ST STTH3R06 User Manual

®
TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER
Table 1: Main Product Characteristics
I
F(AV)
V
I
(max)
R
V
F
(typ)
t
rr
RRM
T
j
(typ)
3 A
100 µA
175°C
1.0 V
35 ns
STTH3R06
KA
FEATURES AND BENEFITS
Ultrafast switching
Low forward voltage drop
Low thermal resistance
Low leakage current (platinium doping)
DESCRIPTION
The STTH3R06, which is using ST Turbo 2 600V technology, is specially suited for use in switching power supplies, inverters and as a free wheeling diode.
Table 2: Order Codes
Part Number Marking
STTH3R06 STTH3R06 STTH3R06RL STTH3R06 STTH3R06U 3R6U STTH3R06S R6S
SMB
STTH3R06U
DO-201AD STTH3R06
SMC
STTH3R06S
September 2005 REV. 3
1/9
STTH3R06
Table 3: Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
T
T
Table 4: Thermal Parameters
Symbol Parameter Maximum Unit
R
th(j-l)
R
th(j-a)
Repetitive peak reverse voltage 600 V
RMS forward current 10 A
Average forward current δ = 0.5
DO-201AD Tl = 80°C 3 A
SMB Tl = 55°C
SMC Tl = 80°C
Surge non repetitive forward current DO-201AD tp = 10ms
SMB / SMC 45
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature 175 °C
j
sinusoidal
55 A
Junction to lead DO-201AD L = 10 mm 20 °C/W
SMB 25
SMC 20
Junction to ambient (see fig. 13) DO-201AD L = 10 mm 75 °C/W
Table 5: Static Electrical Characteristics
Symbol Parameter Test conditions Min. Typ Max. Unit
I
V
To evaluate the conduction losses use the following equation: P = 1.03 x I
Reverse leakage current Tj = 25°C VR = V
R
= 150°C 15 100
T
j
Forward voltage drop Tj = 25°C IF = 3A 1.7 V
F
= 150°C 1.0 1.25
T
j
F(AV)
RRM
+ 0.09 I
F2(RMS)
A
Table 6: Dynamic Characteristics
Symbol Parameter Test conditions Min. Typ Max. Unit
t
Reverse recovery
rr
time
t
Forward recovery
fr
time
V
Forward recovery
FP
Tj = 25°C IF = 0.5A IRR = 0.25A IR = 1A 30 ns
I
= 1A dIF/dt = -50 A/µs VR =30V 35
F
Tj = 25°C IF = 3A dIF/dt = 100 A/µs
= 1.1 x V
V
FR
Fmax
100 ns
IF = 3A dIF/dt = 100 A/µs 10 V
voltage
2/9
STTH3R06
Figure 1: Conduction losses versus average current
P(W)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3: Relative variation of thermal impedance junction ambient versus pulse duration (epoxy printed circuit FR4, L
Z/R
th(j-a) th(j-a)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
Single pulse
0.2
0.1
0.0
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
SMB
S = 1cm
Cu
SMC
S = 1cm
Cu
2
2
= 10mm, SCU=1cm2)
leads
DO-201AD
L = 10mm
leads
t (s)
p
Figure 2: Forward voltage drop versus forward current
I (A)
FM
50
45
40
35
30
25
20
15
10
5
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(typical values)
T =150°C
j
T =150°C
j
(maximum values)
V (V)
FM
T =25°C
j
(maximum values)
Figure 4: Peak reverse recovery current versus dI
I (A)
RM
13
V =400V
R
12
T =125°C
j
11
10
9
8
7
6
5
4
3
2
1
0
0 50 100 150 200 250 300 350 400 450 500
/dt (typical values)
F
I=I
FF(AV)
I =0.5 x I
FF(AV)
I =0.25 x I
F F(AV)
dI /dt(A/µs)
F
I =2 x I
FF(AV)
Figure 5: Reverse recovery time versus dI (typical values)
t (ns)
rr
160 150 140 130 120 110 100
90 80 70 60 50 40 30 20 10
0
0 50 100 150 200 250 300 350 400 450 500
I =2 x I
F F(AV)
dI /dt(A/µs)
F
I=I
F F(AV)
V =400V
R
T =125°C
j
I =0.5 x I
F F(AV)
/dt
F
Figure 6: Reverse recovery charges versus dI
/dt (typical values)
F
Q (nC)
rr
450
V =400V
R
T =125°C
j
400
I =2 x I
350
FF(AV)
300
250
200
150
I=I
FF(AV)
I =0.5 x I
FF(AV)
100
50
0
dI /dt(A/µs)
F
0 50 100 150 200 250 300 350 400 450 500
3/9
Loading...
+ 6 hidden pages