![](/html/d5/d5f7/d5f7bb2b5a2e52a72fdf603df73de67b6b174fbcfc14674e5f94af523ae2644b/bg1.png)
Main product characteristics
STTH3010
Ultrafast recovery - high voltage diode
I
F(AV)
V
RRM
T
j
V
(typ) 1.30 V
F
(typ) 42 ns
t
rr
30 A
1000 V
175° C
Features and benefits
■ Ultrafast, soft recovery
■ Very low conduction and switching losses
■ High frequency and/or high pulsed current
operation
■ High reverse voltage capability
■ High junction temperature
■ Insulated package:
–DOP3I
Electrical insulation = 2500 V
RMS
Capacitance = 12 pF
Description
The high quality design of this diode has
produced a device with low leakage current,
regularly reproducible characteristics and intrinsic
ruggedness. These characteristics make it ideal
for heavy duty applications that demand long term
reliability.
A
A
K
TO-220AC
STTH3010D
A
K
DO-247
STTH3010W
STTH3010PI
Order codes
Part Number Marking
STTH3010D STTH3010D
STTH3010W STTH3010W
STTH3010PI STTH3010PI
K
A
K
DOP3I
Such demanding applications include industrial
power supplies, motor control, and similar
mission-critical systems that require rectification
and freewheeling. These diodes also fit into
auxiliary functions such as snubber, bootstrap,
and demagnetization applications.
The improved performance in low leakage
current, and therefore thermal runaway guard
band, is an immediate competitive advantage for
this device.
March 2006 Rev 1 1/10
www.st.com
10
![](/html/d5/d5f7/d5f7bb2b5a2e52a72fdf603df73de67b6b174fbcfc14674e5f94af523ae2644b/bg2.png)
Characteristics STTH3010
1 Characteristics
Table 1. Absolute ratings (limiting values at 25° C, unless otherwise specified)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FRM
I
FSM
T
Table 2. Thermal parameters
Repetitive peak reverse voltage 1000 V
RMS forward current 50 A
Average forward current, δ = 0.5
TO-220 / DO-247 T
DOP3I T
= 105° C
c
= 65° C
c
Repetitive peak forward current tp = 5 µs, F = 5 kHz square 300 A
Surge non repetitive forward current tp = 10 ms Sinusoidal 180 A
Storage temperature range -65 to + 175 °C
stg
T
Maximum operating junction temperature 175 °C
j
30 A
Symbol Parameter Value Unit
TO-220 / DO-247 1.1
R
th(j-c)
Table 3. Static electrical characteristics
Junction to case
DOP3I 1.8
°C/W
Symbol Parameter Test conditions Min. Typ Max. Unit
(1)
I
R
V
1. Pulse test: tp = 5 ms, δ < 2 %
2. Pulse test: t
Reverse leakage current
(2)
Forward voltage drop
F
= 380 µs, δ < 2 %
p
To evaluate the conduction losses use the following equation:
P = 1.3 x I
F(AV)
+ 0.013 I
F2(RMS)
T
= 25° C
j
= 125° C 10 100
T
j
= 25° C
T
j
T
= 150° C 1.3 1.7
j
= V
V
R
I
= 30 A
F
RRM
15
µA
2
VTj = 100° C 1.4 1.8
2/10
![](/html/d5/d5f7/d5f7bb2b5a2e52a72fdf603df73de67b6b174fbcfc14674e5f94af523ae2644b/bg3.png)
STTH3010 Characteristics
Table 4. Dynamic characteristics
Symbol Parameter
t
Reverse recovery time
rr
I
Reverse recovery current
RM
S Softness factor
Forward recovery time
t
fr
V
Forward recovery voltage
FP
Figure 1. Conduction losses versus
average current
P(W)
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
0 5 10 15 20 25 30 35 40
=0.05
=0.1
I(A)
F(AV)
=0.2
=0.5
T
Test conditions
IF = 1 A, dIF/dt = -50 A/µs,
V
= 30 V, Tj = 25° C
R
= 1 A, dIF/dt = -100 A/µs,
I
F
= 30 V, Tj = 25° C
V
R
IF = 1 A, dIF/dt = -200 A/µs,
= 30 V, Tj = 25° C
V
R
IF = 30 A, dIF/dt = -200 A/µs,
V
= 600 V, Tj = 125° C
R
= 30 A, dIF/dt = -200 A/µs,
I
F
= 600 V, Tj = 125° C
V
R
= 30 A dIF/dt = 100 A/µs
I
F
= 1.5 x V
V
FR
I
= 30 A, dIF/dt = 100 A/µs,
F
, Tj = 25° C
Fmax
Tj = 25° C
Figure 2. Forward voltage drop versus
forward current
I(A)
FM
=1
200
180
160
140
120
100
80
60
40
20
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Min. Typ Max. Unit
53 70
42 55
24 32 A
1
5V
Tj=150°C
(Maximum values)
Tj=150°C
(Typical values)
V (V)
100
450 ns
Tj=25°C
(Maximum values)
FM
ns
Figure 3. Relative variation of thermal
impedance junction to case
versus pulse duration
Z/R
th(j-c) th(j-c)
1.0
Single pulse
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
t (s)
p
Figure 4. Peak reverse recovery current
versus dI
I (A)
RM
60
VR=600V
=125°C
T
j
50
40
30
20
10
0
3/10
IF=0.5 x I
F(AV)
0 50 100 150 200 250 300 350 400 450 500
/dt (typical values)
F
IF= 2 x I
IF= I
F(AV)
dI /dt(A/µs)
F
F(AV)