Features
■ Very low forward voltage drop for less power
dissipation and reduced heatsink
■ Optimized conduction/reverse losses trade-off
which means the highest efficiency in the
applications
■ High power surface mount miniature package
■ Avalanche capability specified
Description
Single Schottky rectifier suited to switched mode
power supplies and high frequency DC to DC
converters.
This device is especially intended for use as a
rectifier at the secondary of 3.3 V SMPS units.
STPS5L25
Low drop power Schottky rectifier
2
1
NC
DPAK
4(TAB)
2
3
3
4
Table 1. Device summary
I
F(AV)
V
RRM
(max) 150 °C
T
j
(max) 0.35 V
V
F
5 A
25 V
April 2008 Rev 6 1/7
www.st.com
7
Characteristics STPS5L25
1 Characteristics
Table 2. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
T
Repetitive peak reverse voltage 25 V
RMS forward current 7 A
Average forward current TC = 145 °C δ = 0.5 5 A
Surge non repetitive forward current tp = 10 ms sinusoidal 75 A
Repetitive peak reverse current tp = 2 µs square F = 1 kHz 1 A
Non repetitive peak reverse current tp = 100 µs square 2 A
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 3000 W
Storage temperature range -65 to + 150 °C
Maximum operating junction temperature
j
(1)
150 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
Ptot
--------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
Table 3. Thermal resistance
1
--------------------------
<
Rth j a–()
Symbol Parameter Value Unit
R
th(j-c)
Table 4. Static electrical characteristics
Junction to case 2.5 °C/W
Symbol Parameter Test Conditions Min. Typ. Max. Unit
(1)
I
R
V
F
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
(
1.)Forward voltage drop
Tj = 25 °C
Tj = 125 °C
Tj = 25 °C
Tj = 125 °C
Tj = 25 °C
Tj = 125 °C
VR = V
RRM
55 115 mA
IF = 5 A 0.47
IF = 5 A 0.31 0.35
IF = 10 A 0.59
IF = 10 A 0.41 0.50
350 µA
V
2/7
STPS5L25 Characteristics
Figure 1. Average forward power dissipation
versus average forward current
PF(av)(W)
2.5
2.0
1.5
δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.5
δ = 1
1.0
T
0.5
tp
=tp/T
0.0
IF(av) (A)
0123456
δ
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
IF(av)(A)
6
5
Rth(j-a)=Rth(j-c)
4
3
2
Rth(j-a)=70°C/W
T
1
tp
=tp/T
δ
0
0 25 50 75 100 125 150
Tamb(°C)
Figure 4. Normalized avalanche power
derating versus junction
temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values)
IM(A)
100
80
60
40
IM
20
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=100°C
Figure 6. Relative variation of thermal
impedance junction to case
versus pulse duration
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.1
δ = 0.5
δ = 0.2
Single pulse
tp(s)
δ
=tp/T
T
tp
0.6
0.4
0.2
0.0
1.0E-4 1.0E-3 1.0E-2 1.0E-1 1.0E+0
3/7