ST STV9553 User Manual

STV9553

12 ns TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER

FEATURES

Triple-channel video amplifier

Supply voltage up to 115 V

80V Output dynamic range

Perfect for PICTURE BOOST application requiring high video amplitude

Pinning for easy PCB layout

Supports DC coupling (optimum cost saving) and AC coupling applications.

Built-in Voltage Gain: 20 (Typ.)

Rise and Fall Times: 12 ns (Typ.)

Bandwidth: 29 MHz (Typ.)

Very low stand-by power consumption

Perfectly matched with the STV921x preamplifiers

DESCRIPTION

The STV9553 is a triple-channel video amplifier designed in a 120V-high voltage technology and able to drive in DC-coupling mode the 3 cathodes of a CRT monitor.

The STV9553 supports PICTURE BOOST applications where video amplitude up to 50V or

PIN CONNECTIONS

above is required, ensuring a maximum quality of the still pictures or moving video.

Perfecly matched with the STV921x ST preamplifiers, it provides a highly performant and very cost effective video system.

CLIPWATT 11

(Plastic Package)

ORDER CODE: STV9553

11

OUT1

10

OUT2

9

OUT3

8

GNDP

7

VDD

6

GNDS

5

GNDA

4

IN3

3

VCC

2

IN2

1

IN1

Version 4.0

February 2002

1/24

 

 

Table of Contents

 

1

BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

2

PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3

ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

4

THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

5

ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

6

THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

6.1

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

6.2

Output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

7

POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

8

TYPICAL PERFORMANCE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

9

INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

10

APPLICATION HINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

10.1

How to choose the high supply voltage value (VDD) in DC coupling mode . . . . . . . .

12

 

10.2

Arcing Protection: schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

10.3

Arcing protection: layout and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

10.4

Video response optimization: schematics in DC-coupling mode . . . . . . . . . . . . . . . . .

14

 

10.5

Video response optimization: outputs networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

10.6

Video response optimization: inputs networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

10.7

Video response optimization: layout and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

10.8

AC - Coupling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

10.9

Stand-by mode, spot suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

10.10

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

11 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

2

2/24

STV9553

1 BLOCK DIAGRAM

OUT1

GNDP

OUT2

 

OUT3

11

8

10

 

9

 

 

 

 

STV9553

 

VDD

GNDP

VDD

GNDP

VDD 7

VCC 3

 

 

VREF

 

 

6

1

5

2

4

GNDS

IN1 GNDA

IN2

IN3

2

PIN DESCRIPTION

 

 

Pin

Name

Function

 

1

IN1

Video Input (channel 1)

 

2

IN2

Video Input (channel 2)

 

3

VCC

Low Supply Voltage

 

4

IN3

Video Input (channel 3)

 

5

GNDA

Ground Analog

 

6

GNDS

Ground Substrat

 

7

VDD

High Supply Voltage

 

8

GNDP

Ground Power

 

9

OUT3

Video output (channel 3)

 

10

OUT2

Video output (channel 2)

 

11

OUT1

VIdeo output (channel 1)

3/24

STV9553

3

ABSOLUTE MAXIMUM RATINGS

 

 

 

Symbol

Parameter

Value

Unit

 

VDD

High supply voltage

120

V

 

VCC

Low supply voltage

16.5

V

 

 

ESD susceptibility

 

 

 

VESD

Human Body Model (100pF discharged through 1.5KΩ)

2

kV

 

 

EIAJ norm (200pF discharged through 0Ω)

300

V

 

IOD

Output source current (pulsed < 50μs)

80

mA

 

IOG

Output sink current (pulsed < 50μs)

80

mA

 

VIN Max

Maximum Input Voltage

VCC + 0.3

V

 

VIN Min

Minimum Input Voltage

- 0.5

V

 

TJ

Junction Temperature

150

°C

 

TSTG

Storage Temperature

-20 + 150

°C

4

THERMAL DATA

 

 

 

Symbol

Parameter

Value

Unit

 

Rth (j-c)

Junction-Case Thermal Resistance (Max.)

3

°C/W

 

Rth (j-a)

Junction-Ambient Thermal Resistance (Typ.)

35

°C/W

4/24

STV9553

5 ELECTRICAL CHARACTERISTICS

Symbol

Parameter

Test Condit ions

Min. Typ

Max Unit

SUPPLY parameters (VCC = 12V, VDD = 110V, Tamb = 25 °C, unless otherwise specified)

VDD

High supply voltage

VCC

Low supply voltage

IDD

VDD supply current

IDDS

VDD stand-by supply current

ICC

VCC supply current

20

110

115

V

10

12

15

V

VOUT = 50V

15

 

mA

VCC : switched off (<1.5V)

60

 

μA

VOUT: low (Note 1)

 

 

 

VOUT = 50V

40

 

mA

STATIC parameters (VCC = 12V, VDD = 110V, Tamb = 25 °C)

VOUT

DC output voltage

VIN=1.90 V

77

80

83

V

dVOUT/dVDD

High voltage supply rejection

VOUT = 50V

 

0.5

 

%

dVOUT/dT

Output voltage drift versus temperature

VOUT = 80V

 

15

 

mV/°C

d VOUT/dT

Output voltage matching versus

VOUT = 80V

 

1

 

mV/°C

temperature (Note 2)

 

 

RIN

Video input resistor

VOUT = 50V

 

2

 

kΩ

VSATH

Output saturation voltage to supply

I0 = -60mA (Note 3)

 

VDD - 6.5

 

V

VSATL

Output saturation voltage to GND

I0 = 60mA (Note 3)

 

11

 

V

G

Video Gain

VOUT = 50V

 

20

 

 

LE

Linearity Error

17 V<VOUT<VDD-15 V

 

3

8

%

VREF

Internal voltage reference

 

 

5.6

 

V

Note 1: The STV9553 goes into stand-by mode when Vcc is switched off (<1.5V).

In stand-by mode, Vout is set to low level.

Note 2: Matching measured between each channel.

Note 3: Pulsed current width < 50μs

5/24

ST STV9553 User Manual

STV9553

ELECTRICAL CHARACTERISTICS (continued)

Symbol

Parameter

Test Condit ions

Min. Typ

Max

Unit

DYNAMIC parameters (see Figure 1)

 

 

 

 

 

tR

Rise time

VDC=50V,

V=40VPP

10.8

 

ns

tF

Fall time

VDC=50V,

V=40VPP

12.8

 

ns

OSR

Overshoot, white to black transition

 

 

5

 

%

OSF

Overshoot, black to white transition

 

 

0

 

%

G

Low frequency gain matching (Note 4)

VDC = 50V, f=1MHz

 

5

%

BW

Bandwidth at -3dB

VDC=50V,

V=20VPP

29

 

MHz

tSET

2.5% Settling time

VDC=50V,

V=40VPP

15

 

ns

 

 

VDC=50V,

V=20VPP

 

 

 

CTL

Low frequency crosstalk

f = 1 MHz

 

50

 

dB

 

 

VDC=50V,

V=20VPP

 

 

 

CTH

High frequency crosstalk

f = 20MHz

 

32

 

dB

DYNAMIC parameter in PICTURE BOOST condi tion (Note 5)

tPB

Rise/fall time

VDC=50V,

V=60VPP

15

ns

OS

Overshoot white to black or black to white

V

=50V,

V=60V

PP

9

%

PB

transition

 

DC

 

 

 

Note 4: Matching measured between each channel.

Note 5: PICTURE BOOST condition (video amplitude at 50V or above) is used in some applications when displaying still picture or moving video. In this condition the high level of contrast improves the pictures quality at the expense of the video performances (tR, tF and Overshoot) which are slightly deteriorated.

Figure 1. AC test circuit

 

12V

110V

 

VCC

3

7

VDD

VDC V

50Ω

 

 

 

 

1

 

 

OUT

RP = 300 Ω

IN

 

 

11

 

 

 

 

 

8 CL=8pF

VREF

GNDP

STV9553

5

GNDA

6/24

STV9553

6 THEORY OF OPERATION

6.1General

The STV9553 is a three-channel video amplifier supplied by a low supply voltage: VCC (typ.12V) and a high supply voltage: VDD (up to 115V).

The high values of VDD supplying the amplifier output stage allow direct control of the CRT cathodes (DC coupling mode).

In DC coupling mode, the application schematic is very simple and only a few external components are needed to drive the cathodes. In particular, there is no need of the DC-restore circuitry which is used in classical AC coupling applications.

The output voltage range is wide enough (Figure 2) to provide simultaneously :

±Cut-off adjustment (typ. 25V)

±Video contrast (typ. up to 40V),

±Brightness (with the remaining voltage range).

In normal operation, the output video signal must remain inside the linear region whatever the cut-off, brightness and contrast adjustments are.

Figure 2. Output signal, level adjustments

 

VDD

15V

(A) Top Non-Lin ear Region

(B) Cut-off Adjust. (25V Typ.)

(C) Brightness Adjust. (10V Typ.)

Linear region

Blanking pulse

Video Signal

(D) Contrast Adjust. (40V Typ.)

17V

(E) Bottom Non-Linear Region

GND

7/24

STV9553

6.2Output voltage

A very simplified schematic of each STV9553 channel is shown in Figure 3.

The feedback network of each channel is integrated with a typical built-in voltage gain of G=20 (40k/2k). The output voltage VOUT is given by the following formula:

VOUT = (G+1) x VREF - (G x VIN)

for G = 20 and VREF = 5.6V, we have VOUT = 117.6 - 20 x VIN

Figure 3. Simplified schematic of one channel

 

VDD

 

 

40k

 

2k

 

 

IN

-

OUT

 

+

 

 

VREF

 

 

GNDA

GNDP

 

8/24

Loading...
+ 17 hidden pages