STPS640C
Power Schottky rectifier
Main product characteristics
I
F(AV)
V
RRM
T
(max) 150° C
j
(max) 0.57 V
V
F
2 x 3 A
40 V
Features and benefits
■ Very small conduction losses
■ Negligible switching losses
■ Extremely fast switching
■ Low forward drop voltage
■ Low capacitance
■ Low thermal resistance
■ Insulated package: TO-220FPAB
Insulating voltage = 2000 V DC
Capacitance = 12 pF
■ Avalanche capability specified
A1
K
A2
K
A2
A1
DPAK
STPS640CB
TO-220AB
STPS640CT
A2
K
A1
A1
A2
K
TO-220FPAB
STPS640CFP
Description
Dual Schottky rectifier suited to Switch Mode
Power Supplies and other Power Converters.
This device is intended for use in low and medium
voltage operation, and particulary, in high
frequency circuitries where low switching losses
are required (free wheeling and polarity
protection).
March 2007 Rev 7 1/9
www.st.com
9
Characteristics STPS640C
1 Characteristics
Table 1. Absolute ratings (limiting values, per diode)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
I
P
T
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
Table 2. Thermal resistances
Symbol Parameter Value Unit
Repetitive peak reverse voltage 40 V
RRM
RMS forward voltage
Average forward current δ = 0.5
Surge non repetitive forward
FSM
current
Repetitive peak reverse current tp = 2 µs square F = 1 kHz 1 A
RRM
Repetitive peak avalanche power tp = 1 µs Tj = 25° C 1300 W
ARM
Storage temperature range -65 to + 150 ° C
stg
Maximum operating junction temperature 150 ° C
T
j
TO-220AB /TO-220FPAB 10
DPAK 6
TO-220AB T
DPAK T
= 10 ms Sinusoidal 75 A
t
p
= 135° C
c
= 130° C
c
= 120° C
c
A
3ATO-220FPAB T
R
th (j-c)
R
Junction to case
Coupling
)
th(c
TO-220AB / DPAK
TO-220FPAB
Per diode
To t al
Per diode
To t al
TO-220AB 0.5
TO-220FPAB 3
5.5
3
5.5
5.2
°C/W
°C/W
When the diodes 1 and 2 are used simultaneously :
ΔTj(diode 1) = P(diode1) x R
Table 3. Static electrical characteristics (per diode)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
(1)
I
V
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
R
(1)
Forward voltage drop
F
(Per diode) + P(diode 2) x R
th(j-c)
= 25° C
T
j
= 125° C 2 10 mA
T
j
V
Tj = 25° C IF = 3 A 0.63
= 25° C IF = 6 A 0.84
T
j
= 125° C IF = 3 A 0.5 0.57
T
j
= 125° C IF = 6 A 0.67 0.72
T
j
R
= V
th(c)
100 µA
RRM
To evaluate the conduction losses use the following equation:
P = 0.42 x I
F(AV)
+ 0.050 I
F2(RMS)
V
2/9
STPS640 Characteristics
Figure 1. Average forward power
dissipation versus average
forward current (per diode)
P (W)
F(AV)
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak forward
current versus overload duration.
(Maximum values, per diode)
(TO-220AB / DPAK)
Figure 2. Average forward current versus
ambient temperature
(
δ = 0.5, per diode)
I (A)
F(AV)
4.0
3.5
3.0
2.5
2.0
1.5
δ
=tp/T
T
tp
1.0
0.5
0.0
0 25 50 75 100 125 150
R=R
th(j-a) th(j-c)
T (°C)
amb
TO-220FPAB
R =15°C/W
th(j-a)
TO-220AB / DPAK
Figure 4. Normalized avalanche power
derating versus junction
temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 6. Non repetitive surge peak forward
current versus overload duration.
(Maximum values, per diode)
(TO-220FPAB)
I (A)
M
45
40
35
30
25
20
15
10
IM
5
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
T =75°C
C
T =100°C
C
T =135°C
C
I (A)
M
40
35
30
25
20
15
10
IM
5
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
T =75°C
C
T =100°C
C
T =130°C
C
3/9