ST STR71xF User Manual

Page 1
August 2006 Rev 9 1/74
74
STR71xF
ARM7TDMI™ 32-bit MCU with Flash, USB, CAN
5 timers, ADC, 10 communications interfaces
Core
– ARM7TDMI 32-bit RISC CPU – 59 MIPS @ 66 MHz from SRAM – 45 MIPS @ 50 MHz from Flash
Memories
– Up to 256Kbytes Flash program memory
(10 kcycles endurance, 20 yrs retention @ 85° C)
– 16K bytes Flash data memory
(100 kcycles endurance, 20 yrs retention@
85° C) – Up to 64 Kbytes RAM – External Memory Interface (EMI) for up to 4
banks of SRAM, Flash, ROM – Multi-boot capability
Clock, Reset and Supply Management
– 3.0 to 3.6V application supply and I/Os – Internal 1.8V regulator for core supply – Clock input from 0 to 16.5 MHz – Embedded RTC oscillator running from
external 32 kHz crystal – Embedded PLL for CPU clock – Realtime Clock for clock-calendar function – 5 power saving modes: SLOW, WAIT,
LPWAIT, STOP and STANDBY modes
Nested interrupt controller
– Fast interrupt handling with multiple vectors – 32 vectors with 16 IRQ priority levels – 2 maskable FIQ sources
Up to 48 I/O ports
– 30/32/48 multifunctional bidirectional I/Os
– Up to 14 ports with interrupt capability
5 Timers
– 16-bit watchdog timer – 3 16-bit timers with 2 input captures, 2
output compares, PWM and pulse counter
– 16-bit timer for timebase functions
10 Communications Interfaces
–2 I
2
C interfaces (1 multiplexed with SPI) – 4 UART asynchronous serial interfaces – Smart Card ISO7816-3 interface on UART1 – 2 BSPI synchronous serial interfaces – CAN interface (2.0B Active) – USB Full Speed (12Mbit/s) Device Function
with Suspend and Resume
– HDLC synchronous communications
4-channel 12-bit A/D Converter
– Sampling frequency up to 1kHz – Conversion range: 0 to 2.5V
Development Tools support
LQFP64
10 x 10
LQFP144
20 x 20
LFBGA64 8 x 8 x 1.7
LFBGA144 10 x 10 x 1.7
LFBGA64 8 x 8 x 1.7
Table 1. Device summary
Features
STR710
FZ1
STR710
FZ2
STR710RZSTR711
FR0
STR711
FR1
STR711
FR2
STR712
FR0
STR712
FR1
STR712
FR2
STR715
FRx
Flash - Kbytes 128+16 256+16 0 64+16 128+16 256+16 64+16 128+16 256+16 64+16
RAM - Kbytes 32 64 64 16 32 64 16 32 64 16
Peripheral Functions CAN, EMI, USB, 48 I/Os USB, 30 I/Os CAN, 32 I/Os 32 I/Os
Operating Voltage 3.0 to 3.6V
Operating Temp. -40 to +85°C
Packages
T=LQFP144 20 x 20
H=LFBGA144 10 x10
T=LQFP64 10 x10 / H=LFBGA64 8 x 8 x 1.7
www.st.com
Page 2
Contents STR71xF
2/74
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Pin Description for 144-Pin Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Pin description for 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7 I/O Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.8 Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.4 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.5 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.6 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.7 EMI - Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.8 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.9 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1 Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Page 3
STR71xF Contents
3/74
4 Product history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Note: For detailed information on the STR710 Microcontroller memory, registers and peripherals,
please refer to the STR710 Reference Manual.
Page 4
Introduction STR71xF
4/74
1 Introduction
This datasheet provides the STR71x Ordering Information, Mechanical and Electrical Device Characteristics.
For complete information on the STR710 Microcontroller memory, registers and peripherals. please refer to the STR710 Reference Manual.
For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash Programming Reference Manual
For information on the ARM7TDMI core please refer to the ARM7TDMI Technical Reference Manual.
1.1 Overview
ARM® core with embedded Flash & RAM
The STR710 series is a family of ARM-powered 32-bit Microcontrollers with embedded Flash and RAM. It combines the high performance ARM7TDMI CPU with an extensive range of peripheral functions and enhanced I/O capabilities. STR71xF devices have on-chip high-speed single voltage FLASH memory and high-speed RAM. STR710R devices have high-speed RAM but no internal Flash. The STR710 family has an embedded ARM core and is therefore compatible with all ARM tools and software.
Extensive tools support
STMicroelectronics’ 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST’s ARM core-based MCUs. The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available.
For more information, please refer to ST MCU site http://www.st.com/mcu
Package Choice: Low Pin-Count 64-pin or Feature-Rich 144-pin LQFP or BGA
The STR710 family is available in 5 main versions.
The 144-pin versions have the full set of all features including CAN, USB and External Memory Interface (EMI).
STR710F: 144-pin BGA or LQFP with CAN, USB and EMI
STR710R: Flashless 144-pin BGA or LQFP with CAN, USB and EMI (no internal Flash
memory)
Page 5
STR71xF Introduction
5/74
The three 64-pin versions (BGA or LQFP) do not include External Memory Interface.
STR715F: 64-pin BGA or LQFP without CAN or USB
STR711F: 64-pin BGA or LQFP with USB
STR712F: 64-pin BGA or LQFP with CAN
High Speed Flash Memory (STR71xF)
The Flash program memory is organized in two banks of 32-bit wide Burst Flash memories enabling true read-while-write (RWW) operation. Device Bank 0 is up to 256 Kbytes in size, typically for the application program code. Bank 1 is 16K bytes, typically used for storing data constants. Both banks are accessed by the CPU with zero wait states @ 33 MHz
Bank 0 memory endurance is 10K write/erase cycles and Bank 1 endurance is 100K write/erase cycles. Data retention is 20 years at 85°C on both banks. The two banks can be accessed independently in read or write. Flash memory can be accessed in two modes:
Burst mode: 64-bit wide memory access at up to 50 MHz.
Direct 32-bit wide memory access for deterministic operation at up to 33 MHz.
The STR7 embedded Flash memory can be programmed using In-Circuit Programming or In-Application programming.
IAP (In-Application Programming): The IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running.
ICP (In-Circuit Programming): The ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board.
The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection:
Sector Write Protection
Flash Debug Protection (locks JTAG access)
Refer to the STR7 Flash Programming Reference manual for details.
Optional External Memory (STR710)
The non-multiplexed 16-bit data/24-bit address bus available on the STR710 (144-pin) supports four 16-Mbyte banks of external memory. Wait states are programmable individually for each bank allowing different memory types (Flash, EPROM, ROM, SRAM etc.) to be used to store programs or data.
Figure 1 shows the general block diagram of the device family.
Flexible Power Management
To minimize power consumption, you can program the STR710 to switch to SLOW, WAIT, LPWAIT (low power wait), STOP or STANDBY mode depending on the current system activity in the application.
Flexible Clock Control
Two external clock sources can be used, a main clock and a 32 kHz backup clock. The embedded PLL allows the internal system clock (up to 66 MHz) to be generated from a main clock frequency of 16 MHz or less. The PLL output frequency can be programmed using a wide selection of multipliers and dividers. The microcontroller core, APB1 and APB2 peripherals are in separate clock domains and can be programmed to run at different frequencies during application runtime. The clock to each peripheral is gated with an
Page 6
Introduction STR71xF
6/74
individual control bit to optimize power usage by turning off peripherals any time they are not required.
Volt a g e R e gul a tor s
The STR710 requires an external 3.0-3.6V power supply. There are two internal Voltage Regulators for generating the 1.8V power supply for the core and peripherals. The main VR is switched off during low power operation.
Low Voltage Detectors
Each voltage regulator has an embedded LVD that monitors the internal 1.8V supply. If the regulated voltage drops below a certain threshold, the LVD will reset the STR710. This enhances the security of the system by preventing the MCU from going into an unpredictable state.
An external reset circuit must be used to provide the RESET at V
33
power-up. It is not sufficient to rely on the RESET generated by the LVD in this case. This is because LVD operation is guaranteed only when V
33
is within the specification.
1.2 On-Chip Peripherals
CAN Interface (STR710 and STR712)
The CAN module is compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud.
USB Interface (STR710 and STR711)
The full-speed USB interface is USB V2.0 compliant and provides up to 16 bidirectional/32 unidirectional endpoints, up to 12 Mb/s (full-speed), support for bulk transfer, isochronous transfers and USB Suspend/Resume functions.
Standard Timers
Each of the four timers have a 16-bit free-running counter with 7-bit prescaler
Three timers each provide up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency.
The fourth timer is not connected to the I/O ports. It can be used by the application software for general timing functions.
Realtime Clock (RTC)
The RTC provides a set of continuously running counters driven by the 32 kHz external crystal. The RTC can be used as a general timebase or clock/calendar/alarm function. When the STR710 is in Standby mode the RTC can be kept running, powered by the low power voltage regulator and driven by the 32 kHz external crystal.
UARTs
The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 1.25 Mb/s.
Smart Card Interface
UART1 is configurable to function either as a general purpose UART or as an asynchronous Smart Card interface as defined by ISO 7816-3. It includes Smart Card clock generation and provides support features for synchronous cards.
Page 7
STR71xF Introduction
7/74
Buffered Serial Peripheral Interfaces (BSPI)
Each of the two SPIs allow full duplex, synchronous communications with external devices, master or slave communication at up to 5.5Mb/s in Master mode and 4 Mb/s in Slave mode.
I
2
C Interfaces
The two I
2
C Interfaces provide multi-master and slave functions, support normal and fast
I
2
C mode (400 kHz) and 7 or 10-bit addressing modes.
One I
2
C Interface is multiplexed with one SPI, so either 2xSPI+1x I2C or 1xSPI+2x I2C may
be used at a time.
HDLC interface
The High Level Data Link Controller (HDLC) unit supports full duplex operation and NRZ, NRZI, FM0 or MANCHESTER protocols. It has an internal 8-bit baud rate generator.
A/D Converter
The Analog to Digital Converter, converts in single channel or up to 4 channels in single­shot or round robin mode. Resolution is 12-bit with a sampling frequency of up to 1 kHz. The input voltage range is 0-2.5V.
Watchdog
The 16-bit Watchdog Timer protects the application against hardware or software failures and ensures recovery by generating a reset.
I/O Ports
The 48 I/O ports are programmable as Inputs or Outputs.
External Interrupts
Up to 14 external interrupts are available for application use or to wake-up the application from STOP mode.
Page 8
Introduction STR71xF
8/74
Figure 1. STR710 Block Diagram
APB BUS
USBDP USBDN
P0[15:0]
I/O PORT 0
FLASH*
Program Memory
64/128/256K
I2C0
I2C1
BSPI0
BSPI1
UART0
UART1 /
UART2
UART3
USB
CAN
HDLC
APB
BRIDGE 1
APB
BRIDGE 2
APB BUS
TIMER1
TIMER2
TIMER3
RTC
EXT INT (XTI)
WATCHDOG
INTERRUPT CTL(EIC)
A/D
POWER SUPPLY
PRCCU/PLL
RAM
16/32/64K
JTAG
ARM7TDMI
CPU
EXT. MEM.
STDBY
2 AF
4 AF
4 AF
2 AF
3 AF
2 AF
2 AF
2 AF
3 AF
4 AF
4 AF
2 AF
4 AF
A[19:0] D[15:0]
RDN
WEN[1:0]
RTCXTO
RTCXTI
WAKEUP
JTDI
JTCK
JTMS
JTRST
JTDO
CK
CKOUT
RSTIN
V18[1:0] V33[6:0]
VSS[9:0]
V18BKP
14 AF
OSC
DBGRQS
BOOTEN
VREG
AVDD
AVSS
P1[15:0]
I/O PORT 1
P2[15:0]
I/O PORT 2
TIMER0
ARM7 NATIVE BUS
CS[3:0)
2 AF
1 AF
AF: alternate function on I/O port pin
INTERFACE (EMI)
A[23:20] (AF)
SMARTCARD
16K Data FLASH*
*Flash present in STR710F, not in STR710R
Page 9
STR71xF Introduction
9/74
1.3 Related Documentation
Available from www.arm.com:
ARM7TDMI Technical Reference Manual
Available from http://www.st.com:
STR71x Reference Manual
STR7 Flash Programming Reference Manual
AN1774 - STR710 Software development getting started
AN1775 - STR710 Hardware development getting started
AN1776 - STR710 Enhanced Interrupt Controller
AN1777 - STR710 Memory Mapping
AN1780 - Real Time Clock with STR710
AN1781 - Four 7 Segment Display Drive Using the STR710
The above is a selected list only, a full list STR71x application notes can be viewed at
http://www.st.com.
Page 10
Introduction STR71xF
10/74
1.4 Pin Description for 144-Pin Packages
Figure 2. STR710 LQFP Pinout
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
108 107 106 105 104 103 102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73
3738394041424344454647484950515253545556575859606162636465666768697071
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
P0.10/U1.RX/U1.TX/SCDATA
RDn
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
V33 P2.0/CSn.0 P2.1/CSn.1
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
P2.2/CSn.2 P2.3/CSn.3
P2.4/A.20 P2.5/A.21 P2.6/A.22
BOOTEN
P2.7/A.23
P2.8 N.C. N.C. VSS
V33
P2.9 P2.10 P2.11 P2.12 P2.13 P2.14 P2.15
JTDI JTMS JTCK JTDO
JTRSTn
NU
TEST
P1.14/HRXD/I0.SDA P1.13/HCLK/I0.SCL P1.10/USBCLK P1.9 V33 VSS A.4 A.3 A.2 A.1 A.0 D.15 D.14 D.13 D.12 D.11 D.10 USBDN USBDP P1.12/CANTX P1.11/CANRX N.C. P1.8 P1.7/T1.OCMPA VSSIO-PLL V33IO-PLL D.9 D.8 D.7 D.6 D.5 P1.6/T1.OCMPB P1.5/T1.ICAPB P1.4/T1.ICAPA P1.3/T3.ICAPB/AIN.3 P1.2/T3.OCMPA/AIN.2
N.C.
TEST
N.C.
V33IO-PLL
N.C.
VSSIO-PLL
N.C.
DBGRQS
CKOUT
CK
P0.15/WAKEUP
N.C.
RTCXTI
RTCXTO
STDBY
RSTIN
N.C.
VSSBKP
V18BKP
N.C.
N.C.
V18
VSS18
N.C.
D.0
D.1
D.2
D.3
D.4
AVDD
AVSS
N.C.
N.C.
N.C.
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V33
WEn.0
WEn.1
A.19
A.18
A.17
A.16
A.15
A.14
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
A.13
A.12
A.11
A.10
A.9
A.8
A.7
A.6
A.5
V33
VSS
P1.15/HTXD
N.C.
N.C.
LQFP144
Page 11
STR71xF Introduction
11/74
Legend / Abbreviations for Tab le 3 :
Type: I = input, O = output, S = supply, HiZ= high impedance,
In/Output level: C = CMOS 0.3V
DD
/0.7V
DD
CT= CMOS 0.3VDD/0.7VDD with input trigger
T
T
= TTL 0.8V/2V with input trigger
C/T = Programmable levels: CMOS 0.3V
DD
/0.7VDD or TTL 0.8V / 2V
Port and control configuration:
Input: pu/pd= software enabled internal pull-up or pull down
pu= in reset state, the internal 100k weak pull-up is enabled.
pd = in reset state, the internal 100k weak pull-down is enabled.
Output: OD = open drain
(logic level) PP = push-pull T = true OD, (P-Buffer and protection diode to V
DD
not implemented),
5V tolerant.
Table 2. STR710 BGA Ball Connections
ABCDEFGHJ K LM
1 P0.10 P2.0 P2.1 VSS P2.2 P2.6
BOOT
EN
P2.12 P2.13 P2.15 JTDI N.C.
2 VSS RDn P0.11 V33 P2.3 P2.8 P2.9 JTMS
JTRST
n
TEST TEST N.C.
3 V33 P0.9 P0.12 P0.13 P2.4 N.C. P2.10 JTCK NU V33 N.C.
DBG RQS
4 P0.6 P0.7 P0.8 P0.14 P2.5 N.C. P2.11 JTDO CK CKOUT
VSSIO-
PLL
N.C.
5 A.19 WEn.1 WEn.0 P0.5 P2.7 VSS P2.14 N.C.
RTCX-
TO
RTCXTI N.C. P0.15
6 P0.3 A.15 A.16 A.17 A.18 V33 V18 N.C. N.C.
V18BKPVSS
BKP
STDBY
7 P0.2 P0.1 P0.4 VSS18 V18 A.14 D.12 D.1 D.0 nc VSS18 RSTIN
8 A.9 A.10 A.11 A.13 P0.0 A.0 D.11
P1.12/
CANTX
N.C. AVSS D.3 D.2
9 VSS V33 A.5 A.6 V33 D.15 D.10 P1.8 D.9 P1.0 N.C. N.C.
10 A.8 N.C. P1.15 P1.13 VSS D.14 USBDN P1.7 D.8 P1.5 P1.1 D.4
11 A.7 N.C. P1.14 P1.10 A.2 D.13 USBDP VSS D.5 P1.4 P1.3 AVDD
12 A.12 A.4 A.3 P1.9 A.1
P1.11/
CANRX
N.C.
V33IO-
PLL
P1.6 D.7 D.6 P1.2
Page 12
Introduction STR71xF
12/74
Table 3. STR710 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input Level
interrupt
Capability
OD
PP
1A1
P0.10/U1.RX/ U1.TX/ SC.DATA
I/O pd CTX 4mA T Port 0.10
UART1: Receive Data input
UART1: Transmit data output.
Note: This pin may be used for Smartcard DataIn/DataOut or single wire UART (half duplex) if programmed as Alternate Function Output. The pin will be tri-stated except when UART transmission is in progress
2B2RD
O
5)
X
External Memory Interface: Active low read signal for external memory. It maps to the OE_N input of the external components.
3C2
P0.11/BOOT.1 /U1.TX
I/O pd C
T
4mA X X Port 0.11
Select Boot Configuration input
UART1: Transmit data output.
4 C3 P0.12/SC.CLK I/O pd C
T
4mA X X Port 0.12 Smartcard reference clock output
5D1V
SS
S Ground voltage for digital I/Os
4)
6D2V
33
S Supply voltage for digital I/Os
4)
7 B1 P2.0/CS.0 I/O
8)
C
T
8mA X X Port 2.0
External Memory Interface: Select Memory Bank 0 output
Note: This pin is forced to output push-pull 1 mode at reset to allow boot from external memory
8 C1 P2.1/CS
.1 I/O
pu
2)
C
T
8mA X X Port 2.1
External Memory Interface: Select Memory Bank 1 output
9D3
P0.13/U2.RX/ T2.OCMPA
I/O pu C
T
X 4mA X X Port 0.13
UART2: Receive Data input
Timer2: Output Compare A output
10 D4
P0.14/U2.TX/ T2.ICAPA
I/O pu C
T
4mA X X Port 0.14
UART2: Transmit data output
Timer2: Input Capture A input
11 E1 P2.2/CS.2 I/O
pu
2)
C
T
8mA X X Port 2.2
External Memory Interface: Select Memory Bank 3 output
12 E2 P2.3/CS
.3 I/O
pu
2)
C
T
8mA X X Port 2.3
External Memory Interface: Select Memory Bank 4 output
Page 13
STR71xF Introduction
13/74
13 E3 P2.4/A.20 I/O
pd
3)
C
T
8mA X X Port 2.4
External Memory Interface: address bus
14 E4 P2.5/A.21 I/O
pd
3)
C
T
8mA X X Port 2.5
15 F1 P2.6/A.22 I/O
pd
3)
C
T
8mA X X Port 2.6
16 G1 BOOTEN I C
T
Boot control input. Enables sampling of BOOT[1:0] pins
17 E5 P2.7/A.23 I/O
pd
3)
C
T
8mA X X Port 2.7
External Memory Interface: address bus
18 F2 P2.8 I/O pu C
T
X 4mA X X Port 2.8 External interrupt INT2
19 F3 N.C. Not connected (not bonded)
20 F4 N.C. Not connected (not bonded)
21 F5 V
SS
S Ground voltage for digital I/Os4)
22 F6 V
33
S Supply voltage for digital I/Os4)
23 G2 P2.9 I/O pu C
T
X 4mA X X Port 2.9 External interrupt INT3
24 G3 P2.10 I/O pu C
T
X 4mA X X Port 2.10 External interrupt INT4
25 G4 P2.11 I/O pu C
T
X 4mA X X Port 2.11 External interrupt INT5
26 H1 P2.12 I/O pu C
T
4mA X X Port 2.12
27 J1 P2.13 I/O pu C
T
4mA X X Port 2.13
28 G5 P2.14 I/O pu C
T
4mA X X Port 2.14
29 K1 P2.15 I/O pu C
T
4mA X X Port 2.15
30 L1 JTDI I T
T
JTAG Data input. External pull-up required.
31 H2 JTMS I T
T
JTAG Mode Selection Input. External pull-up required.
32 H3 JTCK I C
JTAG Clock Input. External pull-up or pull-down required.
33 H4 JTDO O 8mA X JTAG Data output. Note: Reset state = HiZ.
34 J2 JTRST I T
T
JTAG Reset Input. External pull-up required.
35 J3 NU Reserved, must be forced to ground.
36 K2 TEST Reserved, must be forced to ground.
37 M1 N.C. Not connected (not bonded)
38 L2 TEST Reserved, must be forced to ground.
39 L3 N.C. Not connected (not bonded)
Table 3. STR710 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input Level
interrupt
Capability
OD
PP
Page 14
Introduction STR71xF
14/74
40 K3 V
33IO-PLL
S
Supply voltage for digital I/O circuitry and for PLL reference
41 M4 N.C. Not connected (not bonded)
42 L4 V
SSIO-PLL
S
Ground voltage for digital I/O circuitry and for PLL reference
4)
43 M2 N.C. Not connected (not bonded)
44 M3 DBGRQS I C
T
Debug Mode request input (active high)
45 K4 CKOUT O 8mA X
Clock output (f
PCLK2
) Note: Enabled by CKDIS
register in APB Bridge 2
46 J4 CK I C Reference clock input
47 M5
P0.15/ WAKEU P
IT
T
XX
Port 0.15 Wakeup from Standby mode input.
Note: This port is input only.
48 L5 N.C. Not connected (not bonded)
49 K5 RTCXTI
Realtime Clock input and input of 32 kHz oscillator amplifier circuit
50 J5 RTCXTO Output of 32 kHz oscillator amplifier circuit
51 M6 STDBY
I/O C
T
4mA X X
Input: Hardware Standby mode entry input active low. Caution: External pull-up to V
33
required to
select normal mode. Output: Standby mode active low output following
Software Standby mode entry. Note: In Standby mode all pins are in high
impedance except those marked Active in Stdby
52 M7 RSTIN
IC
T
X Reset input
53 H5 N.C. Not connected (not bonded)
54 L6 V
SSBKP
S X Stabilization for low power voltage regulator.
55 K6 V
18BKP
SX
Stabilization for low power voltage regulator. Requires external capacitors of at least 1µF between V
18BKP
and V
SS18BKP
. See Figure 5. Note: If the low power voltage regulator is bypassed, this pin can be connected to an external 1.8V supply.
56 J6 N.C. Not connected (not bonded)
57 H6 N.C. Not connected (not bonded)
58 G6 V
18
S
Stabilization for main voltage regulator. Requires external capacitors of at least 10µF + 33nF between V
18
and V
SS18
. See Figure 5.
Table 3. STR710 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input Level
interrupt
Capability
OD
PP
Page 15
STR71xF Introduction
15/74
59 L7 V
SS18
S Stabilization for main voltage regulator.
60 K7 N.C. Not connected (not bonded)
61 J7 D.0 I/O
6)
8mA
External Memory Interface: data bus
62 H7 D.1 I/O
6)
8mA
63 M8 D.2 I/O
6)
8mA
64 L8 D.3 I/O
6)
8mA
65 M10 D.4 I/O
6)
8mA
66 M11 V
DDA
S Supply voltage for A/D Converter
67 K8 V
SSA
S Ground voltage for A/D Converter
68 J8 N.C. Not connected (not bonded)
69 M9 N.C. Not connected (not bonded)
70 L9 N.C. Not connected (not bonded)
71 K9
P1.0/T3.OCM PB/AIN.0
I/O pu C
T
4mA X X Port 1.0
Timer 3: Output Compare B
ADC: Analog input 0
72 L10
P1.1/T3.ICAP A/T3.EXTCLK/ AIN.1
I/O pu C
T
4mA X X Port 1.1
Timer 3: Input Capture A or External Clock input
ADC: Analog input 1
73 M12
P1.2/T3.OCM PA/AIN.2
I/O pu C
T
4mA X X Port 1.2
Timer 3: Output Compare A
ADC: Analog input 2
74 L11
P1.3/T3.ICAP B/AIN.3
I/O pu C
T
4mA X X Port 1.3
Timer 3: Input Capture B
ADC: Analog input 3
75 K11
P1.4/T1.ICAP A/T1.EXTCLK
I/O pu C
T
4mA X X Port 1.4
Timer 1: Input Capture A
Timer 1: External Clock input
76 K10
P1.5/T1.ICAP B
I/O pu C
T
4mA X X Port 1.5
Timer 1: Input Capture B
77 J12
P1.6/T1.OCM PB
I/O pu C
T
4mA X X Port 1.6
Timer 1: Output Compare B
78 J11 D.5 I/O
6)
8mA
External Memory Interface: data bus
79 L12 D.6 I/O
6)
8mA
80 K12 D.7 I/O
6)
8mA
81 J10 D.8 I/O
6)
8mA
82 J9 D.9 I/O
6)
8mA
Table 3. STR710 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input Level
interrupt
Capability
OD
PP
Page 16
Introduction STR71xF
16/74
83 H12 V
33IO-PLL
S
Supply voltage for digital I/O circuitry and for PLL reference
4)
84 H11 V
SSIO-PLL
S
Ground voltage for digital I/O circuitry and for PLL reference
4)
85 H10
P1.7/T1.OCM PA
I/O pu C
T
4mA X X Port 1.7
Timer 1: Output Compare A
86 H9 P1.8 I/O pd C
T
4mA X X Port 1.8
87 G12 N.C. Not connected (not bonded)
88 F12 P1.11/CANRX I/O pu C
T
X 4mA X X Port 1.11
CAN: receive data input Note: On STR710 and STR712 only
89 H8 P1.12/CANTX I/O pu C
T
4mA X X Port 1.12
CAN: Transmit data output Note: On STR710 and STR712 only
90 G11 USBDP I/O C
T
USB bidirectional data (data +). Reset state = HiZ Note: On STR710 and STR711 only This pin requires an external pull-up to V
33
to
maintain a high level.
91 G10 USBDN I/O C
T
USB bidirectional data (data -). Reset state = HiZ Note: On STR710 and STR711 only.
92 G9 D.10 I/O
6)
8mA
External Memory Interface: data bus
93 G8 D.11 I/O
6)
8mA
94 G7 D.12 I/O
6)
8mA
95 F11 D.13 I/O
6)
8mA
96 F10 D.14 I/O
6)
8mA
97 F9 D.15 I/O
6)
8mA
98 F8 A.0 O
7)
8mA X
External Memory Interface: address bus
99 E12 A.1 O
7)
8mA X
100 E11 A.2 O
7)
8mA X
101 C12 A.3 O
7)
8mA X
102 B12 A.4 O
7)
8mA X
103 E10 V
SS
S Ground voltage for digital I/O circuitry
4)
104 E9 V
33
S Supply voltage for digital I/O circuitry
4)
105 D12 P1.9 I/O pd C
T
4mA X X Port 1.9
106 D11
P1.10/ USBCLK
I/O pd
C/
T
4mA X X Port 1.10
USB: 48 MHZ clock input
Table 3. STR710 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input Level
interrupt
Capability
OD
PP
Page 17
STR71xF Introduction
17/74
107 D10
P1.13/HCLK/ I0.SCL
I/O pd C
T
X 4mA X X Port 1.13
HDLC: reference clock input
I2C clock
108 C11
P1.14/HRXD/ I0.SDA
I/O pu C
T
X 4mA X X Port 1.14
HDLC: Receive data input
I2C serial data
109 B11 N.C. Not connected (not bonded)
110 B10 N.C. Not connected (not bonded)
111 C10 P1.15/HTXD I/O pu C
T
4mA X X Port 1.15 HDLC: Transmit data output
112 A9 V
SS
S Ground voltage for digital I/O circuitry
4)
113 B9 V
33
S Supply voltage for digital I/O circuitry
4)
114 C9 A.5 O
7)
8mA X
External Memory Interface: address bus
115 D9 A.6 O
7)
8mA X
116 A11 A.7 O
7)
8mA X
117 A10 A.8 O
7)
8mA X
118 A8 A.9 O
7)
8mA X
119 B8 A.10 O
7)
8mA X
120 C8 A.11 O
7)
8mA X
121 A12 A.12 O
7)
8mA X
122 D8 A.13 O
7)
8mA X
123 E8
P0.0/S0.MISO /U3.TX
I/O pu C
T
4mA X X Port 0.0
SPI0 Master in/Slave out data
UART3 Transmit data output
Note: Programming AF function selects UART by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
124 B7
P0.1/S0.MOSI /U3.RX
I/O pu C
T
X4mA X X Port 0.1
BSPI0: Master out/Slave in data
UART3: Receive Data input
Note: Programming AF function selects UART by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
Table 3. STR710 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input Level
interrupt
Capability
OD
PP
Page 18
Introduction STR71xF
18/74
125 A7
P0.2/S0.SCLK /I1.SCL
I/O pu C
T
X4mA X X Port 0.2
BSPI0: Serial Clock
I2C1: Serial clock
Note: Programming AF function selects I2C by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
126 A6
P0.3/S0.SS
/
I1.SDA
I/O pu C
T
4mA X X Port 0.3
SPI0: Slave Select input active low.
I2C1: Serial Data
Note: Programming AF function selects I2C by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
127 C7 P0.4/S1.MISO I/O pu C
T
4mA X X Port 0.4 SPI1: Master in/Slave out data
128 D7 V
SS18
S Stabilization for main voltage regulator.
129 E7 V
18
S
Stabilization for main voltage regulator. Requires external capacitors of at least 10µF + 33nF between V
18
and V
SS18
. See Figure 5.
130 F7 A.14 O
7)
8mA X
External Memory Interface: address bus
131 B6 A.15 O
7)
8mA X
132 C6 A.16 O
7)
8mA X
133 D6 A.17 O
7)
8mA X
134 E6 A.18 O
7)
8mA X
135 A5 A.19 O
7)
8mA X
136 B5 WE.1 O
5)
8mA X
External Memory Interface: active low MSB write enable output
137 C5 WE
.0 O
5)
8mA X
External Memory Interface: active low LSB write enable output
138 A3 V
33
S Supply voltage for digital I/Os
4)
139 A2 V
SS
S Ground voltage for digital I/Os
4)
140 D5 P0.5/S1.MOSI I/O pu C
T
4mA X X Port 0.5 SPI1: Master out/Slave In data
141 A4 P0.6/S1.SCLK I/O pu C
T
X 4mA X X Port 0.6 SPI1: Serial Clock
142 B4 P0.7/S1.SS
I/O pu C
T
4mA X X Port 0.7 SPI1: Slave Select input active low
Table 3. STR710 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input Level
interrupt
Capability
OD
PP
Page 19
STR71xF Introduction
19/74
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 7 on page 28. The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset
2. In reset state, these pins configured as Input PU/PD with weak pull-up enabled. They must be configured by software as Alternate Function (see Table 7: Port Bit Configuration Table on page 28) to be used by the External Memory Interface.
3. In reset state, these pins configured as Input PU/PD with weak pull-down enabled to output Address 0x0000 0000 using the External Memory Interface. To access memory banks greater than 1Mbyte, they need to be configured by software as Alternate Function (see Table 7: Port Bit Configuration Table on
page 28).
4. V
33IO-PLL
and V33 are internally connected. V
SSIO-PLL
and VSS are internally connected.
5. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as Output Push-Pull.
6. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as Hi-Z.
7. During the reset phase, these pins are in input pull-down state. When reset is released, they are configured as Output Push-Pull.
8. During the reset phase, this pin is in input floating state. When reset is released, it is configured as Output Push-Pull.
143 C4
P0.8/U0.RX/ U0.TX
I/O pd CTX4mA T
Por t 0.8
UART0: Receive Data input
UART0: Transmit data output.
Note: This pin may be used for single wire UART (half duplex) if programmed as Alternate Function Output. The pin will be tri-stated except when UART transmission is in progress
144 B3
P0.9/U0.TX/ BOOT.0
I/O pd C
T
4mA X X Port 0.9
Select Boot Configuration input
UART0: Transmit data output
Table 3. STR710 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input Level
interrupt
Capability
OD
PP
Page 20
Introduction STR71xF
20/74
1.5 Pin description for 64-pin packages
Figure 3. STR712/STR715 LQFP64 Pinout
646362616059585756555453525150
49
P1.14/HRXD/I0.SDA P1.13/HCLK/I0.SCL P1.10 P1.9 VSS P1.12/CANTX
1)
P1.11/CANRX
1)
P1.8 P1.7/T1.OCMPA VSSIO-PLL V33IO-PLL P1.6/T1.OCMPB P1.5/T1.ICAPB P1.4/T1.ICAPA P1.3/T3.ICAPB/AIN.3 P1.2/T3.OCMPA/AIN.2
V33IO-PLL
VSSIO-PLL
CK
P0.15/WAKEUP
RTCXTI
RTCXTO
STDBY
RSTIN
VSSBKP
V18BKP
V18
VSS18
AVD D
AVSS
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
171819202122232425262728293031
32
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
P0.10/U1.RX/U1.TX/SCDATA
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
BOOTEN
VSS
V33
JTDI JTMS JTCK JTDO
nJTRST
NU
TEST
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
V33
VSS
P1.15/HTXD
LQFP64
1)CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.
Page 21
STR71xF Introduction
21/74
Figure 4. STR711 LQFP64 Pinout
646362616059585756555453525150
49
P1.14/HRXD/I0.SDA P1.13/HCLK/I0.SCL P1.10/USBCLK P1.9 VSS USBDN USBDP P1.8 P1.7/T1.OCMPA VSSIO-PLL V33IO-PLL P1.6/T1.OCMPB P1.5/T1.ICAPB P1.4/T1.ICAPA P1.3/T3.ICAPB/AIN.3 P1.2/T3.OCMPA/AIN.2
V33IO-PLL
VSSIO-PLL
CK
P0.15/WAKEUP
RTCXTI
RTCXTO
STDBY
RSTIN
VSSBKP
V18BKP
V18
VSS18
AVD D
AVS S
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
171819202122232425262728293031
32
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
P0.10/U1.RX/U1.TX/SCDATA
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
BOOTEN
VSS
V33
JTDI
JTMS
JTCK
JTDO
nJTRST
NU
TEST
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
V33
VSS
P1.15/HTXD
LQFP64
Table 4. STR711 BGA Ball Connections
ABCDE FGH
1 P0.10 P0.11 P0.12 P0.14 V33 JTCK TEST
V33IO-
PLL
2 P0.9 VSS P0.13 VSS JTMS JTRSTn P0.15
VSSIO-
PLL
3 P0.5 P0.7 BOOTEN JTDI NU STDBY
RTCXTI CK
4 VSS18 VSS P0.8 JTDO AVDD V18BKP RSTIN
RTCXTO
5 P0.2 P0.4 V18 P0.6 P1.9 P1.0 V18 VSSBKP
6 V33 P0.1 P0.3 P1.13 USBDP
VSSIO-
PLL
AVSS VSS18
7 VSS P0.0 P1.10 USBDN P1.7 P1.6 P1.5 P1.1
8 P1.15 P1.14 VSS P1.8
V33IO-
PLL
P1.4 P1.3 P1.2
Page 22
Introduction STR71xF
22/74
1)
CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.
Legend / Abbreviations for Table 6:
Type: I = input, O = output, S = supply, HiZ= high impedance,
In/Output level: C = CMOS 0.3V
DD
/0.7V
DD
CT= CMOS 0.8V / 2V with input trigger T
T
= TTL 0.3V/0.7VDD with input trigger
C/T = Programmable levels: CMOS 0.3V
DD
/0.7VDD or TTL 0.8V / 2V
Port and control configuration:
Input: pu/pd= software enabled internal pull-up or pull down
pu= in reset state, the internal 100k weak pull-up is enabled. pd = in reset state, the internal 100k weak pull-down is enabled.
Output: OD = open drain
(logic level) PP = push-pull T = true OD, (P-Buffer and protection diode to V
DD
not implemented),
5V tolerant.
Table 5. STR712/715 BGA Ball Connections
ABCDEFGH
1 P0.10 P0.11 P0.12 P0.14 V33 JTCK TEST
V33IO-
PLL
2 P0.9 VSS P0.13 VSS JTMS JTRSTn P0.15
VSSIO-
PLL
3 P0.5 P0.7 BOOTEN JTDI NU STDBY
RTCXTI CK
4 VSS18 VSS P0.8 JTDO AVDD V18BKP RSTIN
RTCXTO
5 P0.2 P0.4 V18 P0.6 P1.9 P1.0 V18 VSSBKP
6 V33 P0.1 P0.3 P1.13
P1.11/
CANRX
1)
VSSIO-
PLL
AVSS VSS18
7 VSS P0.0 P1.10
P1.12/
CANTX
1)
P1.7 P1.6 P1.5 P1.1
8 P1.15 P1.14 VSS P1.8
V33IO-
PLL
P1.4 P1.3 P1.2
Page 23
STR71xF Introduction
23/74
Table 6. STR711/STR712/STR715 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
BGA64
Input Level
interrupt
Capability
OD
PP
1A1
P0.10/U1.RX/ U1.TX/ SC.DATA
I/O pd CTX 4mA T Port 0.10
UART1: Receive Data input
UART1: Transmit data output.
Note: This pin may be used for Smartcard DataIn/DataOut or single wire UART (half duplex) if programmed as Alternate Function Output. The pin will be tri-stated except when UART transmission is in progress
2B1
P0.11/BOOT.1 /U1.TX
I/O pd C
T
4mA X X Port 0.11
Select Boot Configuration input
UART1: Transmit data output.
3 C1 P0.12/SC.CLK I/O pd C
T
4mA Port 0.12 Smartcard reference clock output
4B2V
SS
S Ground voltage for digital I/Os
2)
5C2
P0.13/U2.RX/ T2.OCMPA
I/O pu CTX4mAX X Port 0.13
UART2: Receive Data input
Timer2: Output Compare A output
6D1
P0.14/U2.TX/ T2.ICAPA
I/O pu C
T
4mA X X Port 0.14
UART2: Transmit data output
Timer2: Input Capture A input
7C3BOOTEN I C
T
Boot control input. Enables sampling of BOOT[1:0] pins
8D2V
SS
S Ground voltage for digital I/Os2)
9E1V
33
S Supply voltage for digital I/Os2)
10 D3 JTDI I T
T
JTAG Data input. External pull-up required.
11 E2 JTMS I T
T
JTAG Mode Selection Input. External pull-up required.
12 F1 JTCK I C
JTAG Clock Input. External pull-up or pull-down required.
13 D4 JTDO O 8mA X JTAG Data output. Note: Reset state = HiZ.
14 F2 JTRST I T
T
JTAG Reset Input. External pull-up required.
15 E3 NU Reserved, must be forced to ground.
16 G1 TEST Reserved, must be forced to ground.
17 H1 V
33IO-PLL
S
Supply voltage for digital I/O circuitry and for PLL reference
2)
18 H2 V
SSIO-PLL
S
Ground voltage for digital I/O circuitry and for PLL reference
2)
19 H3 CK I C Reference clock input
Page 24
Introduction STR71xF
24/74
20 G2
P0.15/ WAKEUP
ITTXX
Port 0.15 Wakeup from Standby mode input.
Note: This port is input only.
21 G3 RTCXTI
Realtime Clock input and input of 32 kHz oscillator amplifier circuit
22 H4 RTCXTO Output of 32 kHz oscillator amplifier circuit
23 F3 STDBY
I/O C
T
4mA X X
Input: Hardware Standby mode entry input active low. Caution: External pull-up to V33 required to select normal mode.
Output: Standby mode active low output following Software Standby mode entry.
Note: In Standby mode all pins are in high impedance except those marked Active in Stdby.
24 G4 RSTIN
IC
T
X Reset input
25 H5 V
SSBKP
S X Stabilization for low power voltage regulator.
26 F4 V
18BKP
SX
Stabilization for low power voltage regulator. Requires external capacitors of at least 1µF between V
18BKP
and V
SS18BKP
. See Figure 5. Note: If the low power voltage regulator is bypassed, this pin can be connected to an external
1.8V supply.
27 G5 V
18
S
Stabilization for main voltage regulator. Requires external capacitors of at least 10µF + 33nF between V
18
and V
SS18
. See Figure 5.
28 H6 V
SS18
S Stabilization for main voltage regulator.
29 E4 V
DDA
S Supply voltage for A/D Converter
30 G6 V
SSA
S Ground voltage for A/D Converter
31 F5
P1.0/T3.OCM PB/AIN.0
I/O pu C
T
4mA X X Port 1.0
Timer 3: Output Compare B
ADC: Analog input 0
32 H7
P1.1/T3.ICAP A/T3.EXTCLK /AIN.1
I/O pu C
T
4mA X X Port 1.1
Timer 3: Input Capture A or External Clock input
ADC: Analog input 1
33 H8
P1.2/T3.OCM PA/AIN.2
I/O pu C
T
4mA X X Port 1.2
Timer 3: Output Compare A
ADC: Analog input 2
34 G8
P1.3/T3.ICAP B/AIN.3
I/O pu C
T
4mA X X Port 1.3
Timer 3: Input Capture B
ADC: Analog input 3
35 F8
P1.4/T1.ICAP A/T1.EXTCLK
I/O pu C
T
4mA X X Port 1.4
Timer 1: Input Capture A
Timer 1: External Clock input
Table 6. STR711/STR712/STR715 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
BGA64
Input Level
interrupt
Capability
OD
PP
Page 25
STR71xF Introduction
25/74
36 G7
P1.5/T1.ICAP B
I/O pu C
T
4mA X X Port 1.5
Timer 1: Input Capture B
37 F7
P1.6/T1.OCM PB
I/O pu C
T
4mA X X Port 1.6
Timer 1: Output Compare B
38 E8 V
33IO-PLL
S
Supply voltage for digital I/O circuitry and for PLL reference
2)
39 F6 V
SSIO-PLL
S
Ground voltage for digital I/O circuitry and for PLL reference
2)
40 E7
P1.7/T1.OCM PA
I/O pu C
T
4mA X X Port 1.7
Timer 1: Output Compare A
41 D8 P1.8 I/O pd C
T
4mA X X Port 1.8
42 E6 P1.11/CANRX I/O pu CTX4mA X X Port 1.11
CAN: receive data input Note: On STR710 and STR712 only
43 D7 P1.12/CANTX I/O pu C
T
4mA X X Port 1.12
CAN: Transmit data output Note: On STR710 and STR712 only
42 E6 USBDP I/O C
T
USB bidirectional data (data +). Reset state = HiZ Note: On STR710 and STR711 only This pin requires an external pull-up to V
33
to
maintain a high level.
43 D7 USBDN I/O C
T
USB bidirectional data (data -). Reset state = HiZ Note: On STR710 and STR711 only.
44 C8 V
SS
S Ground voltage for digital I/O circuitry
2)
45 E5 P1.9 I/O pd C
T
4mA X X Port 1.9
46 C7
P1.10/USBCL K
I/O pd
C/
T
4mA X X Port 1.10
USB: 48 MHZ clock input
47 D6
P1.13/HCLK/I
0.SCL
I/O pd C
T
X4mA X X Port 1.13
HDLC: reference clock input
I2C clock
48 B8
P1.14/HRXD/I
0.SDA
I/O pu CTX4mA X X Port 1.14
HDLC: Receive data input
I2C serial data
49 A8 P1.15/HTXD I/O pu C
T
4mA X X Port 1.15 HDLC: Transmit data output
50 A7 V
SS
S Ground voltage for digital I/O circuitry
2)
51 A6 V
33
S Supply voltage for digital I/O circuitry
2)
Table 6. STR711/STR712/STR715 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
BGA64
Input Level
interrupt
Capability
OD
PP
Page 26
Introduction STR71xF
26/74
52 B7
P0.0/S0.MISO /U3.TX
I/O pu C
T
4mA X X Port 0.0
SPI0 Master in/Slave out data
UART3 Transmit data output
Note: Programming AF function selects UART by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
53 B6
P0.1/S0.MOSI /U3.RX
I/O pu C
T
X4mA X X Port 0.1
BSPI0: Master out/Slave in data
UART3: Receive Data input
Note: Programming AF function selects UART by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
54 A5
P0.2/S0.SCLK /I1.SCL
I/O pu C
T
X4mA X X Port 0.2
BSPI0: Serial Clock
I2C1: Serial clock
Note: Programming AF function selects I2C by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
55 C6
P0.3/S0.SS
/I1
.SDA
I/O pu C
T
4mA X X Port 0.3
SPI0: Slave Select input active low.
I2C1: Serial Data
Note: Programming AF function selects I2C by default. BSPI must be enabled by SPI_EN bit in the BOOTCR register.
56 B5 P0.4/S1.MISO I/O pu C
T
4mA X X Port 0.4 SPI1: Master in/Slave out data
57 A4 V
SS18
S Stabilization for main voltage regulator.
58 C5 V
18
S
Stabilization for main voltage regulator. Requires external capacitors of at least 10µF + 33nF between V
18
and V
SS18
. See Figure 5.
59 B4 V
SS
S Ground voltage for digital I/Os
60 A3 P0.5/S1.MOSI I/O pu C
T
4mA X X Port 0.5 SPI1: Master out/Slave In data
61 D5 P0.6/S1.SCLK I/O pu C
T
X 4mA X X Port 0.6 SPI1: Serial Clock
62 B3 P0.7/S1.SS
I/O pu C
T
4mA X X Port 0.7 SPI1: Slave Select input active low
Table 6. STR711/STR712/STR715 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
BGA64
Input Level
interrupt
Capability
OD
PP
Page 27
STR71xF Introduction
27/74
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 7 on page 28. The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset
2. V
33IO-PLL
and V33 are internally connected. V
SSIO-PLL
and VSS are internally connected.
1.6 External Connections
Figure 5. Recommended External Connection of V
18 and V18BKP
pins
63 C4
P0.8/U0.RX/U
0.TX
I/O pd CTX4mA T
Por t 0.8
UART0: Receive Data input
UART0: Transmit data output.
Note: This pin may be used for single wire UART (half duplex) if programmed as Alternate Function Output. The pin will be tri-stated except when UART transmission is in progress
64 A2
P0.9/U0.TX/B OOT.0
I/O pd C
T
4mA X X Port 0.9
Select Boot Configuration input
UART0: Transmit data output
Table 6. STR711/STR712/STR715 Pin Description
Pin n°
Pin Name
Typ e
Reset State
1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
BGA64
Input Level
interrupt
Capability
OD
PP
LQFP144
LQFP64
58
57
27
129 128
33 nF
59
10 µF
10 µF
33 nF
54
55
1µF
25
26
1µF
28
58
V
18BKP
V
18
V
18
V
18
V
18
V
18BKP
Page 28
Introduction STR71xF
28/74
1.7 I/O Port Configuration
Legend:
AIN: Analog Input
CMOS: CMOS Input levels
IPUPD: Input Pull Up /Pull Down
TTL: TTL Input levels
N.A.: not applicable. In Output mode, a read access to the port gets the output latch value.
Table 7. Port Bit Configuration Table
Configuration Mode
Input
Buffer
PxD
Register
PxC2
Register
PxC1
Register
PxC0
Register
Read
access
Write
access
INPUT
TTL Input Floating TTL floating I/O pin don’t care 0 0 1
CMOS Input Floating CMOS floating I/O pin don’t care 0 1 0
CMOS Input Pull-Down (IPUPD)
CMOS Pull-
Down
I/O pin 0 0 1 1
CMOS Input Pull-Up (IPUPD)
CMOS
Pull-Up
I/O pin 1 0 1 1
Analog input AIN 0 don’t care 0 0 0
OUTPUT
Output Open-Drain N.A. I/O pin 0 or 1 1 0 0
Output Push-Pull N.A.
last value
written
0 or 1 1 0 1
Alternate Function Open-Drain CMOS floating I/O pin don’t care 1 1 0
Alternate Function Push-Pull CMOS floating I/O pin don’t care 1 1 1
Page 29
STR71xF Introduction
29/74
1.8 Memory Mapping
Figure 6. Memory Map
APB BRIDGE 2 REGS
Addressable Memory Space
0
1
2
3
4
4K
5
6
7
0x2000 0000
0x4000 0000
0x6000 0000
0x8000 0000
0xA000 0000
0xC000 0000
0xE000 0000
0xFFFF FFFF
0xC000 0000
0xC000 1000
0xC000 2000
0xC000 3000
0xC000 4000
0xC000 5000
0xC000 6000
0xC000 7000
0xC000 8000
0xC000 9000
0xC000 A000
0xC000 B000
0xC000 C000
0xE000 1000
0xE000 2000
0xE000 3000
0xE000 4000
0xFFFF FFFF
0x0000 0000
APB Memory Space
4 Gbytes
FLASH/RAM/EMI
EXTMEM
64MB
0xFFFF F800
4K
EIC
0xFFFF F800
APB BRIDGE 1 REGS
Reserved
FLASH
256K+16K+36b
B0F0
B0F4
B0F5
B0F6
B1F0
0x4000 0000
8K
8K
32K
64K
64K
64K
FLASH Memory Space
272 Kbytes + regs
0x4000 4000
0x4000 6000
0x4001 0000
0x4002 0000
0x4003 0000
Reserved
4K
(*) FLASH aliased at 0x0000 0000h
by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes)
0xE000 0000
0xE000 5000
0xE000 6000
0xE000 7000
0xE000 8000
0xE000 9000
0xE000 A000
0xE000 B000
I2C 0
I2C 1
reserved
UART 0
UART 1
UART 2
UART 3
USB + RAM
BSPI 0
BSPI 1
XTI
reserved
IOPORT 1
IOPORT 2
ADC
CLKOUT
TIMER 3
RTC
WDG
0xE000 E000
0xE000 D000
0xE000 C000
0xC000 D000
0xC000 E000
PRCCU
1K
CAN
B0F7
0x400C 0000
0x400C 4000
0x4010 0000
reserved
8K
TIMER 0
TIMER 1
TIMER 2
reserved
reserved
HDLC + RAM
reserved
0xC001 0000
0xC000 F000
B1F1
0x400C 2000
reserved
0x4004 0000
8K
0x4010 DFBF
36b
FLASH Registers
0x4000 2000
RAM
64K
APB1
APB2
EIC
B0F2
B0F1
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
reserved
reserved
IOPORT 0
64K
64K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
B0F3
8K
8K
0x4000 8000
See Figure 8
Page 30
Introduction STR71xF
30/74
Figure 7. Mapping of Flash Memory Versions
B0F0
B0F4
reserved
reserved
B1F0
0x4000 0000
8K
8K
32K
64K
64K
64K
FLASH Memory Space
64 Kbytes + 16K RWW + regs
0x4000 4000
0x4000 6000
0x4001 0000
0x4002 0000
0x4003 0000
reserved
0x400C 0000
0x400C 4000
0x4010 0000
reserved
8K
B1F1
0x400C 2000
reserved
0x4004 0000
8K
0x4010 DFBF
36b
FLASH Registers
0x4000 2000
B0F2 B0F1
B0F3
8K
8K
0x4000 8000
B0F0
B0F4
B0F5
reserved
B1F0
0x4000 0000
8K
8K
32K
64K
64K
64K
FLASH Memory Space
128 Kbytes + 16K RWW + regs
0x4000 4000
0x4000 6000
0x4001 0000
0x4002 0000
0x4003 0000
reserved
0x400C 0000
0x400C 4000
0x4010 0000
reserved
8K
B1F1
0x400C 2000
reserved
0x4004 0000
8K
0x4010 DFBF
36b
FLASH Registers
0x4000 2000
B0F2 B0F1
B0F3
8K
8K
0x4000 8000
B0F0
B0F4
B0F5
B0F6
B1F0
0x4000 0000
8K
8K
32K
64K
64K
64K
FLASH Memory Space
256 Kbytes + 16K RWW + regs
0x4000 4000
0x4000 6000
0x4001 0000
0x4002 0000
0x4003 0000
B0F7
0x400C 0000
0x400C 4000
0x4010 0000
reserved
8K
B1F1
0x400C 2000
reserved
0x4004 0000
8K
0x4010 DFBF
36b
FLASH Registers
0x4000 2000
B0F2 B0F1
B0F3
8K
8K
0x4000 8000
STR715FR0xx STR711FR0xx STR712FR0xx
STR711FR1xx STR712FR1xx
STR710F72xx STR711FR2xx STR712FR2xx
STR710FZ1xx
Table 8. RAM Memory Mapping
Part Number RAM Size Start Address End Address
STR715FR0xx STR711FR0xx STR712FR0xx
16 Kbytes 0x2000 0000 0x2000 3FFF
STR710FZ1xx STR711FR1xx STR712FR1xx
32 Kbytes 0x2000 0000 0x2000 7FFF
STR710FR2xx
STR710Rxx STR711FR2xx STR712FR2xx
64 Kbytes 0x2000 0000 0x2000 FFFF
Page 31
STR71xF Introduction
31/74
Figure 8. External Memory Map
Drawing not in sc ale
Addressable Memory Space
0
1
2
3
4
5
6
7
0x2000 0000
0x4000 0000
0x6000 0000
0x8000 0000
0xA000 0000
0xC000 0000
0xE000 0000
0xFFFF FFFF
0x0000 0000
4 Gbytes
FLASH/RAM/EMI
EXTMEM
0xFFFF F800
Reserved
FLASH
BCON3
Bank3
Bank2
0x6000 0000
16M
16M
16M
16M
0x6200 0000
0x6400 0000
0x6600 0000
Reserved
PRCCU
Bank1
RAM
APB1
APB2
EIC
BCON1
BCON2
BCON0
0x6C00 0000
0x6C00 0004
0x6C00 0008
0x6C00 000C
register register register register
Bank0
External Memory Space
64 MBytes
CSn.0
CSn.1
CSn.2
CSn.3
0x60FF FFFF
0x62FF FFFF
0x64FF FFFF
0x66FF FFFF
Page 32
Electrical parameters STR71xF
32/74
2 Electrical parameters
2.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
2.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T
A
=25°C and TA=TAmax (given by the
selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).
2.1.2 Typical values
Unless otherwise specified, typical data are based on TA=25°C, V33=3.3V (for the
3.0V≤V
33
3.6V voltage range) and V18=1.8V. They are given only as design guidelines and
are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated
(mean±2Σ).
2.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.
2.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
2.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions Figure 10. Pin input voltage
=50pF
STR7 PIN
V
IN
STR7 PIN
Page 33
STR71xF Electrical parameters
33/74
2.2 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Table 9. Voltage characteristics
Symbol Ratings Min Max Unit
V33- V
SS
External 3.3V Supply voltage (including AV
DD
and V
33IO-
PLL
)
2)
-0.3 4.0
V
V
18BKP
- V
SSBKP
Digital 1.8V Supply voltage
on V
18BKP
backup supply
2)
-0.3 2.0
V
IN
Input voltage on true open
drain pin (P0.10)
1)
VSS-0.3
+5.5
Input voltage on any other
pin
1)
VSS-0.3 V33+0.3
|V
33x
|
Variations between different
3.3V power pins
50 50
mV
|V
18x
|
Variations between different
1.8V power pins
5)
25 25
|V
SSX
- VSS|
Variations between all the different ground pins
50 50
V
ESD(HBM)
Electro-static discharge voltage (Human Body Model)
see : Absolute Maximum Ratings
(Electrical Sensitivity) on page 47
V
ESD(MM)
Electro-static discharge voltage (Machine Model)
Page 34
Electrical parameters STR71xF
34/74
Notes:
1. I
INJ(PIN)
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the I
INJ(PIN)
value. A positive injection is induced by VIN>V33 while a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
2. All 3.3V power (V
33
, AVDD, V
33IO-PLL
) and ground (VSS, AVSS, V
SSIO-PLL
) pins must always be connected
to the external 3.3V supply.
3. Negative injection disturbs the analog performance of the device. See note in Section 2.3.9: ADC
characteristics on page 62.
4. When several inputs are submitted to a current injection, the maximum
Σ
I
INJ(PIN)
is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with
Σ
I
INJ(PIN)
maximum current injection on four I/O port pins of the device.
5. Only when using external 1.8V power supply. All the power (V
18
, V
18BKP
) and ground (V
SS18
, V
SSBKP
) pins
must always be connected to the external 1.8V supply.
Table 10. Current characteristics
Symbol Ratings Max. Unit
I
V33
Total current into V33/V
33IO-PLL
power lines (source)
2)
150
mA
I
VSS
Total current out of VSS/V
SSIO-PLL
ground lines (sink)
2)
150
I
IO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin - 25
I
INJ(PIN)
1) & 3)
Injected current on RSTIN pin ± 5
Injected current on CK pin ± 5
Injected current on any other pin
4)
± 5
ΣI
INJ(PIN)
1)
Total injected current (sum of all I/O and control pins)
4)
± 25
Table 11. Thermal characteristics
Symbol Ratings Value Unit
T
STG
Storage temperature range -65 to +150 °C
T
J
Maximum junction temperature (see Section 3.2: Thermal characteristics on
page 69)
Page 35
STR71xF Electrical parameters
35/74
2.3 Operating conditions
Subject to general operating conditions for V33, and TA.
1. Data guaranteed by characterization, not tested in production
Table 12. General Operating Conditions
Symbol Parameter Conditions Min Max Unit
f
MCLK
Internal CPU Clock frequency
Accessing SRAM or external memory with 0 wait states
0 66
MHz
Accessing FLASH in burst mode
050
Executing from FLASH with RWW
0
45
1)
Accessing FLASH with 0 wait states
033
f
PCLK
Internal APB Clock frequency
0 33 MHz
V
33
Standard Operating Voltage (includes V
33I0_PLL)
3.0 3.6 V
V
18BKP
Backup Operating Voltage 1.4 1.8 V
T
A
Ambient temperature range 6 Partnumber Suffix -40 85 °C
Table 13. Operating Conditions at power-up / power-down
Symbol Parameter Conditions Min
Typ
Max Unit
t
V33
V33 rise time rate
Subject to general operating conditions for T
A
.
20 µs/V
20 ms/V
Page 36
Electrical parameters STR71xF
36/74
2.3.1 Supply current characteristics
The current consumption is measured as described in Figure 9 on page 32 and Figure 10
on page 32.
Total current consumption
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at V
33
or VSS (no load)
All peripherals are disabled except if explicitly mentioned.
Embedded Regulators are used to provide 1.8V (except if explicitly
mentioned)
Subject to general operating conditions for V
33
, and TA.
Notes:
1. Typical data are based on T
A
=25°C, V33=3.3V.
2. Data based on characterization results, tested in production at V
33
, f
MCLK
max. and TA max.
3. Based on device characterisation, device power consumption in STOP mode at T
A
25°C is predicted to be
30µA or less in 99.730020% of parts.
4. The conditions for these consumption measurements are described in application note AN2100.
Table 14. Total Current consumption
Symbol Parameter Conditions
Typ
1)
Max
2)
Unit
I
DD
4)
Supply current in RUN mode
f
MCLK
=66 MHz, RAM execution
73.6 100
mA
f
MCLK
=32 MHz, Flash non-burst
execution
49.3
Supply current in STOP mode
T
A
=25°C
10
50
3)
µA
Supply current in STANDBY mode
OSC32K bypassed 12 30 µA
Page 37
STR71xF Electrical parameters
37/74
Table 15. Typical power consumption data
Symbol Parameter Conditions
Typica l current
on V33
Unit
I
DDRUN
RUN mode
current from
RAM
All periphs ON
MCLK = 16 MHz, PCLK = FCLK = 16 MHz 23
mA
MCLK = 32 MHz, PCLK = FCLK = 32 MHz 40
MCLK = 48 MHz, PCLK = FCLK = 24 MHz 50
MCLK = 64 MHz, PCLK = FCLK = 32 MHz 63
All periphs OFF
MCLK = 16 MHz 16
MCLK = 32 MHz 26
MCLK = 48 MHz 39
MCLK = 64 MHz 48
RUN mode
current from
FLASH
All periphs ON
MCLK = 16 MHz, PCLK = FCLK = 16 MHz 27
MCLK = 32 MHz, PCLK = FCLK = 32 MHz 47
MCLK = 48 MHz, PCLK = FCLK = 24 MHz 62
All periphs OFF
MCLK = 16 MHz 21
MCLK = 32 MHz 36
MCLK = 48 MHz 53
I
DDSLOW
SLOW mode current MCLK = CK_AF (32 kHz), MVR off 1.7
I
DDWAIT
WAIT mode current
(all periphs ON)
PCLK = FCLK = 1 MHz 13
I
DDLPWAIT
LPWAIT mode current
CK_AF (32 kHz), Main VReg off, FLASH in power-down
37
µA
I
DDSTOP
STOP mode current
Main VReg off, FLASH in power down, RTC on
18
Main VReg off, FLASH in power down, RTC off
10
I
DDSB
STANDBY mode current
LP VReg on, LVD on, RTC on 10
LP VReg off (ext 1.8V on V18BKP), LVD on, RTC on
9
LP VReg off (ext1.8V on V18BKP), LVD off, RTC on
5
LP VReg off (ext 1.8V on V18BKP), LVD off, RTC off
1
Page 38
Electrical parameters STR71xF
38/74
Figure 11. STOP IDD vs. V
33
Figure 12. STANDBY IDD vs. V
33
Figure 13. WFI IDD vs. V
33
0
10
20
30
40
50
60
70
80
90
100
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IDDSTOP (µA)
TA=-45 t o +25°C
TA=+90°C
0
5
10
15
20
25
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IDDSTDBY (µA)
TA= -45°C TA=0°C TA= +25°C TA= +90°C
50
60
70
80
90
100
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IDDWFI (µA )
TA= -40 to +9 0°C
Page 39
STR71xF Electrical parameters
39/74
On-Chip Peripherals
Notes:
1. Data based on a differential I
DD
measurement between reset configuration and timer counter running at
16MHz. No IC/OC programmed (no I/O pads toggling).
2. Data based on a differential I
DD
measurement between the on-chip peripheral when kept under reset and
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling.
3. Data based on a differential I
DD
measurement between reset configuration and continuous A/D
conversions.
Table 16. Peripheral current consumption
Symbol Parameter Conditions Typ Unit
I
DD(PLL1)
PLL1 supply current
TA= 25°C
3.42
mA
I
DD(PLL2)
PLL2 supply current 5.81
I
DD(TIM)
TIM Timer supply current
1)
TA= 25°C, f
PCLK
=33 MHz
0.88
I
DD(BSPI)
BSPI supply current
2)
1.1
I
DD(UART)
UART supply current
2)
1.05
I
DD(I2C)
I2C supply current
2)
0.45
I
DD(ADC)
ADC supply current when converting
5)
1.89
I
DD(HDLC)
HDLC supply current
2)
1.82
I
DD(USB)
USB supply current
2)
2.08
I
DD(CAN)
CAN supply current
2)
1.11
Page 40
Electrical parameters STR71xF
40/74
2.3.2 Clock and timing characteristics
External Clock Sources
Subject to general operating conditions for V33, and TA.
Notes:
1. Data based on design simulation and/or technology characteristics, not tested in production.
Figure 14. CK External Clock Source
Table 17. CK External Clock Characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
CK
External clock source frequency
0 16.5 MHz
V
CKH
CK input pin high level voltage
0.7xV
33
V
33
V
V
CKL
CK input pin low level voltage
V
SS
0.3xV
33
t
w(CK)
t
w(CK)
CK high or low time
1)
25
ns
t
r(CK)
t
f(CK)
CK rise or fall time
1)
5
I
L
CK Input leakage current
V
SS≤VIN≤V33
±1 µA
CK
f
CLK
EXTERNAL
STR710
CLOCK SOURCE
V
CKL
V
CKH
t
r(CK)
t
f(CK)
t
w(CKH)
t
w(CKL)
I
L
90%
10%
T
CK
Page 41
STR71xF Electrical parameters
41/74
Notes:
1. Data based on design simulation and/or technology characteristics, not tested in production.
Table 18. RTCXT1 External Clock Characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
RTCXT1
External clock source frequency
0 500 kHz
V
RTCXT1H
RTCXT1 input pin high level voltage
0.7xV
33
V
33
V
V
RTCXT1L
RTCXT1 input pin low level voltage
V
SS
0.3xV
33
t
w(RTCXT1)
t
w(RTCXT1)
RTCXT1 high or low time
1)
100
ns
t
r(RTCXT1)
t
f(RTCXT1)
RTCXT1 rise or fall time
1)
5
I
L
RTCXT1 Input leakage current
VSS≤VIN≤V
33
±1 µA
Page 42
Electrical parameters STR71xF
42/74
OSC32K Crystal / Ceramic Resonator Oscillator
The STR7 RTC clock can be supplied with a 32kHz Crystal/Ceramic resonator oscillators. All the information given in this paragraph are based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
Notes:
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R
S
value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
2. t
SU(OSC32KHZ)
is the start-up time measured from the moment it is enabled (by software) to a stabilized 32kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Figure 15. Typical Application with a 32kHz Crystal
Table 19. 32K Oscillator characteristics (f
OSC32K=
32.768kHz)
Symbol Parameter Conditions Typ Unit
R
F
Feedback resistor 2.7 M
C
L1
C
L2
Recommended load capacitance versus equivalent serial resistance
of the crystal (R
S
)
1)
RS=40K
12.5 pF
i
2
RTCXT2 driving current
V
33
=3.3V
VIN=V
SS
3.2 µA
g
m
Oscillator Transconductance 8 µA/V
t
SU(OSC32KHZ)
2)
startup time
V
33
is stabilized
3s
RTCXT2
RTCXT1
f
OSC32K
C
L1
C
L2
i
2
R
F
STR710
32KHz
WHEN RESONATOR WITH INTEGRATED CAPACITORS
RESONATOR
FEEDBACK
LOOP
Page 43
STR71xF Electrical parameters
43/74
Figure 16. RTC Crystal Oscillator and Resonator
PLL Electrical Characteristics
V33 = 3.0 to 3.6V, V
33IOPLL
= 3.0 to 3.6V, TA = -40 / 85 °C unless otherwise specified.
C
L
C
L
RTCXTI
RTCXTO
R
S
RTCXTI
RTCXTO
DEVICE
DEVICE
Table 20. PLL1 Characteristics
Symbol Parameter Test Conditions
Val ue
Unit
Min Typ Max
f
PLLCLK1
PLL multiplier output clock
f
PLL1
x 24
165 MHz
f
PLL1
PLL input clock
FREF_RANGE = 0 1.5 3.0 MHz
FREF_RANGE = 1
MX[1:0]=’00’ or ‘01’
3.0 8.25 MHz
FREF_RANGE = 1
MX[1:0]=’10’ or ‘11’
3.0 6 MHz
PLL input clock duty cycle 25 75 %
f
FREE1
PLL free running frequency
FREF_RANGE = 0
MX[1:0]=’01’ or ‘11’
125 kHz
FREF_RANGE = 0
MX[1:0]=’00’ or ‘10’
250 kHz
FREF_RANGE = 1
MX[1:0]=’01’ or ‘11’
250 kHz
FREF_RANGE = 1
MX[1:0]=’00’ or ‘10’
500 kHz
t
LOCK1
PLL lock time
FREF_RANGE = 0
Stable Input Clock
Stable V
33IOPLL
, V
18
300 µs
FREF_RANGE = 1
Stable Input Clock
Stable V
33IOPLL
, V
18
600 µs
t
JITTER1
PLL jitter (peak to peak)
t
PLL
= 4 MHz, MX[1:0]=’11’ Global Output division = 32 (Output Clock = 2 MHz)
0.7 2 ns
Page 44
Electrical parameters STR71xF
44/74
Table 21. PLL2 Characteristics
Symbol Parameter Test Conditions
Val ue
Unit
Min Typ Max
f
PLLCLK2
PLL multiplier output clock
f
PLL
x 28 140 MHz
f
PLL2
PLL input clock
FREF_RANGE = 0 1.5 3.0 MHz
FREF_RANGE = 1 3.0 5 MHz
t
LOCK2
PLL lock time
FREF_RANGE = 0 Stable Input Clock Stable V
33IOPLL
, V
18
300 µs
FREF_RANGE = 1 Stable Input Clock Stable V
33IOPLL
, V
18
600 µs
t
JITTER2
PLL jitter (peak to peak)
t
PLL
= 4 MHz, MX[1:0]=’11’ Global Output division = 32 (Output Clock = 2 MHz)
0.7 2 ns
Table 22. Low-power Mode Wake-up Timing
Symbol Parameter Typ Unit
t
WULPWFI
Wake-up from LPWFI mode 26 µs
t
WUSTOP
Wake-up from STOP mode 131 µs
t
WUSTBY
Wake-up from STANDBY mode 2 µs
Page 45
STR71xF Electrical parameters
45/74
2.3.3 Memory characteristics
Flash Memory
V33 = 3.0 to 3.6V, TA = -40 to 85 °C unless otherwise specified.
Notes:
1. T
A
=45°C after 0 cycles. Guaranteed by characterization, not tested in production.
2. Guaranteed by design, not tested in production
2.3.4 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Table 23. Flash memory characteristics
Symbol Parameter Test Conditions
Val ue
Unit
Min. Typ
Max
1)
t
PW
Word Program 40 µs
t
PDW
Double Word Program 60 µs
t
PB0
Bank 0 Program (256K) Double Word Program 1.6 2.1 s
t
PB1
Bank 1 Program (16K) Double Word Program 130 170 ms
t
ES
Sector Erase (64K)
Not preprogrammed Preprogrammed
2.3
1.9
4.0
3.3
s
t
ES
Sector Erase (8K)
Not preprogrammed Preprogrammed
0.7
0.6
1.1
1.0
s
t
ES
Bank 0 Erase (256K)
Not preprogrammed Preprogrammed
8.0
6.6
13.7
11.2
s
t
ES
Bank 1 Erase (16K)
Not preprogrammed Preprogrammed
0.9
0.8
1.5
1.3
s
t
RPD
2)
Recovery when disabled 20 µs
t
PSL
2)
Program Suspend Latency 10 µs
t
ESL
2)
Erase Suspend Latency 300 µs
N
END_B0
Endurance (Bank 0 sectors)
10 kcycles
N
END_B1
Endurance (Bank 1 sectors)
100 kcycles
t
RET
Data Retention (Bank 0 and Bank 1)
T
A
=85° 20 Years
t
ESR
Erase Suspend Rate
Min time from Erase Resume to next Erase Suspend
20 ms
Page 46
Electrical parameters STR71xF
46/74
Functional EMS (Electro Magnetic Susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs).
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
DD
and
V
SS
through a 100pF capacitor, until a functional disturbance occurs. This test
conforms with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations:
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials:
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
In the case of an ARM7 CPU, in order to write robust code that can withstand all kinds of stress, such as very strong electromagnetic disturbance, it is mandatory that the Data Abort, Prefetch Abort and Undefined Instruction exceptions are managed by the application software. This will prevent the code going into an undefined state or performing any unexpected operation.
Page 47
STR71xF Electrical parameters
47/74
Electro Magnetic Interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.
Notes:
1. Not tested in production.
2. BGA and LQFP devices have similar EMI characteristics.
Absolute Maximum Ratings (Electrical Sensitivity)
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.
Electro-Static Discharge (ESD)
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard.
Table 24. EMS data
Symbol Parameter Conditions
Level/ Class
V
FESD
Voltage limits to be applied on any I/O pin to induce a functional disturbance
V
33
=3.3V, TA=+25°C, f
MCLK
=32MHz
conforms to IEC 1000-4-2
2B
V
EFTB
Fast transient voltage burst limits to be applied through 100pF on V
DD
and V
SS
pins
to induce a functional disturbance
V
33
=3.3V, TA=+25°C, f
MCLK
=32MHz
conforms to IEC 1000-4-4
4A
Table 25. EMI data
Symbol Parameter Conditions
Monitored
Frequency Band
Max vs.
[f
OSC4M/fHCLK
]
Unit
16/
48MHz
16/8MHz
S
EMI
Peak l evel
V
33
=3.3V, TA=+25°C,
LQFP64 package conforming to SAE J 1752/3
0.1MHz to 30 MHz 17 19
dBµV30 MHz to 130 MHz 17 16
130 MHz to 1GHz 11 11
SAE EMI Level 4 3 -
Page 48
Electrical parameters STR71xF
48/74
Notes:
1. Data based on characterization results, not tested in production.
Static and Dynamic Latch-Up
LU: 3 complementary static tests are required on 10 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
DLU: Electro-Static Discharges (one positive then one negative test) are applied to
each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181.
Electrical Sensitivities
Notes:
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).
Table 26. ESD Absolute Maximum ratings
Symbol Ratings Conditions
Maximum
value
1)
Unit
V
ESD(HBM)
Electro-static discharge voltage (Human Body Model)
TA=+25°C
2000
V
V
ESD(MM)
Electro-static discharge voltage (Machine Model)
200
V
ESD(CDM)
Electro-static discharge voltage (Charge Device Model)
750 on corner
pins, 500 on
others
Symbol Parameter Conditions
Class
1)
LU Static latch-up class
TA=+25°C TA=+85°C T
A
=+105°C
A A A
DLU Dynamic latch-up class
V
DD
=3.3V, f
OSC4M
=4MHz, f
MCLK
=32MHz,
TA=+25°C
A
Page 49
STR71xF Electrical parameters
49/74
2.3.5 I/O port pin characteristics
General Characteristics
Subject to general operating conditions for V33 and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.
Notes:
1. Data based on characterization results, not tested in production.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
3. When the current limitation is not possible, the V
IN
absolute maximum rating must be respected, otherwise
refer to I
INJ(PIN)
specification. A positive injection is induced by VIN>V33 while a negative injection is
induced by VIN<VSS. Refer to Section 2.2 on page 33 for more details.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. The R
PU
pull-up and RPD pull-down equivalent resistor are based on a resistive transistor (corresponding
I
PU
and IPD current characteristics described in Figure 18 to Figure 19).
Table 27. I/O static characteristics
Symbol Parameter Conditions Min
Typ
Max Unit
V
IL
Input low level voltage
1)
CMOS ports
0.3V
33
V
V
IH
Input high level voltage
1)
0.7V
33
V
hys
Schmitt trigger voltage hysteresis
2)
0.8 V
V
IL
Input low level voltage
1)
P0.15 WAKEUP
0.9 0.8 V
V
IH
Input high level voltage
1)
21.35
V
hys
Schmitt trigger voltage hysteresis
2)
0.4 V
V
IL
Input low level voltage
1)
TTL ports
0.8 V
V
IH
Input high level voltage
1)
2.0
I
INJ(PIN)
Injected Current on any I/O pin ± 4
mA
ΣI
INJ(PIN)
3)
Total injected current (sum of all
I/O and control pins)
± 25
I
lkg
Input leakage current
4)
V
SS≤VIN≤V33
±1 µA
R
PU
Weak pull-up equivalent
resistor
5)
V
IN=VSS
110 150 700 k
R
PD
Weak pull-down equivalent
resistor
5)
V
IN=V33
110 150 700 k
C
IO
I/O pin capacitance 5 pF
Page 50
Electrical parameters STR71xF
50/74
Figure 17. RPU vs. V33 with VIN=V
SS
Figure 18. IPU vs. V33 with VIN=V
SS
-250.0
-200.0
-150.0
-100.0
-50.0
0.0
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
RPU (kohm)
TA= -45°C TA=0°C TA=+25°C TA=+90°C
-30
-25
-20
-15
-10
-5
0
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IPU (µA)
TA=-45°C TA=0°C TA=+25°C TA=+90°C
Figure 19. RPD vs. V33 with VIN=V
33
Figure 20. IPD vs. V33 with VIN=V
33
0.0
50.0
100.0
150.0
200.0
250.0
300.0
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
RPD (kohm)
TA=-45°C TA=0°C TA=+25°C TA=+90°C
0
5
10
15
20
25
30
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IPD (µA)
TA= -45°C TA=0°C TA=+25°C TA=+90°C
Page 51
STR71xF Electrical parameters
51/74
Output Driving Current
Subject to general operating conditions for V
33
and TA unless otherwise specified.
Notes:
1. The I
IO
current sunk must always respect the absolute maximum rating specified in Table 10 and the sum
of I
IO
(I/O ports and control pins) must not exceed I
VSS
.
2. The I
IO
current sourced must always respect the absolute maximum rating specified in Table 10 and the
sum of IIO (I/O ports and control pins) must not exceed I
V33
.
Table 28. Output driving current
I/O
Type
Symbol Parameter Conditions Min Max Unit
Standard
V
OL
1)
Output low level voltage for an I/O pin when 8 pins are sunk at same time (see Figure 21)
I
IO
=+4mA
0.4
V
V
OH
2)
Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 21 and Figure 23)
I
IO
=-4mA V33-0.8
High Current
V
OL
1)
Output low level voltage for an I/O pin when 8 pins are sunk at same time (see Figure 21)
I
IO
=+8mA
0.4
V
OH
2)
Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 21 and Figure 23)
I
IO
=-8mA V33-0.8
Page 52
Electrical parameters STR71xF
52/74
Figure 21. Typical VOL and V
OH
at V33=3.3V (High current ports)
3.01
3.02
3.03
3.04
3.05
3.06
3.07
3.08
3.09
-4 -8
Iio(mA)
VOH(V)
TA=-45°C TA=0°C TA=+25°C TA=+90°C
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
-4 -8
Iol (mA)
VOL(V)
TA=-45°C TA=0°C TA=+25°C TA=+90°C
Page 53
STR71xF Electrical parameters
53/74
Figure 22. Typical VOL vs. V33
Figure 23. Typical V
OH
vs. V
33
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
VOL (V) I io=4m A
TA=-45°C TA=0°C TA=+25°C TA=+90°C
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
VOL(V) I io=8m A
TA=-45°C TA=0°C TA=+25°C TA=+90°C
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
VOH (V) Iio= 4mA
TA=-45°C TA=0°C TA=+25°C TA=+90°C
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
VOH(V) Iio=8mA
TA=-45°C TA=0°C TA=+25°C TA=+90°C
Page 54
Electrical parameters STR71xF
54/74
RSTIN Pin
The RSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as as R
PU
(seeTable 27 on page 49)
Subject to general operating conditions for V
33
and TA unless otherwise specified.
Notes:
1. Data based on characterization results, not tested in production.
2) Data guaranteed by design, not tested in production.
Figure 24. Recommended RSTIN pin protection.
1)
Notes:
1. The R
PU
pull-up equivalent resistor is based on a resistive transistor (corresponding I
PU
current
characteristics described in Figure 18).
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the RSTIN
pin can go below the V
IL(RSTINn)
max. level specified in
Table 29. Otherwise the reset will not be taken into account internally.
2.3.6 TIM timer characteristics
Subject to general operating conditions for V33, f
MCLK
, and TA unless otherwise
specified.
Refer to Section 2.3.5: I/O port pin characteristics on page 49 for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...).
Table 29. RESET pin characteristics
Symbol Parameter Conditions Min
Typ
1)
Max Unit
V
IL(RSTINn)
RSTIN Input low level voltage
1)
0.8 V
V
IH(RSTINn)
RSTIN Input high level voltage
1)
2
V
F(RSTINn)
RSTIN Input filtered pulse
2)
500 ns
V
NF(RSTINn)
RSTIN Input not filtered pulse
2)
1.2 µs
0.01µF
V
33
0.01µF
EXTERNAL
RESET
CIRCUIT
4.7k
Required
Recommended
STR7X
Filter
R
PU
V
33
INTERNAL RESET
V
33
RSTIN
Table 30. TIM characteristics
Symbol Parameter Conditions Min Typ Max Unit
t
w(ICAP)in
Input capture pulse time 2
t
CK_TIM
Page 55
STR71xF Electrical parameters
55/74
2.3.7 EMI - Memory Interface
Subject to general operating conditions for VDD, f
HCLK
, and TA unless otherwise specified.
The tables below use a variable which is derived from the EMI_BCONn registers (described in the STR71x Reference Manual) and represents the special characteristics of the programmed memory cycle.
t
res(TIM)
Timer resolution time
1
t
PCLK2
f
PCLK2
= 30MHz
33.3
ns
f
EXT
Timer external clock frequency
f
CK_TIM(MAX)
=
f
MCLK
0
f
CK_TIM
/4
MHz
f
CK_TIM
= f
MCLK
=
60MHz
015MHz
Res
TIM
Timer resolution 16 bit
t
COUNTER
16-bit Counter clock period when internal clock is selected
1 65536
t
PCLK
f
PCLK2
= 30MHz
0.033 2184 µs
T
MAX_COUNT
Maximum Possible Count
65536x
65536
t
PCLK
f
PCLK2
= 30MHz
143.1 s
Table 30. TIM characteristics
Symbol Parameter Conditions Min Typ Max Unit
Table 31. EMI general characteristics
Symbol Parameter Value
t
MCLK
CPU clock period 1 / f
MCLK
t
C
Memory cycle time wait states t
MCLK
x (1 + [C_LENGTH])
Page 56
Electrical parameters STR71xF
56/74
See Figure 25, Figure 26, Figure 27 and Figure 28 for related timing diagrams.
1. Data based on characterisation results, not tested in production.
See Figure 29, Figure 30, Figure 31 and Figure 32 for related timing diagrams.
1. Data based on characterisation results, not tested in production.
Table 32. EMI Read Operation
Symbol Parameter Test Conditions
Val ue
Unit
Min
1)
Typ
Max
1)
t
RCR
Read to CSn Removal Time
MCLK=50 MHz
4 wait states
50 pf load on all pins
19 t
MCLK
21
ns
t
RP
Read Pulse Time 98
t
C
100 ns
t
RDS
Read Data Setup Time 22 ns
t
RDH
Read Data Hold Time 0 ns
t
RAS
Read Address Setup Time 27
1.5*t
M
CLK
33 ns
t
RAH
Read Address Hold Time 0.65 2 ns
t
RAT
Read Address Turnaround
Time
1.9 3.25 ns
t
RRT
RDn Turnaround Time 20
t
MCLK
21 ns
Table 33. EMI Write Operation
Symbol Parameter Test Conditions
Value
Unit
Min
1)
Typ
Max
1)
t
WCR
WEn to CSn Removal Time
MCLK=50 MHz
3 wait states
50 pf load on all pins
20
t
MCLK
22.5 ns
t
WP
Write Pulse Time 77.5
t
C
80 ns
t
WDS1
Write Data Setup Time 1 97
t
C
+
t
MCLK
100 ns
t
WDS2
Write Data Setup Time 2 77
t
C
80 ns
t
WDH
Write Data Hold Time 20
t
MCLK
23 ns
t
WAS
Write Address Setup Time 27
1.5*t
MCLK
33 ns
t
WAH
Write Address Hold Time 0.6 3 ns
t
WAT
Write Address Turnaround
Time
1.75 4.1 ns
t
WWT
WEn Turnaround Time 20
t
MCLK
23 ns
Page 57
STR71xF Electrical parameters
57/74
Figure 25. Read Cycle Timing: 16-bit READ on 16-bit Memory
Figure 26. Read Cycle Timing: 32-bit READ on 16-bit Memory
See Ta bl e 32 for read timing data.
Figure 27. Read Cycle Timing: 16-bit READ on 8-bit Memory
CSn.x
WEn.x
A[23:0]
D[15:0]
RDn
(Input)
Address
Data Input
t
RDStRDH
t
RCR
t
RAS
t
RAH
t
RP
CSn.x
WEn.x
A[23:0]
D[15:0]
RDn
(Input)
Address
Data Input
t
RDStRDH
t
RCR
t
RAS
t
RAH
Data Input
t
RDStRDH
t
RRT
t
RAH
Address
t
RAT
t
RP
t
RP
CSn.x
WEn.x
A[23:0]
D[7:0]
RDn
(Input)
Address
Data Input
t
RDStRDH
t
RCR
t
RAS
t
RAH
Data Input
t
RDStRDH
t
RRT
t
RAH
Address
t
RAT
t
RP
t
RP
Page 58
Electrical parameters STR71xF
58/74
Figure 28. Read Cycle Timing: 32-bit READ on 8-bit Memory
See Ta bl e 32 for read timing data.
Figure 29. Write Cycle Timing: 16-bit WRITE on 16-bit Memory
Figure 30. Write Cycle Timing: 32-bit WRITE on 16-bit Memory
See Ta b le 41 for write timing data.
CSn.x
WEn.x
A[23:0]
D[7:0]
RDn
(Input)
Address
Data Input
t
RDStRDH
t
RCR
t
RAS
t
RAH
Data Input
t
RDStRDH
t
RRT
t
RAH
Address
t
RAT
t
RP
t
RP
t
RRT
t
RAH
Address
t
RAT
t
RP
Data Input
t
RDStRDH
t
RRT
t
RAH
Address
t
RAT
t
RP
Data Input
t
RDStRDH
CSn.x
WEn.x
A[23:0]
D[15:0]
RDn
(Output)
Address
Data Output
t
WDH
t
WCR
t
WAS
t
WDS1
t
WAH
t
WP
CSn.x
WEn.x
A[23:0]
D[15:0]
RDn
(Output)
address
Data Output
t
WDS1tWDH
t
WCR
t
WAS
t
WAH
t
WP
Data Output
t
WDS2tWDH
t
WWT
t
WAH
address
t
WAT
t
WP
Page 59
STR71xF Electrical parameters
59/74
Figure 31. Write Cycle Timing: 16-bit WRITE on 8-bit Memory
Figure 32. Write Cycle Timing: 32-bit WRITE on 8-bit Memory
See Ta bl e 33 for write timing data.
CSn.x
WEn.x
A[23:0]
D[7:0]
RDn
(Output)
address
Data Output
t
WDS1tWDH
t
WCR
t
WAS
t
WAH
t
WP
Data Output
t
WDS2tWDH
t
WWT
t
WAH
address
t
WAT
t
WP
CSn.x
WEn.x
A[23:0]
D[7:0]
RDn
(Output)
address
Data Output
t
WDS1tWDH
t
WCR
t
WAS
t
WAH
t
WP
Data Output
t
WDS2tWDH
t
WWT
t
WAH
address
t
WAT
t
WP
t
WWT
t
WAH
address
t
WAT
t
WP
Data Output
t
WDS2tWDH
t
WWT
t
WAH
address
t
WAT
t
WP
Data Output
t
WDS2tWDH
Page 60
Electrical parameters STR71xF
60/74
2.3.8 Communications interfaces
I2C - Inter IC Control Interface
Subject to general operating conditions for V33,
f
PCLK1
, and TA unless otherwise specified.
The STR7 I
2
C interface meets the requirements of the Standard I2C communication
protocol described in the following table with the restriction mentioned below:
Note:
Restriction: The I/O pins which SDA and SCL are mapped to are not “True” Open-Drain: when configured as open-drain, the PMOS connected between the I/O pin and V
33
is
disabled, but it is still present. Also, there is a protection diode between
the I/O pin and V
33
.
Consequently, when using this I
2
C in a multi-master network, it is not possible to power off
the STR7X while some another I
2
C master node remains powered on: otherwise, the
STR7X will be powered by the protection diode.
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).
Notes:
1. Data based on standard I
2
C protocol requirement, not tested in production.
2. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.
3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low
Table 34. I2C Characteristics
Symbol Parameter
Standard mode
I
2
C
Fast mode I
2C5)
Unit
Min
1)
Max
1)
Min
1)
Max
1)
t
w(SCLL)
SCL clock low time 4.7 1.3
µs
t
w(SCLH)
SCL clock high time 4.0 0.6
t
su(SDA)
SDA setup time 250 100
ns
t
h(SDA)
SDA data hold time
0
3)
0
2)
900
3)
t
r(SDA)
t
r(SCL)
SDA and SCL rise time 1000
20+0.1C
b
300
t
f(SDA)
t
f(SCL)
SDA and SCL fall time 300
20+0.1C
b
300
t
h(STA)
START condition hold time 4.0 0.6
µs
t
su(STA)
Repeated START condition setup time
4.7 0.6
t
su(STO)
STOP condition setup time 4.0 0.6 µs
t
w(STO:STA)
STOP to START condition time (bus free)
4.7 1.3 µs
C
b
Capacitive load for each bus line 400 400 pF
Page 61
STR71xF Electrical parameters
61/74
period of SCL signal.
4. Measurement points are done at CMOS levels: 0.3xV
DD
and 0.7xVDD.
5. f
PCLK1
, must be at least 8MHz to achieve max fast I2C speed (400kHz).
6. The following table gives the values to be written in the I2CCCR register to obtain the required I
2
C SCL line
frequency.
Figure 33.
Typical Application with I
2
C Bus and Timing Diagram
4)
Legend:
R
P
= External pull-up resistance
f
SCL
= I2C speed
NA = Not achievable
Note: For speeds around 200 kHz, achieved speed can have ±5% tolerance
For other speed ranges, achieved speed can have
±
2% tolerance
The above variations depend on the accuracy of the external components used.
USB Characteristics
The USB interface is USB-IF certified (Low Speed and Full Speed).
Table 35. SCL Frequency Table (
f
PCLK1
=8 MHz.,V33 = 3.3 V)
f
SCL
(kHz)
I2CCCR Value
R
P
=4.7k
400 83
300 85h
200 8Ah
100 24h
50 4Ch
20 C4h
REPEATED START
START
STOP
START
t
f(SDA)
t
r(SDA)
t
su(SDA)th(SDA)
t
f(SCK)
t
r(SCK)
t
w(SCKL)
t
w(SCKH)
t
h(STA)
t
su(STO)
t
su(STA)tw(STO:STA)
SDA
SCL
4.7k SDA
STR7
SCL
V
DD
100
100
V
DD
4.7k
I2CBUS
Page 62
Electrical parameters STR71xF
62/74
2.3.9 ADC characteristics
Subject to general operating conditions for AVDD, f
PCLK2
, and TA unless otherwise specified.
Notes:
1. Unless otherwise specified, typical data are based on T
A
=25°C and AVDD-AVSS=3.3V. They are given only
as design guidelines and are not tested.
2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10k
). Data based on characterization results, not tested in production.
3. Calibration is needed once after each power-up.
Table 36. ADC characteristics
Symbol Parameter Conditions Min
Typ
1)
Max Unit
f
MOD
Modulator Oversampling frequency
2.1 MHz
V
AIN
Conversion voltage range
2)3)
02.5V
I
lkg
Negative input leakage current on analog pins
V
IN<VSS,
| I
IN
|<
400µA on adjacent analog pin
56µA
PBR Passband Ripple 0.1 dB
SINAD S/N and Distortion 56 63 dB
THD Total Harmonic Distortion 60 74 dB
Z
IN
Input Impedance f
MOD
= 2 MHz 1 M
C
ADC
Internal sample and hold capacitor 3.2 pF
t
CONV
Total Conversion time (including sampling time)
4096/
f
MOD
(max)
I
ADC
Normal mode
T
A
= 27 °C
2.5 3.0 mA
Standby mode
T
A
= 27 °C
1 µA
Page 63
STR71xF Electrical parameters
63/74
1. Data based on characterisation, not tested in production. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non­robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. The effect of negative injection current on robust pins is specified in Section 2.3.5. Any positive injection current within the limits specified for I
INJ(PIN)
and ΣI
INJ(PIN)
in Section 2.3.5 does not
affect the ADC accuracy.
Table 37. ADC Accuracy with f
PCLK2
= 20MHz, f
ADC
=10MHz, AVDD=3.3V
Symbol Parameter Conditions Min Typ Max Unit
ADC_DATA(0V)
Converted code when AIN=0V
1)
2370 2565
Dec-
imal
code
ADC_DATA(2.5V)
Converted code when AIN=2.5V
1)
1480 1680
VCM
Center voltage of Sigma-Delta
Modulator
1)
1.23 1.25 1.30 V
TUE Total unadjusted error
In this type of ADC, calibration is necessary to correct gain error and offset errors. Once calibrated, the TUE is limited to the ILE.
|E
D
|
Differential linearity error
1)
1.96 2.19 LSB
|E
L
|
Integral linearity error
1)
2.36 3.95
Page 64
Electrical parameters STR71xF
64/74
Figure 34. ADC Accuracy Characteristics
Analog Power Supply and Reference Pins
The AVDD and AV
SS
pins are the analog power supply of the A/D converter cell. They act as
the high and low reference voltages for the conversion.
Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see: General PCB Design
Guidelines).
General PCB Design Guidelines
To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.
Use separate digital and analog planes. The analog ground plane should be connected
to the digital ground plane via a single point on the PCB.
Filter power to the analog power planes. It is recommended to connect capacitors, with
good high frequency characteristics, between the power and ground lines,
placing
1LSB
IDEAL
1LSB
IDEAL
AVDD AVSS
4095
------------------------------------------------=
V
AIN
(LSB
IDEAL
)
(1) Example of an actual transfer cur ve (2) The ideal transfer curve (3) End point correlation line
ED=Differential Linearity Error: maximum deviation between actual steps and the
ideal one.
EL=Integral Linearity Error: maximum deviation between any actual transition and
the end point correlation line.
Digital Result ADC_DATA Register
4095
4094
4093
5
4
3
2
1
0
123
4093 40944095
(1)
(2)
E
D
E
L
(3)
AV
DD
AV
SS
ADC_DATA(0V)
ADC_DATA(2.5V)
VCM
3100 31013102 3103
Out of range
1633
Page 65
STR71xF Electrical parameters
65/74
0.1µF and optionally, if needed 10pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10µF capacitor close to the power source (see Figure 35).
The analog and digital power supplies should be connected in a star network. Do not
use a resistor, as AV
DD
is used as a reference voltage by the A/D converter and any
resistance would cause a voltage drop and a loss of accuracy.
Properly place components and route the signal traces on the PCB to shield the analog
inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.
Software Filtering of Spurious Conversion Results
For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.
Figure 35. Power Supply Filtering
V
SS
V
33
0.1µF
V
33
STR710
AV
DD
AV
SS
POWER SUPPLY SOURCE
STR7 DIGITAL NOISE FILTERING
EXTERNAL NOISE FILTERING
1 to 10µF
0.1µF
(3.3V)
Page 66
Package characteristics STR71xF
66/74
3 Package characteristics
3.1 Package Mechanical Data
Figure 36. 64-Pin Low Profile Quad Flat Package (10x10)
1
Dim.
mm inches
Min Typ Max Min Typ Max
A 1.60 0.063
A1 0.05 0.15 0.002 0.006
A2 1.35 1.40 1.45 0.053 0.055 0.057
b 0.17 0.22 0.27 0.007 0.009 0.011
c 0.09 0.20 0.004 0.008
D 12.00 0.472
D1 10.00 0.394
E 12.00 0.472
E1 10.00 0.394
e 0.50 0.020
θ 0° 3.5° 7° 0° 3.5° 7°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
Number of Pins
N 64
A
A2
A1
c
h
L1
L
E
E1
D
D1
e
b
Recommended footprint (dimensions in mm)
Page 67
STR71xF Package characteristics
67/74
Figure 37. 144-Pin Low profile Quad Flat Package
Dim.
mm inches
(1)
1.Values in inches are converted from mm and rounded to 3 decimal digits.
Min Typ Max Min Typ Max
A 1.60 0.063
A1 0.05 0.15 0.002 0.006
A2 1.35 1.40 1.45 0.053 0.057
b 0.17 0.22 0.27 0.007 0.011
c 0.09 0.20 0.004 0.008
D 21.80 22.00 22.20 0.858 0.867 0.874
D1 19.80 20.00 20.20 0.780 0.787 0.795
D3 17.50 0.689
E 21.80 22.00 22.20 0.858 0.867 0.874
E1 19.80 20.00 20.20 0.780 0.787 0.795
E3 17.50 0.689
e 0.50 0.020
K 0° 3.5° 7° 0° 3.5° 7°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
Number of Pins
N 144
Jedec Ref. MS-026-BFB
A A2
A1
b
c
36
37
72
73108
109
144
E1
E
D1
D
1
h
b
L
L1
Seating Plane
0.08 mm .003 in.
e
E3
D3
Recommended footprint (dimensions in mm)
Page 68
Package characteristics STR71xF
68/74
Figure 38. 64-Low Profile Fine Pitch Ball Grid Array Package
Figure 39. 144-Low Profile Fine Pitch Ball Grid Array Package
Figure 40. Recommended PCB Design rules (0.80/0.75mm pitch BGA)
Dim.
mm inches
Min Typ Max Min Typ Max
A 1.210 1.700 0.048 0.067
A1 0.270 0.011
A2 1.120 0.044
b 0.450 0.500 0.550 0.018 0.020 0.022
D 7.750 8.000 8.150 0.305 0.315 0.321
D1 5.600 0.220
E 7.750 8.000 8.150 0.305 0.315 0.321
E1 5.600 0.220
e 0.720 0.800 0.880 0.028 0.031 0.035
f 1.050 1.200 1.350 0.041 0.047 0.053
ddd 0.120 0.005
Number of Pins
N 64
Dim.
mm inches
Min Typ Max Min Typ Max
A 1.21 1.70 0.048 0.067
A1 0.21 0.008
A2 1.085 0.043
b 0.35 0.40 0.45 0.014 0.016 0.018
D 9.85 10.00 10.15 0.388 0.394 0.400
D1 8.80 0.346
E 9.85 10.00 10.15 0.388 0.394 0.400
E1 8.80 0.346
e 0.80 0.031
F 0.60 0.024
ddd 0.10 0.004
eee 0.15 0.006
fff 0.08 0.003
Number of Pins
N 144
Dpad
Dsm
Dpad 0.37 mm
Dsm
0.52 mm typ. (depends on solder
mask registration tolerance Solder paste 0.37 mm aperture diameter – Non solder mask defined pads are recommended
– 4 to 6 mils screen print
Page 69
STR71xF Package characteristics
69/74
3.2 Thermal characteristics
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation:
T
J
= TA + (PD x ΘJA) (1)
Where:
T
A
is the Ambient Temperature in °C,
Θ
JA
is the Package Junction-to-Ambient Thermal Resistance, in °C/W,
P
D
is the sum of P
INT
and P
I/O (PD
= P
INT
+ P
I/O
),
P
INT
is the product of I
DD
and VDD, expressed in Watts. This is the Chip Internal Power.
P
I/O
represents the Power Dissipation on Input and Output Pins;
Most of the time for the application P
I/O< PINT
and can be neglected. On the other hand, P
I/O
may be significant if the device is configured to drive continuously external modules and/or memories.
An approximate relationship between P
D
and TJ (if P
I/O
is neglected) is given by:
P
D
= K / (TJ + 273°C) (2)
Therefore (solving equations 1 and 2):
K = P
D
x (TA + 273°C) + ΘJA x P
D
2
(3)
where:
K is a constant for the particular part, which may be determined from equation (3) by measuring P
D
(at equilibrium) for a known TA. Using this value of K, the values of PD and TJ
may be obtained by solving equations (1) and (2) iteratively for any value of T
A
.
Table 38. Thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal Resistance Junction-Ambient LQFP 144 - 20 x 20 mm / 0.5 mm pitch
42 °C/W
Θ
JA
Thermal Resistance Junction-Ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch
45 °C/W
Θ
JA
Thermal Resistance Junction-Ambient LFBGA 64 - 8 x 8 x 1.7mm
58 °C/W
Θ
JA
Thermal Resistance Junction-Ambient LFBGA 144 - 10 x 10 x 1.7mm
50 °C/W
Page 70
Product history STR71xF
70/74
4 Product history
There are two versions of the STR710F series products. The two versions are functionally identical and differ only with the points listed below.
Version "A" was the first version produced and delivered. The second version, version "Z", is currently being phased into production and will replace version "A".
Version "Z" has lower power consumption in STOP mode.
Marking
The difference between the two versions is visible on the marking of the product, with the version letter on top of the part number. This version letter is visible in Figure 41 shows a TQFP144 "A" STR710 and a TQFP64 "Z" STR712
Figure 41. Version Marking
Table 39. A and Z version differences
Feature A version Z version
ARM7TDMI core device Identification (ID) code register (see ARM7TDMI Technical Reference Manual)
Version bits [31:28] = 0001 Version bits [31:28] = 0010
Low power mode consumption in STOP mode at 25 °C
Not guaranteed Typical 49 µA
50 µA maximum at 25°C. Less than 30 µA at 25 °C for
99.730020% of parts
STR710FZ2T6
2208JVG MLT225571
STR712FR2
2208JVG MLT225571
T6
Z
A
Page 71
STR71xF Order codes
71/74
5 Order codes
Table 40. Order Codes
Partnumber
FLASH Kbytes
RAM
KbytesEMI USB CAN
I/O
Ports
Package
Tem p. Range
STR710FZ1T6 128+16 32
Yes Yes Yes 48 LQFP144 20 x 20
-40 to
+85°C
STR710FZ2T6 256+16 64
STR710RZT6 0 64
STR710FZ1H6 128+16 32
Ye s Ye s Ye s 4 8
LFBGA144 10 x 10
1.7
STR710FZ2H6 256+16 64
STR710RZH6 0 64
STR711FR0H6 64+16 16
No
Ye s N o 3 0
LFBGA64 8 x 8 1.7STR711FR1H6 128+16 32
STR711FR2H6 256+16 64
STR711FR0T6 64+16 16
LQFP64 10x10STR711FR1T6 128+16 32
STR711FR2T6 256+16 64
STR712FR0H6 64+16 16
No
Ye s
32
LFBGA64 8 x 8 1.7STR712FR1H6 128+16 32
STR712FR2H6 256+16 64
STR712FR0T6 64+16 16
LQFP64 10 x10STR712FR1T6 128+16 32
STR712FR2T6 256+16 64
STR715FR0H6 64+16 16
No
LFBGA64 8 x 8 1.7
STR715FR0T6 64+16 16 LQFP64 10 x 10
Page 72
Revision history STR71xF
72/74
6 Revision history
Table 41. Document revision history
Date Revision Changes
17-Mar-2004 1 First Release
05-Apr-2004 2 Updated “Electrical parameters” on page 32
08-Apr-2004 2.1 Corrected STR712F Pinout. Pins 43/42 swapped.
15-Apr-2004 2.2 PDF hyperlinks corrected.
7-Jul-2004 3
Corrected description of STDBY, V18, VSS18 V18BKP VSSBKP pins
Added IDDrun typical data Updated BSPI max. baudrate. Updated “EMI - Memory Interface” on page 55
29-Oct-2004 4
Corrected Flash sector B1F0/F1 address in Figure 6: Memory
Map on page 29
Corrected Table 6 on page 23 LQFP64 TEST pin is 16 instead of 17. Added to TQPFP64 column: pin 7 BOOTEN, pin 17 V
33IO-PLL
Changed description of JTCK from ‘External pull-down required’ to ‘External pull-up or pull down required’.
25-Jan-2005 5
Changed “Product Preview” to “Preliminary Data” on page 1 and 3
Renamed ‘PU/PD’ column to ‘Reset state’ in Table 6 on
page 23
Added reference to STR7 Flash Programming Reference Manual
19-Apr-2005 6
Added STR715F devices and modified RAM size of STR71xF1 devices
Added BGA package in Section 3 Updated ordering information in Section 5. Added PLL duty cycle min and max. in PLL Electrical
Characteristics on page 43
13-Oct-2005 7
Updated feature description on page 1 Update overview Section 1.1 Added OD/PP to P0.12 in Ta bl e 6 Changed name of WFI mode to WAIT mode Changed Memory Map Ta b l e 6 : Ext. Memory changed to 64 MB
and flash register changed to 36 bytes. Added Power Consumption Tab l e 1 4 Modified BGA144 F3, F5, F12 and G12 in Ta b l e 2 and Ta bl e 3 Update EMI Timing Ta bl e 2 5 and Figure 29
Page 73
STR71xF Revision history
73/74
22-May-2006 8
Added Flashless device. Changed reset state of pins P1.10 and P1.13 from pu to pd,
P0.15 from pu to floating and removed x in interrupt column for P1.15 and P1.12 in Ta b le 3 and Ta bl e 6
Added notes under Ta b le 3 on EMI pin reset state. Corrected inch value for d3 in Figure 37 Added footprint diagrams in Figure 37 and Figure 39 Updated Section 2: Electrical parameters
1-Aug-2006 9
Flash data retention changed to 20 years at 85° C. Changed note 8 on page 19 Changed note 1 on page 45
Table 41. Document revision history
Date Revision Changes
Page 74
STR71xF
74/74
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Loading...