Automotive high voltage power Schottky rectifier
Features
■ Negligible switching losses
■ High junction temperature capability
■ Low leakage current
■ Good trade off between leakage current and
forward voltage drop
■ Avalanche specification
■ AEC-Q101 qualified
Description
This high voltage Schottky barrier rectifier is
packaged in DPAK, and designed for high
frequency miniature switched mode power
supplies such as adaptators and on board DC to
DC converters for automotive applications.
STPS5H100-Y
K
NC
DPAK
STPS5H100BY
Table 1. Device summary
Symbol Value
I
F(AV)
V
RRM
T
(max) 175 °C
j
(max) 0.61 V
V
F
A
5 A
100 V
November 2011 Doc ID 17744 Rev 1 1/7
www.st.com
7
Characteristics STPS5H100-Y
1 Characteristics
Table 2. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
I
I
P
T
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
1. condition to avoid thermal runaway for a diode on its own heatsink
Table 3. Thermal resistance
Repetitive peak reverse voltage 100 V
RRM
Forward rms current 10 A
Average forward current Tc = 165 °C, δ = 0.5 5 A
Surge non repetitive forward current tp =10 ms sinusoidal 75 A
FSM
Repetitive peak reverse current tp = 2 µs, F = 1 KHz 1 A
RRM
Non repetitive peak reverse current tp = 100 µs square 2 A
RSM
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 7200 W
ARM
Storage temperature range -65 to + 175 °C
stg
Operating junction temperature
T
j
<
Rth(j-a)
1
dPtot
dTj
(1)
-40 to +175 °C
Symbol Parameter Value Unit
R
Table 4. Static electrical characteristics
Junction to case 2.5 °C/W
th(j-c)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Reverse leakage
(1)
I
R
current
(2)
V
1. Pulse test: tp = 5 ms, δ < 2%
2. Pulse test: tp = 380 µs, δ < 2%
Forward voltage drop
F
= 25 °C
T
j
= 125 °C 1.3 4.5 mA
T
j
= 25 °C
T
j
T
= 125 °C 0.57 0.61
j
= 25 °C
T
j
T
= 125 °C 0.66 0.71
j
= V
V
R
IF = 5 A
= 10 A
I
F
RRM
3.5 µA
0.73
0.85
To evaluate the conduction losses use the following equation:
P = 0.51 x I
F(AV)
+ 0.02I
F2(RMS)
V
2/7 Doc ID 17744 Rev 1
STPS5H100-Y Characteristics
Figure 1. Average forward power dissipation
versus average forward current
PF(av)(W)
4.0
3.5
3.0
2.5
δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.5
δ = 1
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
IF(av) (A)
δ
=tp/T
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1µs)
ARM
1
0.1
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
IF
6
Rth(j-a)=Rth(j-c)
5
4
T
Rth(j-a)=80°C/W
tp
Tamb(°C)
3
2
1
=tp/T
δ
0
0 20 40 60 80 100 120 140 160 180
Figure 4. Normalized avalanche power
derating versus junction
temperature
P(T)
ARM j
P (25 °C)
ARM
1.2
1
0.8
0.01
t (µs)
0.001
0.10.01 1
10 100
p
1000
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values)
IM(A)
120
110
100
90
80
70
60
50
40
30
IM
20
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=50°C
Tc=75°C
Tc=125°C
0.6
0.4
0.2
0
25 50 75 100 125
Figure 6. Relative variation of thermal
impedance junction to case versus
pulse duration
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
δ = 0.2
0.4
δ = 0.1
0.2
Single pulse
tp(s)
0.0
1E-3 1E-2 1E-1 1E+0
δ
T
=tp/T
tp
T (°C)
j
1
Doc ID 17744 Rev 1 3/7