®
MAIN PRODUCT CHARACTERISTICS
I
F(AV)
V
RRM
2x40A
60 V
Tj (max) 150 °C
V
(max) 0.56V
F
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
■
NEGLIGIBLE SWITCHING LOSSES
■
EXTREMELY FAST SWITCHING
■
LOW FORWARD VOLTAGE DROP
■
LOW THERMAL RESISTANCE
■
AVALANCHE CAPABILITY SPECIFIED
■
DESCRIPTION
STPS80L60CY
POWER SCHOTTKY RECTIFIER
A1
K
A2
A2
K
A1
Dual center tap Schottky rectifier suited for CAD
computers and servers.
Packaged in Max247, STPS80L60CY is intended
Max247
for use in low voltage, high frequency switching
power supplies, free wheeling and polarity
protection applications.
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
P
ARM
T
stg
Repetitive peak reverse voltage 60 V
RMS forward current 56 A
Average forward current Tc = 130°C
δ = 0.5
Per diode
Per device
40
80
Surge non repetitive forward current tp = 10 ms sinusoidal 400 A
Repetitive peak reverse current tp=2µssquare F = 1kHz 2 A
Repetitive peak avalanche power tp = 1µs Tj = 25°C 20000 W
Storage temperature range - 55 to + 150 °C
Tj Maximum operating junction temperature * 150 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
A
dPtot
*:
<
dTj Rth j a
July 2003 - Ed: 4A
thermal runaway condition for a diode on its own heatsink
−1()
1/4
STPS80L60CY
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-c)
R
th (c)
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests conditions Min. Typ. Max. Unit
I
R
V
Pulse test : * tp = 380 µs, δ <2%
To evaluate the maximum conduction losses use the following equation :
P=0.36xI
Fig.1: Conduction lossesversus average current.
Junction to case Per diode 0.70 °C/W
Total 0.50
Coupling 0.3
(Per diode) + P(diode 2) x R
th(j-c)
* Reverse leakage current Tj= 25°C VR=V
th(c)
RRM
Tj = 125°C 0.4 0.9 A
* Forward voltage drop Tj = 25°CI
F
= 40 A 0.57 V
F
Tj = 125°C 0.50 0.56
Tj=25°CI
= 80 A 0.78
F
Tj = 125°C 0.69 0.77
+ 0.005 x I
F(AV)
F2(RMS)
Fig. 2: Average forward current versus ambient
temperature (δ = 0.5).
1.8 mA
P(W)
35
30
25
20
15
10
5
0
0 1020304050
δ = 0.05
δ = 0.2
δ = 0.1
IF(av)(A)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
IF(av)(A)
45
40
35
30
25
20
15
10
5
0
0 25 50 75 100 125 150
Rth(j-a)=Rth(j-c)
Rth(j-a)=5°C/W
Tamb(°C)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
2/4