
45
Channel separation
Crosstalk
SNR
ONoise
= 32 Ω + 15 Ω , G = 0 dB, F = 1 kHz, Po = 10 mW
R
L
= 10 kΩ, G = 0 dB, F = 1 kHz, V
R
L
Signal-to-noise ratio, A-weighted, V F = 1 kHz
(1)
out
out
= 1 V
=1 Vrms
G = +4 dB G = +0 dB
Output noise voltage, A-weighted
(1)
G = +4 dB
, THD+N < 1%,
rms
60 80
99
100
100 110
9119µVrms
G = +0 dB
G Gain range with gain (dB) = 20 x log[(V
Mute InL/R+ - InL/R- = 1 V
rms
L/R)/(InL/R+ - InL/R-)] -60 +4 dB
out
- Gain step size error -0.5 +0.5
-80 dB
dB
dB
dB
step-
size
- Gain error (G = +4 dB) -0.45 +0.42 dB
R
Differential input impedance 25 34 kΩ
indiff
Input impedance during wake-up phase (referred to ground) 2 kΩ
Output impedance when CR1 = 00h (negative supply is ON and amplifier output stages are OFF)
Z
out
F < 40 kHz F = 6 MHz F = 36 MHz
t
t
stby
t
t
1. Guaranteed by design and parameter correlation.
2. Refer to the application information in Section 4.2 on page 30.
Wake-up time
wu
Standby time 100 µs
Attack time. Setup time between low rail and high rail voltages
atk
of internal step-down DC/DC converter
Decay time 50 ms
dcy
(2)
(1)
10
500
75
12 16 ms
100 µs
kΩ
Ω Ω
Doc ID 022194 Rev 2 11/48
Electrical characteristics TS4621B
Table 7. Timing characteristics of the I²C interface for I²C interface signals over
recommended operating conditions (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
f
SCL
t
d(H)
t
d(L)
t
t
t
t
t
Frequency, SCL 400 kHz
Pulse duration, SCL high 0.6 µs
Pulse duration, SCL low 1.3 µs
Setup time, SDA to SCL 100 ns
st1
Hold time, SCL to SDA 0 ns
h1
Bus free time between stop and start condition 1.3 µs
t
f
Setup time, SCL to start condition 0.6 µs
st2
Hold time, start condition to SCL 0.6 µs
h2
Setup time, SCL to stop condition 0.6 µs
st3

Figure 2. SCL and SDA timing diagram

t
d(H)
t
SCL
SDA
d(L)
t
st1
t
h1

Figure 3. Start and stop condition timing diagram

SCL
t
t
st2
h2
SDA
Start condition Stop condition
AM06113
t
f
t
st3
AM06114
12/48 Doc ID 022194 Rev 2
TS4621B Electrical characteristics
No load; No input Signal SDA=SCL = 0V Ta = 25°C
2.3 2.7 3.1 3.5 3.9 4.3 4.7
0
20
40
60
80
THD+N=10% (180°)
THD+N=10% (0°)
THD+N=1% (0°)
RL = 32Ω, F = 1kHz BW < 30kHz, Tamb = 25°C
THD+N=1% (180°)
Output power (mW)
Power Supply Voltage Vcc (V)
Figure 4. Current consumption vs. power
supply voltage
1.6
1.4
(mA)
1.2
CC
1.0
0.8
0.6
0.4
Quiscent Supply Current I
0.2
0.0
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
Power Supply Voltage Vcc (V)
No load; No input Signal Both channels enabled Ta = 25°C
Figure 6. Maximum output power vs. load
in-phase
80
70
60
50
40
30
20
Output power (mW)
10
0
10 100 1k
VCC=4.8V
VCC=3.6V
VCC=2.3V
RL Load resistance ( )
Inputs = 0°, F = 1kHz THD+N = 1% Tamb = 25°C
Figure 5. Standby current consumption vs.
power supply voltage
Figure 7. Maximum output power vs. load
out-of-phase
80
70
60
50
40
30
20
Output power (mW)
10
0
10 100 1k
VCC=4.8V
VCC=3.6V
VCC=2.3V
RL Load resistance ( )
Inputs = 180°, F = 1kHz THD+N = 1% Tamb = 25°C
Figure 8. Maximum output power vs. power
supply voltage, RL = 16 Ω
RL = 16Ω, F = 1kHz
120
BW < 30kHz, Tamb = 25°C
100
80
60
40
Output power (mW)
20
0
2.3 2.7 3.1 3.5 3.9 4.3 4.7
THD+N=10% (0°)
THD+N=1% (180°)
Power Supply Voltage Vcc (V)
Figure 9. Maximum output power vs. power
supply voltage, RL = 32 Ω
THD+N=10% (180°)
THD+N=1% (0°)
Doc ID 022194 Rev 2 13/48
Electrical characteristics TS4621B
2.3 2.7 3.1 3.5 3.9 4.3 4.7
700
800
900
1000
1100
1200
1300
1400
1500
1600
10 K
Ω
600
Ω
60
Ω
47
Ω
16
Ω
F = 1kHz BW < 30kHz, Tamb = 25°C Inputs = 0°, THD+N = 1%
32
Ω
Output Voltage (mVrms)
Power Supply Voltage Vcc (V)
0.1 1 10
1
10
100
Vcc=4.8V
Vcc=3.6V
Vcc=2.3V
Both channels enabled RL = 16Ω, F = 1KHz Ta = 25°C Crest Factor = 3dB
Supply Current I
S
(mA)
Total Output Power (mW)
0.1 1 10
1
10
100
Vcc=4.8V
Vcc=3.6V
Vcc=2.3V
Both channels enabled RL = 47Ω, F = 1 KHz Ta = 25°C Crest Factor = 3dB
Supply Current I
S
(mA)
Total Output Power (mW)
Figure 10. Maximum output power vs. power
supply voltage, RL = 47 Ω
RL = 47Ω, F = 1kHz BW < 30kHz, Tamb = 25°C
60
THD+N=10% (0°)
THD+N=10% (180°)
40
20
Output power (mW)
THD+N=1% (180°)
0
2.3 2.7 3.1 3.5 3.9 4.3 4.7
Power Supply Voltage Vcc (V)
THD+N=1% (0°)
Figure 12. Maximum output voltage vs. power
supply voltage, out-of-phase
1600
1500
1400
1300
1200
1100
1000
Output Voltage (mVrms)
F = 1kHz BW < 30kHz, Tamb = 25°C Inputs = 180°, THD+N=1%
47
16
Ω
Ω
32
Ω
900
800
700
2.3 2.7 3.1 3.5 3.9 4.3 4.7
Power Supply Voltage Vcc (V)
60
600
Ω
Ω
10 K
Ω
Figure 11. Maximum output voltage vs. power
supply voltage, in-phase
Figure 13. Current consumption vs. total
output power, RL = 16 Ω
Figure 14. Current consumption vs. total
output power, RL = 32 Ω
100
Both channels enabled RL = 32Ω, F = 1KHz Ta = 25°C Crest Factor = 3dB
(mA)
S
10
Supply Current I
14/48 Doc ID 022194 Rev 2
1
0.1 1 10
Vcc=3.6V
Total Output Power (mW)
Figure 15. Current consumption vs. total
output power, RL = 47 Ω
Vcc=2.3V
Vcc=4.8V
TS4621B Electrical characteristics
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
30
40
50
60
70
80
Vcc=2.3V to 4.8V Ta = 25°C
Differential Input Impedance (K )
Gain (dB)
Figure 16. Current consumption vs. total
output power
100
Both channels enabled RL = 47Ω, F = 1KHz Ta = 25°C, Vcc = 3.6V
(mA)
S
10
Crest Factor=3dB
Supply Current I
Crest Factor=10dB
1
0.1 1
Total Output Power (mW)
Figure 18. Output impedance vs. frequency in
HiZ mode
Input Floating
Input grounded
Figure 17. Power dissipation vs. total output
power
100
R = 16
Ω
R = 32
Ω
10
R = 47
Ω
Power Dissipation (mW)
1
0.1 1 10
Total Output Power (mW)
Both channels enabled F = 1KHz, Ta = 25°C Crest Factor = 3dB
Figure 19. Differential input impedance vs.
gain
Vcc=2.3V to 4.8V HIz; Right & Left Osc level=0.5V Ta = 25°C
Figure 20. THD+N vs. output power
RL = 16 Ω, in-phase, V
Vcc = 2.5V, RL = 16 G = 4dB, Inputs = 0 BW < 30kHz, Tamb = 25°C
RMS
Ω
°
F=8kHz
F=1kHz
CC
F=80Hz
= 2.5 V
Figure 21. THD+N vs. output power
RL = 16 Ω, out-of-phase, V
Vcc = 2.5V, RL = 16 G = 4dB, Inputs = 180 BW < 30kHz, Tamb = 25°C
Ω
°
F=8kHz
F=1kHz
CC
F=80Hz
= 2.5 V
Doc ID 022194 Rev 2 15/48
Loading...
+ 33 hidden pages