Main product characteristics
STPS5H100
High voltage power Schottky rectifier
I
F(AV)
V
RRM
T
(max) 175° C
j
(max) 0.61 V
V
F
5 A
100 V
Features and benefits
■ Negligible switching losses
■ High junction temperature capability
■ Low leakage current
■ Good trade off between leakage current and
K
A
NC
DPAK
STPS5H100B
K
NC
IPAK
STPS5H100H
forward voltage drop
■ Avalanche specification
Description
This high voltage Schottky barrier rectifier is
packaged in DPAK and IPAK, and designed for
high frequency miniature switched mode power
supplies such as adaptators and on board DC to
Order codes
Part number Marking
STPS5H100B S5H100
STPS5H100B-TR S5H100
STPS5H100H S5H100H
DC converters.
Table 1. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
---------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
Repetitive peak reverse voltage 100 V
RMS forward voltage 10 A
Average forward current Tc = 165° C δ = 0.5 5 A
Surge non repetitive forward current tp =10 ms sinusoidal 75 A
Repetitive peak reverse current tp = 2 µs F = 1 KHz 1 A
Non repetitive peak reverse current tp = 100 µs square 2 A
Repetitive peak avalanche power tp = 1 µs Tj = 25° C 7200 W
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature
T
j
1
--------------------------
<
Rth j a–()
(1)
175 °C
A
K
March 2007 Rev 9 1/8
www.st.com
8
Characteristics STPS5H100
1 Characteristics
Table 2. Thermal resistance
Symbol Parameter Value Unit
R
th(j-c)
Table 3. Static electrical characteristics
Junction to case 2.5 °C/W
Symbol Parameter Test conditions Min. Typ. Max. Unit
(1)
I
V
1. Pulse test: tp = 5 ms, δ < 2%
2. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
R
(2)
Forward voltage drop
F
Tj = 25° C
VR = V
= 5 A
I
F
= 10 A
I
F
RRM
= 125° C 1.3 4.5 mA
T
j
= 25° C
T
j
T
= 125° C 0.57 0.61
j
= 25° C
T
j
T
= 125° C 0.66 0.71
j
3.5 µA
0.73
0.85
To evaluate the conduction losses use the following equation:
P = 0.51 x I
F(AV)
+ 0.02I
F2(RMS)
V
2/8
STPS5H100 Characteristics
Figure 1. Average forward power dissipation
versus average forward current
PF(av)(W)
4.0
3.5
3.0
2.5
δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.5
δ = 1
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
IF(av) (A)
δ
=tp/T
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
IF(av)(A)
6
Rth(j-a)=Rth(j-c)
5
4
T
Rth(j-a)=80°C/W
tp
Tamb(°C)
3
2
1
=tp/T
δ
0
0 20 40 60 80 100 120 140 160 180
Figure 4. Normalized avalanche power
derating versus junction
temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values)
IM(A)
120
110
100
90
80
70
60
50
40
30
IM
20
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=50°C
Tc=75°C
Tc=125°C
Figure 6. Relative variation of thermal
impedance junction to case versus
pulse duration
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
δ = 0.2
0.4
δ = 0.1
0.2
Single pulse
tp(s)
0.0
1E-3 1E-2 1E-1 1E+0
3/8
δ
=tp/T
T
tp