Dual center tap schottky barrier rectifier suited for
5V output in off line AC/DC power supplies.
Packaged in TO-247, this device is intended for
use in low voltage, high frequency converters, free
wheeling and polarity protection applications.
A1
K
A2
A2
K
A1
TO-247
ABSOLUTE RATINGS (limiting values, per diode)
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage
RMS forward current
Average forward currentTc = 135°C
Surge non repetitive forward currenttp = 10 ms Sinusoidal
Repetitive peak reverse currenttp=2µs square F=1kHz
Non repetitive peak reverse currenttp = 100 µs square
Repetitive peak avalanche powertp = 1µsTj = 25°C
Storage temperature range
Maximum operating junction temperature (*)
Critical rate of rise of reverse voltage
<
dTjRth ja
July 2003 - Ed: 3C
Per diode
δ = 0.5
Per device
thermal runaway condition for a diode on its own heatsink
−1()
45V
50A
30
60
600A
2A
4A
12300W
- 65 to + 150°C
150°C
10000V/µs
A
1/4
STPS60L45CW
THERMAL RESISTANCES
SymbolParameterValueUnit
R
R
th (j-c)
th (c)
Junction to casePer diode
Total
Coupling
0.75
0.42
0.1°C/W
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
SymbolParameterTests ConditionsMin.Typ.Max.Unit
*
I
R
Reverse leakage current
V
*
F
Pulse test : * tp = 380 µs, δ <2%
Forward voltage dropTj= 25°CI
Tj = 25°CV
=45V
R
Tj = 125°C
=30A
F
Tj = 125°CI
Tj=25°CI
Tj = 125°CI
=30A
F
=60A
F
=60A
F
175350
0.440.5
0.640.72
1.5mA
0.55V
0.73
To evaluate the conduction losses use the following equation :
P=0.28xI
Fig. 1: Average forward power dissipation
versus average forward current (per diode).
F(AV)
+ 0.0073 I
F2(RMS)
Fig. 2: Average current versus ambient
temperature (δ=0.5, per diode).
°C/W
PF(av)(W)
22
20
18
16
14
12
10
8
6
4
2
0
0510152025303540
δ = 0.05
δ = 0.1
δ = 0.2
IF(av) (A)
δ = 0.5
=tp/T
δ
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P(1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.011
p
101001000
IF(av)(A)
35
30
25
20
15
δ
=tp/T
T
tp
10
5
0
0255075100125150
Rth(j-a)=Rth(j-c)
Rth(j-a)=15°C/W
Tamb(°C)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P(25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0255075100125150
T (°C)
j
2/4
STPS60L45CW
Fig. 5: Non repetitive surge peak forward current
versus overload duration (maximumvalues, per
diode).
IM(A)
400
350
300
250
200
150
100
IM
50
0
1E-31E-21E-11E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values, per diode).
IR(mA)
1E+3
Tj=150°C
1E+2
1E+1
1E+0
Tj=125°C
Tj=100°C
Fig. 6: Relative variation of thermal transient
impedance junction to case versus pulse duration.
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
T
0.2
Single pulse
0.0
1E-41E-31E-21E-11E+0
tp(s)
δ
=tp/T
tp
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values, per diode).
C(nF)
10.0
1.0
F=1MHz
Tj=25°C
1E-1
Tj=25°C
VR(V)
1E-2
051015202530354045
Fig. 9: Forward voltage drop versus forward
current (per diode).
Informationfurnishedisbelievedtobe accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
useofsuch information nor for any infringement of patents or other rights of thirdpartieswhich may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics