ST STPS640C User Manual

STPS640C

Power Schottky rectifier

Main product characteristics
I
F(AV)
V
RRM
T
(max) 150° C
j
(max) 0.57 V
V
F
2 x 3 A
40 V
Features and benefits
Very small conduction losses
Extremely fast switching
Low forward drop voltage
Low capacitance
Low thermal resistance
Insulated package: TO-220FPAB
Insulating voltage = 2000 V DC Capacitance = 12 pF
Avalanche capability specified
A1
K
A2
K
A2
A1
DPAK
STPS640CB
TO-220AB
STPS640CT
A2
K
A1
A1
A2
K
TO-220FPAB
STPS640CFP
Description
Dual Schottky rectifier suited to Switch Mode Power Supplies and other Power Converters.
This device is intended for use in low and medium voltage operation, and particulary, in high frequency circuitries where low switching losses are required (free wheeling and polarity protection).
March 2007 Rev 7 1/9
www.st.com
9
Characteristics STPS640C

1 Characteristics

Table 1. Absolute ratings (limiting values, per diode)

Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
I
P
T
dV/dt Critical rate of rise of reverse voltage 10000 V/µs

Table 2. Thermal resistances

Symbol Parameter Value Unit
Repetitive peak reverse voltage 40 V
RRM
RMS forward voltage
Average forward current δ = 0.5
Surge non repetitive forward
FSM
current
Repetitive peak reverse current tp = 2 µs square F = 1 kHz 1 A
RRM
Repetitive peak avalanche power tp = 1 µs Tj = 25° C 1300 W
ARM
Storage temperature range -65 to + 150 ° C
stg
Maximum operating junction temperature 150 ° C
T
j
TO-220AB /TO-220FPAB 10
DPAK 6
TO-220AB T
DPAK T
= 10 ms Sinusoidal 75 A
t
p
= 135° C
c
= 130° C
c
= 120° C
c
A
3ATO-220FPAB T
R
th (j-c)
R
Junction to case
Coupling
)
th(c
TO-220AB / DPAK
TO-220FPAB
Per diode To t al
Per diode To t al
TO-220AB 0.5
TO-220FPAB 3
5.5 3
5.5
5.2
°C/W
°C/W
When the diodes 1 and 2 are used simultaneously :
ΔTj(diode 1) = P(diode1) x R

Table 3. Static electrical characteristics (per diode)

Symbol Parameter Test Conditions Min. Typ. Max. Unit
(1)
I
V
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
R
(1)
Forward voltage drop
F
(Per diode) + P(diode 2) x R
th(j-c)
= 25° C
T
j
= 125° C 2 10 mA
T
j
V
Tj = 25° C IF = 3 A 0.63
= 25° C IF = 6 A 0.84
T
j
= 125° C IF = 3 A 0.5 0.57
T
j
= 125° C IF = 6 A 0.67 0.72
T
j
R
= V
th(c)
100 µA
RRM
To evaluate the conduction losses use the following equation: P = 0.42 x I
F(AV)
+ 0.050 I
F2(RMS)
V
2/9
STPS640 Characteristics
Figure 1. Average forward power
dissipation versus average forward current (per diode)
P (W)
F(AV)
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak forward
current versus overload duration. (Maximum values, per diode) (TO-220AB / DPAK)
Figure 2. Average forward current versus
ambient temperature (
δ = 0.5, per diode)
I (A)
F(AV)
4.0
3.5
3.0
2.5
2.0
1.5
δ
=tp/T
T
tp
1.0
0.5
0.0 0 25 50 75 100 125 150
R=R
th(j-a) th(j-c)
T (°C)
amb
TO-220FPAB
R =15°C/W
th(j-a)
TO-220AB / DPAK
Figure 4. Normalized avalanche power
derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 6. Non repetitive surge peak forward
current versus overload duration. (Maximum values, per diode) (TO-220FPAB)
I (A)
M
45
40
35
30
25
20
15
10
IM
5
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
T =75°C
C
T =100°C
C
T =135°C
C
I (A)
M
40
35
30
25
20
15
10
IM
5
0 1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
T =75°C
C
T =100°C
C
T =130°C
C
3/9
Loading...
+ 6 hidden pages