ST STPS60L45CW User Manual

®
STPS60L45CW
LOW DROP POWER SCHOTTKY RECTIFIER
MAJOR PRODUCTS CHARACTERISTICS
I
F(AV)
2x30A
Tj (max) 150°C
V
RRM
(max) 0.50V
V
F
45 V
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
NEGLIGIBLE SWITCHING LOSSES
EXTREMELY FAST SWITCHING
LOW FORWARD VOLTAGE DROP
LOW THERMAL RESISTANCE
AVALANCHE CAPABILITY SPECIFIED
DESCRIPTION
Dual center tap schottky barrier rectifier suited for 5V output in off line AC/DC power supplies.
Packaged in TO-247, this device is intended for use in low voltage, high frequency converters, free wheeling and polarity protection applications.
A1
K
A2
A2
K
A1
TO-247
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage RMS forward current Average forward current Tc = 135°C
Surge non repetitive forward current tp = 10 ms Sinusoidal Repetitive peak reverse current tp=2µs square F=1kHz Non repetitive peak reverse current tp = 100 µs square Repetitive peak avalanche power tp = 1µs Tj = 25°C Storage temperature range Maximum operating junction temperature (*) Critical rate of rise of reverse voltage
<
dTj Rth j a
July 2003 - Ed: 3C
Per diode
δ = 0.5
Per device
thermal runaway condition for a diode on its own heatsink
−1()
45 V 50 A 30
60
600 A
2A 4A
12300 W
- 65 to + 150 °C 150 °C
10000 V/µs
A
1/4
STPS60L45CW
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
R
th (j-c)
th (c)
Junction to case Per diode
Total Coupling
0.75
0.42
0.1 °C/W
When the diodes 1 and 2 are used simultaneously :
Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
*
I
R
Reverse leakage cur­rent
V
*
F
Pulse test : * tp = 380 µs, δ <2%
Forward voltage drop Tj= 25°CI
Tj = 25°C V
=45V
R
Tj = 125°C
=30A
F
Tj = 125°C I Tj=25°CI Tj = 125°C I
=30A
F
=60A
F
=60A
F
175 350
0.44 0.5
0.64 0.72
1.5 mA
0.55 V
0.73
To evaluate the conduction losses use the following equation : P=0.28xI
Fig. 1: Average forward power dissipation versus average forward current (per diode).
F(AV)
+ 0.0073 I
F2(RMS)
Fig. 2: Average current versus ambient temperature (δ=0.5, per diode).
°C/W
PF(av)(W)
22 20 18 16 14 12 10
8 6 4 2 0
0 5 10 15 20 25 30 35 40
δ = 0.05
δ = 0.1
δ = 0.2
IF(av) (A)
δ = 0.5
=tp/T
δ
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
IF(av)(A)
35 30 25 20 15
δ
=tp/T
T
tp
10
5 0
0 25 50 75 100 125 150
Rth(j-a)=Rth(j-c)
Rth(j-a)=15°C/W
Tamb(°C)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2 1
0.8
0.6
0.4
0.2 0
0 25 50 75 100 125 150
T (°C)
j
2/4
Loading...
+ 2 hidden pages