ST TDA7293 User Manual

120-volt, 100-watt, DMOS audio amplifier
(**)
Features
Multipower BCD technology
Very high operating voltage range (±50 V)
High output power (100 W into 8
@ THD =10%, with V
Muting and stand-by functions
No switch on/off noise
Very low distortion
Very low noise
Short-circuit protected (with no input signal
applied)
Thermal shutdown
Clip detector
Modularity (several devices can easily be
connected in parallel to drive very low impedances)
= ±40 V)
S
TDA7293
with mute and standby
Multiwatt15V
class AB amplifier in Hi-Fi field applications, such as home stereo, self powered loudspeakers and Topclass TV. Thanks to the wide voltage range and to the high output current capability it is able to supply the highest power into both 4- and 8- loads.
The built-in muting function with turn-on delay simplifies the remote operation avoiding on-off switching noises.
Parallel mode is possible by connecting several devices and using pin11. High output power can be delivered to very low impedance loads, so optimizing the thermal dissipation of the system

Table 1. Device summary

Multiwatt15H
Description
The TDA7293 is a monolithic integrated circuit in Multiwatt15 package, intended for use as audio
Order code Package
TDA7293V Multiwatt15V
TDA7293HS Multiwatt15H

Figure 1. TDA7293 block diagram

C7 100nF C6 1000µF
VMUTE
VSTBY
R3 22K
C2
R2
22µF
680
IN- 2
C1 470nF
IN+
3
R1 22K
R5 10K
R4 22K
C3 10µF C4 10µF
(*) see Application note
4
SGND
(**)
10
MUTE
STBY
9
for SLAVE function
MUTE
STBY
1
STBY-GND
BUFFER DRIVER
713
-
+
THERMAL
SHUTDOWN
-Vs -PWVs
C9 100nF C8 1000µF
September 2010 Doc ID 6744 Rev 8 1/21
+Vs
PROTECTION
158
-Vs
+PWVs+Vs
OUT
14
BOOT
12
LOADER
S/C
6
5
D97AU805A
C5
22µF
BOOTSTRAP
CLIP DET
(*)
VCLIP
www.st.com
11
21
Contents TDA7293

Contents

1 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Applications suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 High efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Bridge application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Modular application (ref. figure 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Bootstrap capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 Vertically-mounted package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Horizontally-mounted package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/21 Doc ID 6744 Rev 8
TDA7293 Pin connections

1 Pin connections

Figure 2. Pin connections

TAB CONNECTED TO PIN 8
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
D97AU806
-VS (POWER)
OUT
(POWER)
+V
S
BOOTSTRAP LOADER
BUFFER DRIVER
MUTE
STAND-BY
(SIGNAL)
-V
S
(SIGNAL)
+V
S
BOOTSTRAP
CLIP AND SHORT CIRCUIT DETECTOR
SIGNAL GROUND
NON INVERTING INPUT
INVERTING INPUT
STAND-BY GND
Doc ID 6744 Rev 8 3/21
Electrical specifications TDA7293

2 Electrical specifications

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
V
S
V
1
V
2
V
- V
2
V
3
V
4
V
5
V
6
V
9
V
10
V
11
V
12
I
O
P
tot
T
op
, T
T
stg
V
S
V
1
V
ESD_HBM
Supply voltage (no signal) ±60 V
V
STANDBY
Input voltage (inverting) referred to -V
Maximum differential inputs ±30 V
3
Input voltage (non inverting) referred to -V
Signal GND voltage referred to -V
Clip detector voltage referred to -V
Bootstrap voltage referred to -V
Standby voltage referred to -V
GND voltage referred to -VS (pin 8) 90 V
S
S
S
S
S
S
90 V
90 V
90 V
120 V
120 V
120 V
Mute voltage referred to -VS 120 V
Buffer voltage referred to -VS 120 V
Bootstrap loader voltage referred to -VS 100 V
Output peak current 10 A
Power dissipation T
= 70°C 50 W
case
Operating ambient temperature range 0 to 70 °C
Storage and junction temperature 150 °C
j
Supply voltage (no signal) ±60 V
V
STANDBY
GND voltage referred to -VS (pin 8) 90 V
ESD maximum withstanding voltage range, test condition CDF-AEC-Q100-002- ”Human body
±1500 V
model”

2.2 Thermal data

Table 3. Thermal data

Symbol Parameter Min Typ Max Unit
R
thj-case
4/21 Doc ID 6744 Rev 8
Thermal resistance junction to case - 1 1.5 °C/W
TDA7293 Electrical specifications

2.3 Electrical characteristics

The specifications given here were obtained with the conditions VS = ±40 V, RL = 8 Ω, R
=50Ω, T
g

Table 4. Electrical characteristics

.
Symbol Parameter Test conditions Min Typ Max Unit
= 25 °C, f = 1 kHz unless otherwise specified.
amb
V
S
I
q
I
b Input bias current - - 0.3 1 µA
V
OS
I
OS
P
O
d Total harmonic distortion
I
SC
Supply range - ±12 - ±50 V
Quiescent current - - 50 100 mA
Input offset voltage - -10 - 10 mV
Input offset current - - - 0.2 µA
Continuous output power
(1)
Current limiter threshold V
d = 1%, R
= ±29 V
V
S
d = 10%, R
= ±29 V
V
S
= 5 W, f = 1 kHz - 0.005 - %
P
O
= 0.1 to 50 W,
P
O
f = 20 Hz to 15 kHz
±40 V - 6.5 - A
S
= 4 Ω,
L
= 4Ω,
L
75
90
80 80
100 100
-W
-W
--0.1%
SR Slew rate - 5 10 - V/µs
G
V
G
V
Open loop voltage gain - - 80 - dB
Closed loop voltage gain
(2)
- 293031dB
A = curve - 1 - µV
e
N
R
i
SVR Supply voltage rejection
Total input noise
f = 20 Hz to 20 kHz - 3 10 µV
Input resistance - 100 - - k
f = 100 Hz,
= 0.5 V RMS
V
ripple
-75-dB
Device mutes - 150 - °C
T
S
Thermal protection
Device shuts down - 160 - °C
Standby function (ref. to to pin 1)
V
ST on
V
ST off
AT T
I
q st-by
st-by
Standby on threshold - - - 1.5 V
Standby off threshold - 3.5 - - V
Standby attenuation - 70 90 - dB
Quiescent current @ standby - - 0.5 1 mA
Mute function (ref. to pin 1)
V
Mon
V
Moff
AT T
mute
Mute on threshold - - - 1.5 V
Mute off threshold - 3.5 - - V
Mute attenuatIon - 60 80 - dB
Doc ID 6744 Rev 8 5/21
Electrical specifications TDA7293
Table 4. Electrical characteristics (continued)
Symbol Parameter Test conditions Min Typ Max Unit
Clip detector
Duty Duty cycle ( pin 5)
I
CLEAK
-P
d = 1%, R
PULLUP
= 10 kto 5 V
d = 10%, R
= 10 kto 5 V
PULLUP
= 50 W - - 3 µA
O
-10-%
30 40 50 %
Slave function pin 4 (ref. to pin 8)
V
Slave
V
Master
1. Tested with optimized applications board (see fig. 3)
2. G
Vmin
Slavethreshold - - - 1 V
Master threshold - 3 - - V
26dB
Note: Pin 11 only for modular connection. Max external load 1 MΩ / 10 pF, only for test purposes

Figure 3. Typical application PCB and component layout

6/21 Doc ID 6744 Rev 8
TDA7293 Circuit description

3 Circuit description

In consumer electronics, an increasing demand has arisen for very high power monolithic audio amplifiers able to match, with a low cost, the performance obtained from the best discrete designs.
The task of realizing this linear integrated circuit in conventional bipolar technology is made extremely difficult by the occurence of 2nd breakdown phoenomenon. It limits the safe operating area (SOA) of the power devices, and, as a consequence, the maximum attainable output power, especially in presence of highly reactive loads.
Moreover, full exploitation of the SOA translates into a substantial increase in circuit and layout complexity due to the need of sophisticated protection circuits.
To overcome these substantial drawbacks, the use of power MOS devices, which are immune from secondary breakdown is highly desirable.
The device described has therefore been developed in a mixed bipolar-MOS high voltage technology called BCDII 100/120.

3.1 Output Stage

The main design task in developping a power operational amplifier, independently of the technology used, is that of realization of the output stage.
The solution shown as a principle shematic by Fig6 represents the DMOS unity - gain output buffer of the TDA7293.

Figure 4. Schematic of a DMOS unity-gain buffer

This large-signal, high-power buffer must be capable of handling extremely high current and voltage levels while maintaining acceptably low harmonic distortion and good behaviour over frequency response; moreover, an accurate control of quiescent current is required.
A local linearizing feedback, provided by differential amplifier A, is used to fullfil the above requirements, allowing a simple and effective quiescent current setting. Proper biasing of the power output transistors alone is however not enough to guarantee the absence of crossover distortion.
Doc ID 6744 Rev 8 7/21
Loading...
+ 14 hidden pages