ST TS4621B User Manual

TS4621B

High-performance class-G stereo headphone amplifier with I2C volume control

Features

Power supply range: 2.3 V to 4.8 V

0.6 mA/channel quiescent current

2.1 mA current consumption with

100 µW/channel (10 dB crest factor)

0.006% typical THD+N at 1 kHz

100 dB typical PSRR at 217 Hz

100 dB of SNR A-weighted at G = 0 dB

Zero pop and click

I2C interface for volume control

Digital volume control range from -60 dB to +4 dB

Independent right and left channel shutdown control

Integrated high-efficiency step-down converter

Low software standby current: 5 µA max

Output-coupling capacitors removed

Thermal shutdown

Flip-chip package: 1.65 mm x 1.65 mm, 400 µm pitch, 16 bumps

Applications

Cellular phones, smart phones

Mobile internet devices

PMP/MP3 players

Description

The TS4621B is a class-G stereo headphone driver dedicated to high audio performance, high power efficiency and space-constrained applications.

It is based on the core technology of a low power dissipation amplifier combined with a highefficiency step-down DC/DC converter for supplying this amplifier.

TS4621BEIJT - flip-chip

Pinout (top view)

INR-

VOUTR

SCL

SDA

D

INR+

CMS

PVSS

C2

C

INL+

HPVDD

C1

AGND

B

INL-

VOUTL

AVDD

SW

A

4

3

2

1

 

Balls are underneath

When powered by a battery, the internal stepdown DC/DC converter generates the appropriate voltage to the amplifier depending on the amplitude of the audio signal to supply the headsets. It achieves a total 2.1 mA current consumption at 100 µW output power (10 dB crest factor).

THD+N is 0.02 % maximum at 1 kHz and PSRR is 100 dB at 217 Hz, which ensures a high audio quality of the device in a wide range of environments.

The traditionally bulky output coupling capacitors can be removed.

A dedicated common-mode sense pin removes parasitic ground noise.

The TS4621B is designed to be used with an output serial resistor. It ensures unconditional stability over a wide range of capacitive loads.

The TS4621B is packaged in a tiny 16-bump flip-chip package with a pitch of 400 µm.

September 2011

Doc ID 022194 Rev 2

1/48

www.st.com

Contents

TS4621B

 

 

Contents

1

Absolute maximum ratings and operating conditions . . . . . . . . . . . .

. 6

2

Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

3

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

4

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

4.1

I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

4.1.1 I²C bus operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.2 Control register CR1 - address 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.3 Control register CR2 - address 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.4 Control register CR3 - address 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.5 Summary of output impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Wake-up and standby time definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Overview of the class-G, 2-level headphone amplifier . . . . . . . . . . . . . . . 31 4.4 External component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Step-down inductor selection (L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4.2 Step-down output capacitor selection (Ct) . . . . . . . . . . . . . . . . . . . . . . . 33 4.4.3 Full capacitive inverter capacitors selection (C12 and Css) . . . . . . . . . 34 4.4.4 Power supply decoupling capacitor selection (Cs) . . . . . . . . . . . . . . . . . 34 4.4.5 Input coupling capacitor selection (Cin) . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.6Low-pass output filter (Rout and Cout) and

IEC 61000-4-2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4.7 Integrated input low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 Layout recommendations for single-ended operation . . . . . . . . . . . . . . 38

4.6 Startup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.1 Auto zero technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.6.2 Input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7.1 Common mode sense layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

2/48

Doc ID 022194 Rev 2

TS4621B

 

Contents

6

Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 46

7

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 47

Doc ID 022194 Rev 2

3/48

List of figures

TS4621B

 

 

List of figures

Figure 1. Typical application schematics for the TS4621B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 2. SCL and SDA timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 3. Start and stop condition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 4. Current consumption vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 5. Standby current consumption vs. power supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 6. Maximum output power vs. loadin-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 7. Maximum output power vs. loadout-of-phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 8. Maximum output power vs. power supply voltage, RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . 13 Figure 9. Maximum output power vs. power supply voltage, RL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . 13 Figure 10. Maximum output power vs. power supply voltage, RL = 47 Ω . . . . . . . . . . . . . . . . . . . . . . 14 Figure 11. Maximum output voltage vs. power supply voltage, in-phase. . . . . . . . . . . . . . . . . . . . . . . 14 Figure 12. Maximum output voltage vs. power supply voltage, out-of-phase . . . . . . . . . . . . . . . . . . . 14 Figure 13. Current consumption vs. total output power, RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 14. Current consumption vs. total output power, RL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 15. Current consumption vs. total output power, RL = 47 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 16. Current consumption vs. total output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 17. Power dissipation vs. total output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 18. Output impedance vs. frequency in HiZ mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 19. Differential input impedance vs. gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 20. THD+N vs. output power RL = 16 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 21. THD+N vs. output power RL = 16 Ω, out-of-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . 15 Figure 22. THD+N vs. output power RL = 16 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 23. THD+N vs. output power RL = 16 Ω, out-of-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . 16 Figure 24. THD+N vs. output power RL = 16 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 25. THD+N vs. output power RL = 16 Ω, out-of-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . 16 Figure 26. THD+N vs. output power RL = 32 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 27. THD+N vs. output power RL = 32 Ω, out-of-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . 16 Figure 28. THD+N vs. output power RL = 32 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 29. THD+N vs. output power RL = 32 Ω, out-of-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . 17 Figure 30. THD+N vs. output power RL = 32 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 31. THD+N vs. output power RL = 32 Ω, out-of-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . 17 Figure 32. THD+N vs. output power RL = 47 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 33. THD+N vs. output power RL = 47 Ω, out-of-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . 17 Figure 34. THD+N vs. output power RL = 47 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 35. THD+N vs. output power RL = 47 Ω, out-of-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . 18 Figure 36. THD+N vs. output power RL = 47 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 37. THD+N vs. output power RL = 47 Ω, out-of-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . 18 Figure 38. THD+N vs. frequency RL = 16 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 39. THD+N vs. frequency RL = 16 Ω, out-of-phase, VCC = 2.5 V. . . . . . . . . . . . . . . . . . . . . . . 18 Figure 40. THD+N vs. frequency RL = 16 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 41. THD+N vs. frequency RL = 16 Ω, out-of-phase, VCC = 3.6 V. . . . . . . . . . . . . . . . . . . . . . . 19 Figure 42. THD+N vs. frequency RL = 16 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 43. THD+N vs. frequency RL = 16 Ω, out-of-phase, VCC = 4.8 V. . . . . . . . . . . . . . . . . . . . . . . 19 Figure 44. THD+N vs. frequency RL = 32 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 45. THD+N vs. frequency RL = 32 Ω, out-of-phase, VCC = 2.5 V. . . . . . . . . . . . . . . . . . . . . . . 19 Figure 46. THD+N vs. frequencyRL = 32 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 47. THD+N vs. frequency RL = 32 Ω, out-of-phase, VCC = 3.6 V. . . . . . . . . . . . . . . . . . . . . . . 20 Figure 48. THD+N vs. frequency RL = 32 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4/48

Doc ID 022194 Rev 2

TS4621B

List of figures

 

 

Figure 49. THD+N vs. frequency RL = 32 Ω, out-of-phase, VCC = 4.8 V. . . . . . . . . . . . . . . . . . . . . . . 20 Figure 50. THD+N vs. frequency RL = 47 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 51. THD+N vs. frequency RL = 47 Ω, out-of-phase, VCC = 2.5 V. . . . . . . . . . . . . . . . . . . . . . . 20 Figure 52. THD+N vs. frequency RL = 47 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 53. THD+N vs. frequency RL = 47 Ω, out-of-phase, VCC = 3.6 V. . . . . . . . . . . . . . . . . . . . . . . 21 Figure 54. THD+N vs. frequency RL = 47 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 55. THD+N vs. frequency RL = 47 Ω, out-of-phase, VCC = 4.8 V. . . . . . . . . . . . . . . . . . . . . . . 21 Figure 56. THD+N vs. frequency RL = 10 kΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 57. THD+N vs. frequency RL = 600 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 58. THD+N vs. output voltage RL = 10 kΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 59. THD+N vs. output voltage RL = 600 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 60. THD+N vs. input voltage, HiZ left and right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 61. CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 62. PSRR vs. frequencyVCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 63. PSRR vs. frequencyVCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 64. PSRR vs. frequencyVCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 65. Output signal spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 66. Crosstalk vs. frequencyRL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 67. Crosstalk vs. frequencyRL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 68. Crosstalk vs. frequencyRL = 47 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 69. Crosstalk vs. frequencyRL = 10 kΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 70. Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 71. Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 72. I²C write operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 73. I²C read operations1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 74. Flowchart for short-circuit detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 75. TS4621B architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 76. Efficiency comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 77. Class-G operating with a music sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 78. Typical application schematic with IEC 61000-4-2 ESD protection . . . . . . . . . . . . . . . . . . 36 Figure 79. Single-ended input configuration1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 80. Single-ended input configuration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 81. Incorrect ground connection for single-ended option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 82. Correct ground connection for single-ended option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 83. Common mode sense layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 84. Demonstration board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 85. Copper layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 86. Copper layer and overlay layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 87. TS4621B footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 88. Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 89. Marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 90. Flip-chip - 16 bumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 91. Device orientation in tape pocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Doc ID 022194 Rev 2

5/48

Absolute maximum ratings and operating conditions

TS4621B

 

 

1 Absolute maximum ratings and operating conditions

Table 1.

Absolute maximum ratings

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

VCC

Supply voltage (1) during 1ms.

5.5

V

Vin+,Vin-

Input voltage referred to ground

+/- 1.2

V

Tstg

Storage temperature

-65 to +150

°C

Tj

Maximum junction temperature(2)

150

°C

R

Thermal resistance junction to ambient (3)

200

°C/W

thja

 

 

 

Pd

Power dissipation

Internally limited(4)

 

 

Human body model (HBM)(5)

 

 

 

All pins

2

kV

 

VOUTR, VOUTL vs. AGND

4

 

 

 

 

 

 

Machine model (MM), min. value(6)

100

V

ESD

 

 

 

Charge device model (CDM)

 

 

 

All pins

500

V

 

VOUTR, VOUTL

750

 

 

 

 

 

 

IEC61000-4-2 level 4, contact(7)

+/- 8

kV

 

IEC61000-4-2 level 4, air discharge(7)

+/- 15

 

 

 

Lead temperature (soldering, 10 sec)

260

°C

 

 

 

 

1.All voltage values are measured with respect to the ground pin.

2.Thermal shutdown is activated when maximum junction temperature is reached.

3.The device is protected from over-temperature by a thermal shutdown mechanism, active at 150° C.

4.Exceeding the power derating curves for long periods may provoke abnormal operation.

5.Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

6.Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.

7.The measurement is performed on an evaluation board, with ESD protection EMIF02-AV01F3.

6/48

Doc ID 022194 Rev 2

TS4621B

 

Absolute maximum ratings and operating conditions

 

 

 

 

 

 

 

Table 2.

Operating conditions

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

Value

Unit

 

 

 

 

 

 

 

VCC

 

Supply voltage

2.3 to 4.8

V

 

 

 

internal step-down DC output voltages

 

 

 

HPVDD

 

High rail voltage

1.9

V

 

 

 

Low rail voltage

1.2

 

 

 

 

 

 

 

 

SDA, SCL

 

Input voltage range

GND to Vcc

V

 

RL

 

Load resistor

≥ 16

Ω

 

CL

 

Load capacitor

 

nF

 

 

Serial resistor of 12 Ω minimum, RL ≥ 16 Ω

0.8 to 100

 

 

 

 

 

Toper

 

Operating free air temperature range

-40 to +85

°C

 

Rthja

 

Flip-chip thermal resistance junction to ambient

90

°C/W

Doc ID 022194 Rev 2

7/48

Typical application schematics

TS4621B

 

 

2 Typical application schematics

Figure 1. Typical application schematics for the TS4621B

 

 

 

 

 

 

Vbat

L1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cs

 

 

3.3 uH

 

 

 

 

 

 

2.2 uF

 

 

 

 

 

 

 

 

 

 

AVdd

Sw

 

 

 

 

 

 

 

 

Positive

HpVdd

 

 

 

 

 

 

 

 

supply

 

Ct

 

 

Cin

 

 

 

 

 

 

 

 

InL-

 

 

 

 

 

10 uF

 

Negative left input

1 uF

 

 

 

 

 

 

Cout

 

 

 

 

 

 

 

 

 

 

 

-

 

 

Rout

0.8 nF min.

 

 

 

 

 

Level

VoutL

 

 

InL+

 

 

 

 

 

 

 

 

 

 

 

Positive left input

 

 

 

+

detector

 

 

 

 

 

 

 

 

12 ohms min.

 

Cin

 

 

 

 

 

 

 

 

 

 

 

 

 

3

J1

 

1 uF

 

 

 

 

 

CMS

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

Cin

 

 

 

 

 

 

 

 

InR+

 

 

 

 

 

 

 

Negative right input

1 uF

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VoutR

Rout

 

 

 

InR-

 

 

+

Level

 

 

 

 

 

 

 

 

 

Positive right input

 

 

 

 

detector

 

 

 

 

 

 

 

-

 

12 ohms min.

 

Cin

 

 

 

 

 

Cout

 

 

 

 

 

 

 

 

 

1 uF

SDA

 

 

 

 

 

 

0.8 nF min.

 

 

SCL

I2C

 

Negative

 

 

 

 

 

 

 

supply

 

 

 

 

 

 

 

 

PVss

C1

C2

AGnd

 

 

 

I²C bus

 

 

Css

 

C12

 

 

 

 

 

 

 

2.2 uF

 

 

 

 

 

 

 

 

 

2.2 uF

 

 

 

 

 

 

 

 

 

 

 

 

AM06119

Table 3.

TS4621B pin description

Pin number

Pin name

Pin definition

 

 

 

 

A1

 

SW

Switching node of the buck converter

 

 

 

 

A2

 

AVDD

Analog supply voltage, connect to battery

 

 

 

 

A3

 

VOUTL

Output signal for left audio channel

 

 

 

 

A4

 

INL-

Negative input signal for left audio channel

 

 

 

 

B1

 

AGND

Device ground

 

 

 

 

B2

 

C1

Flying capacitor terminal for internal negative supply generator

 

 

 

 

B3

 

HPVDD

Buck converter output, power supply for amplifier

 

 

 

 

B4

 

INL+

Positive input signal for left audio channel

 

 

 

 

C1

 

C2

Flying capacitor terminal for internal negative supply generator

 

 

 

 

C2

 

PVSS

Negative supply generator output

 

 

 

 

C3

 

CMS

Common mode sense, to be connected as close as possible to the

 

ground of headphone/line out plug

 

 

 

 

 

 

 

C4

 

INR+

Positive input signal for right audio channel

 

 

 

 

D1

 

SDA

I²C data signal, up to VCC tolerant input

D2

 

SCL

I²C clock signal, up to VCC tolerant input

D3

 

VOUTR

Output signal for right audio channel

 

 

 

 

D4

 

INR-

Negative input signal for right audio channel

 

 

 

 

8/48

Doc ID 022194 Rev 2

TS4621B

 

 

Typical application schematics

 

 

 

 

 

Table 4.

TS4621B component description(1)

 

Component

Value

Description

 

 

 

 

 

 

 

 

Decoupling capacitors for VCC. A 2.2 µF capacitor is sufficient for proper

 

 

 

decoupling of the TS4621B. An X5R dielectric and 10 V rating voltage is

Cs

 

2.2 µF

recommended to minimize C/ V when VCC = 4.8 V.

 

 

 

 

Must be placed as close as possible to the TS4621B to minimize parasitic

 

 

 

inductance and resistance.

 

 

 

 

 

 

 

 

Capacitor for internal negative power supply operation. An X5R dielectric

 

 

 

and 6.3 V rating voltage is recommended to minimize

C/ V when

C12

 

2.2 µF

HPVDD = 1.9 V.

 

 

 

 

Must be placed as close as possible to the TS4621B to minimize parasitic

 

 

 

inductance and resistance.

 

 

 

 

 

 

 

 

Filtering capacitor for internal negative power supply. An X5R dielectric and

CSS

 

2.2 µF

6.3 V rating voltage is recommended to minimize C/ V when

 

 

 

HPVDD = 1.9 V.

 

 

 

 

 

 

 

1

Input coupling capacitor that forms with Rin ≈ Rindiff/2 a first-order high-

C

 

pass filter with a -3 dB cutoff frequency Fc. For example, at maximum gain

 

Cin = -----------------------------------------

in

 

2 × π × Rin × Fc

G = 4 dB, Rin = 12.5 kΩ, Cin = 1 µF, therefore Fc = 13 Hz.

 

 

 

 

 

 

 

Cout

 

0.8 to 100 nF

Output capacitor of 0.8 nF minimum to 100 nF maximum. This capacitor is

 

mandatory for operation of the TS4621B.

 

Rout

 

12 Ω min.

Output resistor in-series with the TS4621B output. This 12 Ω minimum

 

resistor is mandatory for operation of the TS4621B.

 

L1

 

3.3 µH

Inductor for internal DC/DC step-down converter.

 

 

References of inductors: refer to Section 4.4.1 for more information.

 

 

 

 

 

 

 

 

 

 

Tank capacitor for internal DC/DC step-down converter. An X5R dielectric

Ct

 

10 µF

and 6.3 V rating voltage is recommended to minimize

C/ V when

 

 

 

HPVDD = 1.9 V. Refer to Section 4.4.2 for more information.

 

 

 

 

 

1. Refer to Section 4.4 for a complete description of each component.

Doc ID 022194 Rev 2

9/48

Electrical characteristics

 

 

 

TS4621B

 

 

 

 

 

 

 

3

Electrical characteristics

 

 

 

 

 

Table 5.

Electrical characteristics of the I²C interface

 

 

 

 

 

 

for VCC = +3.6 V, AGND = 0 V, Tamb = 25°C (unless otherwise specified)

 

 

 

Symbol

Parameter

Min.

Typ.

Max.

 

Unit

 

 

 

 

 

 

 

VIL

Low level input voltage on SDA, SCL pins

 

 

0.6

 

V

VIH

High level input voltage on SDA, SCL pins

1.2

 

 

 

V

VOL

Low level output voltage, SDA pin, Isink = 3mA

 

 

0.4

 

V

Iin

Input current on SDA, SCL

 

VSDA, SCL

10

 

µA

 

 

 

--------------------------------

 

 

 

 

 

 

600kΩ

 

 

 

 

 

 

 

 

 

 

Table 6.

Electrical characteristics of the amplifier

 

 

 

 

 

 

for VCC = +3.6 V, AGND = 0 V, RL= 32 Ω + 15 Ω, Tamb = 25° C

 

 

 

 

 

(unless otherwise specified)

 

 

 

 

 

Symbol

Parameter

Min.

Typ.

Max.

 

Unit

 

 

 

 

 

 

 

ICC

Quiescent supply current, no input signal, both channels

 

1.2

1.5

 

mA

enabled

 

 

 

Supply current, with input modulation, both channels enabled,

 

 

 

 

 

 

HPVDD = 1.2 V, output power per channel, F=1kHz

 

 

 

 

 

 

Pout = 100 µW at 3 dB crest factor

 

2.3

3.5

 

 

Is

Pout = 500 µW at 3 dB crest factor

 

3.7

5

 

mA

Pout = 1 mW at 3 dB crest factor

 

4.7

6.5

 

 

 

 

 

 

Pout = 100 µW at 10 dB crest factor

 

2.1

 

 

 

 

Pout = 500 µW at 10 dB crest factor

 

3.1

 

 

 

 

Pout = 1 mW at 10 dB crest factor

 

3.9

 

 

 

 

 

 

 

 

 

 

ISTBY

Standby current, no input signal, I²C CR1 = 01h

 

0.6

5

 

µA

VSDA = 0 V, VSCL = 0 V

 

 

 

 

 

 

 

 

Vin

Input differential voltage range(1)

 

 

1

 

Vrms

Voo

Output offset voltage

-500

 

+500

 

µV

No input signal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum output voltage, in-phase signals

 

 

 

 

 

Vout

RL = 16 Ω, THD+N = 1% max, f = 1 kHz

0.6

0.8

 

 

Vrms

R = 47 Ω, THD+N = 1% max, f = 1 kHz

1.0

1.1

 

 

 

L

 

 

 

 

 

 

RL = 10 kΩ, Rs = 15 Ω, CL = 1 nF, THD+N = 1% max,

1.0

1.3

 

 

 

 

f = 1 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

Total harmonic distortion + noise, G = 0 dB

 

 

 

 

 

THD+N

Vout = 700 mVrms, F = 1 kHz

 

0.006

0.02

 

%

 

Vout = 700 mVrms, 20 Hz < F < 20 kHz

 

0.05

 

 

 

 

Power supply rejection ratio(1), Vripple = 200 mVpp, grounded

 

 

 

 

 

PSRR

inputs

 

 

 

 

dB

F = 217 Hz, G = 0 dB, RL ≥16 Ω

90

100

 

 

 

 

 

 

 

F = 10 kHz, G = 0 dB, RL ≥16 Ω

 

70

 

 

 

10/48

Doc ID 022194 Rev 2

TS4621B

 

 

Electrical characteristics

 

 

 

 

 

 

Table 6.

Electrical characteristics of the amplifier

 

 

 

 

 

for VCC = +3.6 V, AGND = 0 V, RL= 32 Ω + 15 Ω, Tamb = 25° C

 

 

 

 

(unless otherwise specified) (continued)

 

 

 

 

Symbol

Parameter

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

Common mode rejection ratio

 

 

 

 

CMRR

F = 1 kHz, G = 0 dB, Vic = 200 mVpp

 

65

 

dB

 

F = 20 Hz to 20 kHz, G = 0 dB, Vic = 200 mVpp

 

45

 

 

 

Channel separation

 

 

 

 

Crosstalk

RL = 32 Ω + 15 Ω , G = 0 dB, F = 1 kHz, Po = 10 mW

60

100

 

dB

 

RL = 10 kΩ, G = 0 dB, F = 1 kHz, Vout = 1 Vrms

80

110

 

 

 

Signal-to-noise ratio, A-weighted, Vout = 1 Vrms, THD+N < 1%,

 

 

 

 

SNR

F = 1 kHz(1)

 

 

 

dB

G = +4 dB

99

 

 

 

 

 

 

 

G = +0 dB

100

 

 

 

 

 

 

 

 

 

 

Output noise voltage, A-weighted (1)

 

 

 

 

ONoise

G = +4 dB

 

9

11

µVrms

 

G = +0 dB

 

 

9

 

 

 

 

 

 

 

G

Gain range with gain (dB) = 20 x log[(VoutL/R)/(InL/R+ - InL/R-)]

-60

 

+4

dB

Mute

InL/R+ - InL/R- = 1 Vrms

 

 

-80

dB

-

Gain step size error

-0.5

 

+0.5

step-

 

size

 

 

 

 

 

 

 

 

 

 

 

-

Gain error (G = +4 dB)

-0.45

 

+0.42

dB

 

 

 

 

 

 

Rindiff

Differential input impedance

25

34

 

 

Input impedance during wake-up phase (referred to ground)

 

2

 

 

 

 

 

 

 

 

Output impedance when CR1 = 00h (negative supply is ON and

 

 

 

 

 

amplifier output stages are OFF)(1)

 

 

 

 

Zout

F < 40 kHz

10

 

 

 

F = 6 MHz

500

 

 

Ω

 

F = 36 MHz

75

 

 

Ω

 

 

 

 

 

 

twu

Wake-up time(2)

 

12

16

ms

tstby

Standby time

 

100

 

µs

tatk

Attack time. Setup time between low rail and high rail voltages

 

100

 

µs

of internal step-down DC/DC converter

 

 

tdcy

Decay time

 

50

 

ms

1.Guaranteed by design and parameter correlation.

2.Refer to the application information in Section 4.2 on page 30.

Doc ID 022194 Rev 2

11/48

Electrical characteristics

 

 

 

TS4621B

 

 

 

 

 

 

 

 

Table 7.

Timing characteristics of the I²C interface for I²C interface signals over

 

 

recommended operating conditions (unless otherwise specified)

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Min.

Typ.

Max.

 

Unit

 

 

 

 

 

 

 

 

 

fSCL

Frequency, SCL

 

 

400

 

kHz

 

td(H)

Pulse duration, SCL high

0.6

 

 

 

µs

 

td(L)

Pulse duration, SCL low

1.3

 

 

 

µs

 

tst1

Setup time, SDA to SCL

100

 

 

 

ns

 

th1

Hold time, SCL to SDA

0

 

 

 

ns

 

tf

Bus free time between stop and start condition

1.3

 

 

 

µs

 

tst2

Setup time, SCL to start condition

0.6

 

 

 

µs

 

th2

Hold time, start condition to SCL

0.6

 

 

 

µs

 

tst3

Setup time, SCL to stop condition

0.6

 

 

 

µs

Figure 2. SCL and SDA timing diagram

 

t d(H)

 

SCL

t d(L)

 

 

t st1

t h1

SDA

 

 

 

 

AM06113

Figure 3. Start and stop condition timing diagram

SCL

 

 

tst2

th2

tf

 

 

 

tst3

SDA

 

 

Start condition

Stop condition

 

 

AM06114

12/48

Doc ID 022194 Rev 2

TS4621B

Electrical characteristics

 

 

Figure 4. Current consumption vs. power supply voltage

Figure 5. Standby current consumption vs. power supply voltage

 

1.6

 

 

 

 

 

 

 

 

 

 

 

 

(mA)

1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC 1.2

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

Current

1.0

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

 

Supply

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quiscent

0.4

 

 

 

 

 

 

No load; No input Signal

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

Both channels enabled

 

 

 

 

 

 

 

 

 

Ta = 25°C

 

 

 

 

0.0

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

 

2.4

Power Supply Voltage Vcc (V)

No load; No input Signal

SDA=SCL = 0V

Ta = 25°C

Figure 6. Maximum output power vs. load in-phase

Figure 7. Maximum output power vs. load out-of-phase

 

80

 

 

 

70

 

Inputs = 0°, F = 1kHz

 

VCC=4.8V

THD+N = 1%

 

 

 

 

Tamb = 25°C

 

60

 

 

 

 

(mW)

50

 

 

 

 

 

power

40

VCC=3.6V

 

 

 

30

 

 

Output

 

 

20

 

 

 

10

VCC=2.3V

 

 

 

 

 

0

100

1k

 

10

RL Load resistance ()

 

80

 

 

 

70

VCC=4.8V

Inputs = 180°, F = 1kHz

 

 

THD+N = 1%

 

 

 

 

60

 

Tamb = 25°C

 

 

 

(mW)

50

VCC=3.6V

 

 

 

 

 

 

power

40

 

 

30

VCC=2.3V

 

Output

 

 

20

 

 

 

10

 

 

 

0

100

1k

 

10

RL Load resistance ()

Figure 8. Maximum output power vs. power Figure 9.

Maximum output power vs. power

supply voltage, RL = 16 Ω

supply voltage, RL = 32 Ω

 

120

RL = 16Ω, F = 1kHz

 

THD+N=10% (180°)

 

80

RL = 32Ω, F = 1kHz

 

 

 

 

 

 

BW < 30kHz, Tamb = 25°C

 

 

 

 

BW < 30kHz, Tamb = 25°C

 

THD+N=10% (0°)

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

THD+N=10% (180°)

 

(mW)

80

 

 

 

 

 

 

(mW)

60

 

 

 

 

 

 

THD+N=10% (0°)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

power

 

 

 

 

power

 

 

 

 

 

 

 

60

 

THD+N=1% (180°)

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output

 

 

 

 

 

Output

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THD+N=1% (0°)

 

20

 

 

 

THD+N=1% (0°)

 

 

 

 

 

 

 

THD+N=1% (180°)

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

2.3

2.7

3.1

3.5

3.9

4.3

4.7

 

2.3

2.7

3.1

3.5

3.9

4.3

4.7

Power Supply Voltage Vcc (V)

Power Supply Voltage Vcc (V)

Doc ID 022194 Rev 2

13/48

Electrical characteristics

TS4621B

 

 

Figure 10. Maximum output power vs. power supply voltage, RL = 47 Ω

Figure 11. Maximum output voltage vs. power supply voltage, in-phase

Output power (mW)

 

RL = 47Ω, F = 1kHz

60

BW < 30kHz, Tamb = 25°C

THD+N=10% (0°)

 

THD+N=10% (180°)

40

20

THD+N=1% (180°)

THD+N=1% (0°)

0

 

 

 

 

 

 

2.3

2.7

3.1

3.5

3.9

4.3

4.7

Power Supply Voltage Vcc (V)

Output Voltage (mVrms)

1600

F = 1kHz

 

 

1500

 

 

BW < 30kHz, Tamb = 25°C

600 Ω

10 KΩ

1400

Inputs = 0°, THD+N = 1%

 

 

 

1300

60 Ω

1200

1100

1000

47 Ω

32 Ω

900

 

800

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

700

 

 

 

16

Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7

3.1

3.5

 

 

3.9

4.3

4.7

2.3

 

 

Power Supply Voltage Vcc (V)

Figure 12. Maximum output voltage vs. power Figure 13.

Current consumption vs. total

supply voltage, out-of-phase

output power, RL = 16 Ω

Output Voltage (mVrms)

1600

 

 

 

1500

F = 1kHz

 

 

BW < 30kHz, Tamb = 25°C

 

 

 

600 Ω

10 KΩ

1400

Inputs = 180°, THD+N=1%

 

 

 

1300

1200

 

 

 

1100

32 Ω

47 Ω

60 Ω

1000

 

 

 

900

 

16 Ω

 

800

 

 

 

700

2.7

3.1

3.5

3.9

4.3

4.7

2.3

Power Supply Voltage Vcc (V)

S

Supply Current I (mA)

100

 

Both channels enabled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL = 16

Ω

, F = 1KHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ta = 25

°

C

 

 

 

 

 

 

Crest Factor = 3dB

 

 

 

 

 

 

 

Vcc=2.3V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcc=3.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

Vcc=4.8V

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

10

0.1

Total Output Power (mW)

Figure 14. Current consumption vs. total output power, RL = 32 Ω

Figure 15. Current consumption vs. total output power, RL = 47 Ω

 

100

Both channels enabled

 

 

100

Both channels enabled

 

 

 

 

 

 

 

 

 

RL = 32Ω, F = 1KHz

 

 

 

RL = 47Ω, F = 1 KHz

 

 

 

Ta = 25°C

 

 

 

Ta = 25°C

 

(mA)

 

Crest Factor = 3dB

 

(mA)

 

Crest Factor = 3dB

Vcc=2.3V

 

Vcc=2.3V

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcc=3.6V

S

 

 

 

S

 

 

I

 

 

 

I

 

 

Supply Current

 

 

 

Supply Current

 

 

10

Vcc=3.6V

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcc=4.8V

 

 

 

 

Vcc=4.8V

 

1

1

10

 

1

1

10

 

0.1

 

0.1

 

 

Total Output Power (mW)

 

 

 

Total Output Power (mW)

14/48

Doc ID 022194 Rev 2

ST TS4621B User Manual

TS4621B

Electrical characteristics

 

 

Figure 16. Current consumption vs. total output power

Figure 17. Power dissipation vs. total output power

100

 

 

100

 

 

 

Both channels enabled

 

 

 

R = 16 Ω

 

RL = 47Ω, F = 1KHz

 

 

 

 

 

 

 

 

(mA)

Ta = 25°C, Vcc = 3.6V

(mW)

 

R = 32 Ω

 

 

 

 

 

 

 

 

S

 

Power Dissipation

 

 

 

10

 

10

 

 

SupplyCurrentI

Crest Factor=3dB

 

R = 47 Ω

 

 

 

 

 

Both channels enabled

 

 

 

F = 1KHz,

 

 

 

 

 

 

Crest Factor=10dB

 

 

 

Ta = 25°C

 

 

 

 

Crest Factor = 3dB

1

 

 

1

 

1

 

1

10

0.1

 

0.1

 

Total Output Power (mW)

 

 

Total Output Power (mW)

Figure 18. Output impedance vs. frequency in Figure 19.

Differential input impedance vs.

HiZ mode

gain

 

 

80

 

 

 

 

Input Floating

)

 

 

 

 

 

(K

 

 

 

 

 

 

70

 

 

 

 

 

Input Impedance

 

 

 

 

Input grounded

 

 

 

 

 

 

60

 

 

 

 

 

50

 

 

 

 

Vcc=2.3V to 4.8V

Differential

 

 

 

 

 

HIz; Right & Left

40

 

 

 

 

Osc level=0.5VRMS

 

 

 

 

 

Vcc=2.3V to 4.8V

 

 

Ta = 25°C

 

 

 

 

 

Ta = 25°C

 

 

 

 

30

 

 

 

 

-55

-50 -45 -40 -35 -30 -25 -20 -15 -10

-5

0

 

 

-60

 

 

 

 

Gain (dB)

 

 

Figure 20. THD+N vs. output power

Figure 21.

THD+N vs. output power

 

 

RL = 16 Ω, in-phase, VCC = 2.5 V

 

 

 

RL = 16 Ω, out-of-phase, VCC = 2.5 V

Vcc = 2.5V, RL = 16Ω

Vcc = 2.5V, RL = 16Ω

G = 4dB, Inputs = 0°

G = 4dB, Inputs = 180°

BW < 30kHz, Tamb = 25°C

BW < 30kHz, Tamb = 25°C

F=8kHz

F=8kHz

F=1kHz

F=1kHz

F=80Hz

F=80Hz

Doc ID 022194 Rev 2

15/48

Loading...
+ 33 hidden pages