The STTH3L06, which is using ST Turbo 2 600V
technology, is specially suited as boost diode in
discontinuous or critical mode power factor corrections.
This device is intended for use as a free wheeling
diode in power supplies and other power switching
applications.
Table 2: Order Codes
Part NumberMarking
STTH3L06STTH3L06
STTH3L06RLSTTH3L06
STTH3L06BSTTH3L06B
STTH3L06B-TRSTTH3L06B
STTH3L06U3L6U
STTH3L06SS06
DO-201AD
STTH3L06
SMB
STTH3L06U
DPAK
STTH3L06B
SMC
STTH3L06S
September 2005REV. 3
1/10
STTH3L06
Table 3: Absolute Ratings (limiting values)
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
T
T
Table 4: Thermal Parameters
SymbolParameterMaximumUnit
R
th(j-l)
R
th(j-a)
Repetitive peak reverse voltage600V
RMS forward currentDO-201AD / SMB / SMC10A
DPAK6
Average forward current
δ = 0.5
DO-201ADTl = 100°C3A
DPAKTl = 155°C
SMBTl = 80°C
SMCTl = 100°C
Surge non repetitive forward currentDO-201ADtp = 10ms
SMB / SMC60
sinusoidal
70A
DPAK40
Storage temperature range-65 to + 175°C
stg
Maximum operating junction temperature175°C
j
Junction to leadDO-201AD L = 10 mm20°C/W
DPAK5.5
SMB25
SMC20
Junction to ambient (see fig. 13)DO-201AD L = 10 mm75°C/W
Table 5: Static Electrical Characteristics
SymbolParameterTest conditionsMin.TypMax.Unit
I
V
To evaluate the conduction losses use the following equation: P = 0.89 x I
Reverse leakage currentTj = 25°CVR = V
R
T
= 150°C15100
j
Forward voltage dropTj = 25°CIF = 3A1.3V
F
= 150°C0.851.05
T
j
F(AV)
RRM
+ 0.055 I
F2(RMS)
3µA
Table 6: Dynamic Characteristics
SymbolParameterTest conditionsMin. Typ Max. Unit
t
Reverse recovery
rr
Tj = 25°CIF = 1A dIF/dt = -50 A/µs VR =30V6085ns
time
t
V
Forward recovery
fr
time
Forward recovery
FP
Tj = 25°CIF = 3A dIF/dt = 100 A/µs
= 1.1 x V
V
FR
Fmax
IF = 3A dIF/dt = 100 A/µs7.5V
100ns
voltage
2/10
STTH3L06
Figure 1: Conduction losses versus average
current
P(W)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.00.51.01.52.02.53.03.54.0
δ = 0.05
δ = 0.1
δ = 0.2
I(A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3: Relative variation of thermal impedance
junction ambient versus pulse duration (epoxy
printed circuit FR4, L
Z/R
th(j-a) th(j-a)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
Single pulse
0.2
0.1
0.0
1.E-011.E+001.E+011.E+021.E+03
SMB
S = 1cm
Cu
SMC
S = 1cm
Cu
2
2
= 10mm, SCU=1cm2)
leads
DPAK
2
S = 1cm
Cu
DO-201AD
L = 10mm
leads
t (s)
p
Figure 2: Forward voltage drop versus forward
current
I (A)
FM
100.0
10.0
1.0
0.1
0.00.51.01.52.02.53.03.5
(maximum values)
T =150°C
j
(typical values)
T =150°C
j
V (V)
FM
T =25°C
j
(maximum values)
Figure 4: Peak reverse recovery current
versus dI
I (A)
RM
20
V =400V
R
T =125°C
j
18
16
14
12
10
8
6
4
2
0
050100150200250300350400450500
/dt (typical values)
F
I=I
FF(AV)
I =0.5 x I
FF(AV)
I =0.25 x I
FF(AV)
dI /dt(A/µs)
F
I =2 x I
FF(AV)
Figure 5: Reverse recovery time versus dI
(typical values)
t (ns)
rr
700
600
500
400
300
200
100
0
020406080100120140160180200
I =2 x I
FF(AV)
I=I
F F(AV)
dI /dt(A/µs)
F
I =0.5 x I
FF(AV)
V =400V
R
T =125°C
j
/dt
F
Figure 6: Reverse recovery charges versus dIF/
dt (typical values)
Q (nC)
rr
500
V =400V
R
T =125°C
j
450
400
350
300
250
200
150
100
50
0
020406080100120140160180200
I =2 x I
FF(AV)
I=I
FF(AV)
I =0.5 x I
FF(AV)
dI /dt(A/µs)
F
3/10
STTH3L06
Figure 7: Softness factor versus dIF/dt (typical
values)
S factor
2.0
I=I
F F(AV)
1.8
V =400V
R
T =125°C
j
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
020406080100120140160180200
dI /dt(A/µs)
F
Figure 9: Transient peak forward voltage
versus dI
V (V)
FP
10
I=I
9
T =125°C
8
7
6
5
4
3
2
1
0
020406080100120140160180200
/dt (typical values)
F
F F(AV)
j
dI /dt(A/µs)
F
Figure 8: Relative variations of dynamic
parameters versus junction temperature
1.25
1.00
0.75
0.50
0.25
0.00
255075100125
Figure 10: Forward recovery time versus dI
I
RM
Q
RR
T (°C)
S factor
I=I
FF(AV)
V =400V
R
Reference:T =125°C
j
j
/dt
F
(typical values)
t (ns)
fr
200
180
160
140
120
100
80
60
40
20
0
020406080100120140160180200
dI /dt(A/µs)
F
I=I
F F(AV)
V =1.1 x V max.
FRF
T =125°C
j
Figure 11: Junction capacitance versus
reverse voltage applied (typical values)
C(pF)
100
10
V (V)
1
1101001000
R
4/10
F=1MHz
V =30mV
OSCRMS
T =25°C
j
Figure 12: Thermal resistance junction to
ambient versus copper surface under lead
(epoxy FR4, e
R(°C/W)
th(j-a)
80
70
60
50
40
30
20
10
0
0.00.51.01.52.02.53.03.54.04.55.0
=35µm) (DO-201AD)
CU
DO-201AD
S (cm²)
CU
STTH3L06
Figure 13: Thermal resistance junction to
ambient versus copper surface under lead
(epoxy FR4, e
R(°C/W)
th(j-a)
100
90
80
70
60
50
40
30
20
10
0
0.00.51.01.52.02.53.03.54.04.55.0
=35µm) (SMB / SMC)
CU
SMB
SMC
S (cm²)
CU
Figure 15: Thermal resistance versus lead length
R (°C/W)
th
100
90
80
70
60
50
40
30
20
10
0
5 10152025
R
th(j-a)
R
th(j-l)
L(mm)
lead
DO-201AD
Figure 14: Thermal resistance junction to
ambient versus copper surface under tab
(epoxy FR4, eCU=35µm) (DPAK)
1 - The lead diameter ø D is not controlled over zone E
NOTES
2 - The minimum axial length within which the device
may be placed with its leads bent at right angles is
0.59"(15 mm)
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These
packages have a Lead-free second level interconnect . The category of second level interconnect is
marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The
maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an
ST trademark. ECOPACK specifications are available at: www.st.com
■ Bending method: see application note AN1471 (DO-201AD)
Table 8: Revision History
DateRevisionDescription of Changes
October-20011First issue
07-Sep-20042SMB, SMC and DPAK packages added
14-Oct-20053Changed marking of STTH3L06U from 3L06U to 3L6U.
Added ECOPACK statement
9/10
STTH3L06
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners