Turbo 2 ultrafast high voltage rectifier
Features
■ Ultrafast switching
■ Low reverse recovery current
■ Low thermal resistance
■ Reduces switching and conduction losses
Description
The STTH1R06, which is using ST Turbo 2 600 V
technology, is specially suited as boost diode in
power factor correction circuitry.
The device is also intended for use as a free
wheeling diode in power supplies and other power
switching applications.
STTH1R06
A
K
DO-41
STTH1R06
K
STTH1R06U
Table 1. Device summary
Symbol Value
STTH1R06A
A
SMB
A
K
SMA
I
F(AV)
V
RRM
(max) 75 µA
I
R
T
j
(typ) 1.0 V
V
F
(max) 25 ns
t
rr
600 V
175 °C
1 A
October 2009 Doc ID 10203 Rev 5 1/9
www.st.com
9
Characteristics STTH1R06
1 Characteristics
Table 2. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
Repetitive peak reverse voltage 600 V
RRM
DO-41 10
I
F(RMS)
I
F(AV)
I
T
Table 3. Thermal resistance
Forward rms current
SMA / SMB 7
DO-41 T
Average forward current
SMB T
= 100 °C δ = 0.5
c
= 125 °C δ = 0.5
c
= 135 °C δ = 0.5
c
DO-41
Surge non repetitive forward current
FSM
Storage temperature range -65 to + 175 °C
stg
T
Maximum operating junction temperature 175 °C
j
SMA / SMB 20
tp = 10ms sinusoidal
1ASMA T
25
Symbol Parameter Value (max) Unit
L = 10 mm DO-41 45
R
th(j-l)
Junction to lead
°C/WSMA 30
SMB 25
R
1. R
Table 4. Static electrical characteristics
Junction to ambient
th(j-a)
is measured with a copper area S = Scm2 (see Figure 14).
th(j-a)
(1)
L = 10 mm DO-41 70 °C/W
A
A
Symbol Parameter Test conditions Min. Typ. Max. Unit
= 25 °C
T
I
Reverse leakage current
R
V
Forward voltage drop
F
j
= 150 °C 10 75
T
j
T
= 25 °C
j
= 150 °C 1.0 1.25
T
j
V
R
= 1A
I
F
= V
RRM
To evaluate the conduction losses use the following equation: P = 1.03 x I
F(AV)
+ 0.27 I
1
1.7
F2(RMS)
2/9 Doc ID 10203 Rev 5
µA
V
STTH1R06 Characteristics
Table 5. Dynamic characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
Reverse recovery
t
rr
time
Forward recovery
t
fr
time
V
Forward recovery
FP
voltage
= 25 °C
T
j
= 25 °C
T
j
T
= 25 °C
j
Figure 1. Conduction losses versus average
forward current
P(W)
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2
δ = 0.05
δ = 0.1
I (A)
F(AV)
δ = 0.2
IF = 0.5A Irr = 0.25A IR =1A 25
= 1A dIF/dt = -50 A/µs VR =30V 30 45
I
F
= 1A dIF/dt = 100 A/µs
I
F
= 1.1 x V
V
FR
= 1A dIF/dt = 100 A/µs
I
F
VFR = 1.1 x V
Fmax
Fmax
Figure 2. Forward voltage drop vs forward
current
I (A)
FM
15
δ = 0.5
δ
δ = 1
=tp/T
T
tp
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
012345
(typical values)
T=125°C
j
T=125°C
j
(maximum values)
V (V)
FM
100 ns
10 V
T=25°C
j
(maximum values)
ns
Figure 3. Relative variation of thermal
impedance junction to case vs
pulse duration (DO-41)
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
0.0
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
Single pulse
t (s)
p
δ
T
=tp/T
Figure 4. Relative variation of thermal
impedance junction to case vs
pulse duration (SMA)
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
tp
0.1
0.0
2
S = 1cm
δ = 0.5
δ
=tp/T
T
tp
δ = 0.2
δ = 0.1
Single pulse
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
t (s)
p
Doc ID 10203 Rev 5 3/9