ST TDA2006 User Manual

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!
DESCRIPTION
TDA2006
12W AUDIOAMPLIFIER
PENTAWATT
ORDERING NUMBERS : TDA2006V
TDA2006H
TYPICALAPPLICATION CIRCUIT
May 1995
1/12
TDA2006
SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
s
V V
I
o
P
tot
T
stg,Tj
Supply Voltage ± 15 V Input Voltage V
i
Differential Input Voltage ± 12 V
i
s
Output Peak Current (internaly limited) 3 A Power Dissipation at T
=90°C20W
case
Storage andJunction Temperature – 40 to 150 °C
THERMALDATA
Symbol Parameter Value Unit
R
th (j-c)
Thermal Resistance Junction-case Max 3 °C/W
PIN CONNECTION
2/12
TDA2006
ELECTRICALCHARACTERISTICS
(refer to thetest circuit ; V
= ± 12V, T
S
Symbol Parameter Test Conditions Min. Typ. Max. Unit
V
V
I
V
P
Supply Voltage ± 6 ± 15 V
s
I
Quiescent Drain Current Vs= ± 15V 40 80 mA
d
Input Bias Current Vs= ± 15V 0.2 3 µA
I
b
Input Offset Voltage Vs= ± 15V ± 8mV
OS
Input Offset Current Vs= ± 15V ± 80 nA
OS
Output Offset Voltage Vs= ± 15V ± 10 ± 100 mV
OS
Output Power d = 10%, f = 1kHz
o
d Distortion P
V
Input Sensitivity Po= 10W, RL=4Ω, f = 1kHz
i
B Frequency Response (– 3dB) P
R
Input Resistance (pin1) f = 1kHz 0.5 5 M
i
G G e
Voltage Gain (open loop) f = 1kHz 75 dB
v
Voltage Gain (closed loop) f = 1kHz 29.5 30 30.5 dB
v
Input Noise Voltage B (– 3dB) = 22Hz to 22kHz, RL=4 310µV
N
i
Input Noise Current B (– 3dB) = 22Hz to 22kHz, RL=4 80 200 pA
N
SVR Supply Voltage Rejection R
I
Drain Current Po= 12W, RL=4
d
T
Thermal Shutdown Junction
j
Temperature
(*) Referring to Figure 15, single supply.
=25oC unless otherwise specified)
amb
=4
R
L
=8 6
R
L
= 0.1 to 8W, RL=4Ω, f = 1kHz
o
= 0.1 to 4W, RL=8Ω, f = 1kHz
P
o
=6W,RL=8Ω, f = 1kHz
P
o
=8W,RL=4 20Hz to 100kHz
o
=4Ω,Rg= 22k,f
L
=8W,RL=8
P
o
= 100Hz (*) 40 50 dB
ripple
12
8
0.2
0.1
200 220
850 500
145 °C
W
% %
mV mV
mA mA
3/12
TDA2006
Figure1 : OutputPower versus Supply Voltage Figure 2 : Distortionversus OutputPower
Figure3 : Distortionversus Frequency Figure4 : Distortion versusFrequency
Figure5 : Sensitivityversus Output Power Figure6 : Sensitivityversus OutputPower
4/12
TDA2006
Figure7 : FrequencyResponsewith differentval-
uesof the rolloff CapacitorC8 (see Figure13)
Figure9 : QuiescentCurrent versus
Supply Voltage
Figure8 : Value of C8 versus Voltage Gain for dif-
ferent Bandwidths (see Figure 13)
Figure10 : Supply Voltage Rejection versus
VoltageGain
Figure11 : PowerDissipationand Efficiency ver-
sus Output Power
Figure12 : Maximum PowerDissipationversus
SupplyVoltage (sine waveoperation)
5/12
TDA2006
Figure13 : ApplicationCircuit with Spilt PowerSupply
Figure14 : P.C. Board and ComponentsLayoutof theCircuit of Figure 13 (1:1 scale)
6/12
Figure15 : ApplicationCircuit with SinglePower Supply
Figure16 : P.C. Board and ComponentsLayoutof theCircuit of Figure 15 (1:1 scale)
TDA2006
7/12
TDA2006
Figure17 : BridgeAmplifierConfiguration with Split PowerSupply(PO= 24W,VS= ± 12V)
PRACTICALCONSIDERATIONS PrintedCircuit Board
The layout shownin Figure14 should be adopted by the designers. If different layout are used, the ground points of input 1 and input 2 must be well decoupled from ground of the output on which a ratherhigh current flows.
AssemblySuggestion
No electricalisolationisneededbetween thepack-
age and the heat-sink with single supply voltage configuration.
ApplicationSuggestion
The recommendedvalues of the components are the onesshownon applicationcircuitsof Figure13. Differentvaluescan be used. The table 1 can help the designers.
Table 1
Component
R
1
R
2
R
3
R
4
R
5
C
1
C
2
C
3C4
C
5C6
C
7
C
8
D
1D2
(*) Closed loop gain must behigher than 24dB.
8/12
Recommanded
Value
22 k Closed Loop GainSetting Increase of Gain Decrease of Gain (*) 680 Closed Loop GainSetting Decrease of Gain (*) Increase of Gain 22 k Non InvertingInput
Biasing
1 Frequency Stability Danger of Oscillation at
3R
2
Upper Frequency Cut-off Poor High Frequencies
2.2 µF Input DC Decoupling Increase of Low
22 µF Inverting Input DC
Decoupling
0.1 µF Supply Voltageby Pass Danger of Oscillation
100 µF Supply Voltage by Pass Danger of Oscillation
0.22 µF Frequency Stability Danger of Oscillation 1
2πBR
1
Upper Frequency Cut-off Lower Bandwidth LargerBandwidth
1N4001 To Protect the Device Against Output Voltage Spikes.
Purpose
Larger Than
Recommanded Value
Increase of Input Impedance
High Frequencies with Inductive Loads
Attenuation
Smaller Than
Recommanded Value
Decrease of Input Impedance
Danger of Oscillation
Frequencies Cut-off Increase of Low
Frequencies Cut-off
TDA2006
SHORTCIRCUIT PROTECTION
The TDA2006 has an original circuit which limits the current of the output transistors. Figure 18 shows that the maximumoutput current is a func­tion of the collector emitter voltage ; hence the output transistors work within their safe operating area(Figure 19).
Thisfunctioncan thereforebe consideredas being peak power limiting rather thansimple current lim­iting. It reducesthe possibility that the devicegets dam­aged during an accidental short circuit from AC output to ground.
THERMALSHUT DOWN
Thepresenceof a thermal limiting circuitoffers the followingadvantages :
1)an overload on the output (even if it is permanent), or an above limit ambient temperaturecan be easily supported since the
cannotbe higherthan 150°C.
T
j
2) the heatsink can have a smallerfactor of safety compared with that of a conventional circuit. Thereis no possibilityof device damage due to high junction temperature.
If for any reason, the junction temperature in­creasesupto 150°C,thethermalshutdownsimply reducesthepowerdissipationandthecurrentcon­sumption.
Figure19 : SafeOperating Area and Collector
Characteristics ofthe Protected PowerTransistor
Figure20 : OutputPower and DrainCurrent ver-
susCase Temlperature(R
=4Ω)
L
The maximum allowable power dissipation de­pends upon the size of the external heatsink (i.e. its thermalresistance) ; Figure22 shows the dissi­pablepower as a function of ambient temperature for differentthermal resistances.
Figure18 : MaximumOutput Current versus
VoltageV
accross each Out-
CE (sat)
put Transistor
Figure21 : OutputPower and DrainCurrent ver-
susCase Temlperature(R
=8Ω)
L
9/12
TDA2006
Figure22 : MaximumAllowable PowerDissipa-
tion versusAmbientTemperature
DIMENSIONSUGGESTION
Thefollowingtable showsthelengthoftheheatsink in Figure23 for severalvalues of P
P
(W) 12 8 6
tot
Lenght of Heatsink (mm) 60 40 30 R
of Heatsink (°C/W) 4.2 6.2 8.3
th
andRth.
tot
Figure 23 : Example of Heatsink
10/12
PENTAWATT PACKAGE MECHANICAL DATA
TDA2006
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
mm inch
A 4.8 0.189 C 1.37 0.054 D 2.4 2.8 0.094 0.110
D1 1.2 1.35 0.047 0.053
E 0.35 0.55 0.014 0.022
F 0.8 1.05 0.031 0.041
F1 1 1.4 0.039 0.055
G 3.4 0.126 0.134 0.142
G1 6.8 0.260 0.268 0.276 H2 10.4 0.409 H3 10.05 10.4 0.396 0.409
L 17.85 0.703
L1 15.75 0.620 L2 21.4 0.843 L3 22.5 0.886 L5 2.6 3 0.102 0.118 L6 15.1 15.8 0.594 0.622 L7 6 6.6 0.236 0.260
M 4.5 0.177
M1 4 0.157 Dia 3.65 3.85 0.144 0.152
A
H3
L
L1
C
D1
L5
Dia.
L7
L6
L2 L3
D
F1
H2
E
MM1
G1
G
F
11/12
TDA2006
Information furnished is believed to be accurate andreliable. However,SGS-THOMSON Microelectronicsassumes no responsibility for the consequences of use of such information nor for anyinfringement ofpatents or other rights of third parties which may result from its use. No license is granted byimplication orotherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products arenot authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
1995 SGS-THOMSON Microelectronics - AllRights Reserved
PENTAWATTis Registered Trademarkof SGS-THOMSON Microelectronics
Australia- Brazil - France - Germany- Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singa-
pore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
12/12
Loading...