
Main product characteristics
STTH60L06TV
Turbo 2 ultrafast high voltage rectifier
I
F(AV)
V
RRM
T
j
(typ) 1.30 V
V
F
(typ) 50 ns
t
rr
Features and benefits
■ Ultrafast switching
■ Low reverse current
■ Low thermal resistance
■ Reduces switching & conduction losses
■ Insulated package:
Electrical insulation = 2500 V
2 x 40 A
600 V
150° C
RMS
A1A2K1
K2
STTH60L06TV1
A1
K1
A2
K2
ISOTOP
A1
K2
A2K1
STTH60L06TV2
A1
K1
A2
Capacitance = 45 pF
Description
The STTH60L06TV, which is using ST Turbo 2
600V technology, is specially suited for use in
switching power supplies, and industrial
applications (such as welding), as rectification
Order codes
Part Number Marking
STTH60L06TV1 STTH60L06TV1
STTH60L06TV2 STTH60L06TV2
diode.
Table 1. Absolute ratings (limiting values per diode at 25° C, unless otherwise specified)
K2
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
T
October 2006 Rev 3 1/7
Repetitive peak reverse voltage 600 V
RMS forward current 100 A
Average forward current, δ = 0.5
Surge non repetitive forward current tp = 10 ms Sinusoidal 210 A
Storage temperature range -55 to + 150 ° C
stg
Maximum operating junction temperature 150 ° C
T
j
Tc = 75° C per diode 30 A
= 70° C per diode 40
T
c
www.st.com

Characteristics STTH60L06TV
1 Characteristics
Table 2. Thermal parameters
Symbol Parameter Value Unit
Per diode 1.60
R
R
th(j-c)
th(c)
Junction to case
°C/WTotal 0.85
Coupling thermal resistance 0.1
When the diodes are used simultaneously:
∆T
j(diode1)
Table 3. Static electrical characteristics (per diode)
Symbol Parameter Test conditions Min. Typ Max. Unit
(1)
I
R
V
1. Pulse test: tp = 5 ms, δ < 2 %
2. Pulse test: t
Reverse leakage current
(2)
Forward voltage drop
F
= 380 µs, δ < 2 %
p
= P
(diode1)
x R
(per diode) + P
th(j-c)
T
= 25° C
j
= 125° C 25 250
T
j
T
= 25° C
j
= 150° C 1.0 1.25
T
j
(diode2)
= V
V
R
= 60 A
I
F
x R
RRM
th(c)
25
1.55
To evaluate the conduction losses use the following equation:
P = 0.95 x I
Table 4. Dynamic characteristics (per diode)
Symbol Parameter
F(AV)
+ 0.010 I
F2(RMS)
Test conditions
Min. Typ Max. Unit
µA
V
I
= 0.5 A, Irr = 0.25 A
F
IR = 1 A, Tj = 25° C
Reverse recovery time
t
rr
I
V
Reverse recovery current
RM
t
Forward recovery time
fr
Forward recovery voltage
FP
= 1 A, dIF/dt = 50 A/µs,
I
F
= 30 V, Tj = 25° C
V
R
= 30 A, dIF/dt = 100 A/µs,
I
F
VR = 400 V, Tj = 125° C
I
= 30 A dIF/dt = 100 A/µs
F
V
= 1.1 x V
FR
= 30 A, dIF/dt = 100 A/µs,
I
F
= 1.1 x V
V
FR
2/7
, Tj = 25° C
Fmax
, Tj = 25° C
Fmax
65
ns
65 90
11.5 16 A
500 ns
2.5 V

STTH60L06TV Characteristics
Figure 1. Conduction losses versus
average current (per diode)
P(W)
80
70
60
50
40
30
20
10
0
0 1020304050
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Relative variation of thermal
impedance junction to case
versus pulse duration
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Single pulse
0.0
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
t (s)
p
δ
=tp/T
T
tp
Figure 5. Reverse recovery time versus
dI
/dt (typical values, per diode)
F
t (ns)
rr
800
700
600
500
400
300
200
100
0
0 50 100 150 200 250 300 350 400 450 500
I =2 x I
F F(AV)
I=I
F F(AV)
dI /dt(A/µs)
F
I =0.5 x I
F F(AV)
V =400V
R
T=125°C
j
Figure 2. Forward voltage drop versus
forward current (per diode)
I (A)
FM
100
90
80
70
60
50
40
30
20
10
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
T=150°C
j
(typical values)
T=150°C
j
(maximum values)
V (V)
FM
T=25°C
j
(maximum values)
Figure 4. Peak reverse recovery current
versus dI
/dt (typical values, per
F
diode)
I (A)
RM
45
V =400V
R
T=125°C
j
40
35
I =0.5 x I
30
25
20
15
10
5
0
0 50 100 150 200 250 300 350 400 450 500
F F(AV)
dI /dt(A/µs)
F
I=I
F F(AV)
I =2 x I
F F(AV)
Figure 6. Reverse recovery charges versus
dIF/dt (typical values, per diode)
Q (nC)
rr
3500
V =400V
R
T=125°C
j
3000
2500
2000
1500
1000
500
0
0 100 200 300 400 500
I =2 x I
F F(AV)
I=I
F F(AV)
I =0.5 x I
F F(AV)
dI /dt(A/µs)
F
3/7