®
STPS40L40CT/CW
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCTS CHARACTERISTICS
I
F(AV)
V
RRM
2x20A
40 V
Tj (max) 150 °C
(max) 0.49 V
V
F
FEATURES AND BENEFITS
LOW FORWARD VOLTAGE DROP MEANING
n
VERY SMALL CONDUCTION LOSSES
LOW DYNAMIC LOSSES AS A RESULT OF
n
THE SCHOTTKY BARRIER
AVALANCHE CAPABILITY SPECIFIED
n
DESCRIPTION
Dual center tap Schottky barrier rectifier designed
for highfrequencySwitchedModePowerSupplies
and DC to DC converters.
Packaged in TO-220ABand TO-247 this device is
intended for use in low voltage, high frequency
inverters, free-wheeling and polarity protection
applications.
ABSOLUTE RATINGS (limiting values, per diode)
A1
A2
A1
TO-220AB
STPS40L40CT
K
A2
K
A2
K
A1
TO-247
STPS40L40CW
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage
RMS forward current
Average forward current Tc = 130°C
Surge non repetitive forward current tp = 10 ms Sinusoidal
Repetitive peak reverse current tp=2µs square F = 1kHz
Non repetitive peak reverse current tp = 100 µs square
Repetitive peak avalanche power tp = 1µs Tj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTj Rth j a
July 2003 - Ed: 7A
Per diode
δ = 0.5
Per device
thermal runawaycondition for a diode on its own heatsink
−1()
40 V
30 A
20
40
230 A
2A
3A
8100 W
-65 to+150 °C
150 °C
10000 V/µs
A
1/5
STPS40L40CT/CW
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-c)
Junction to case
Per diode
Total
R
th(c)
Coupling
When the diodes 1 and 2 areused simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
*
I
R
Reverse leakage current Tj = 25°CV
R=VRRM
Tj = 100°C
V
*
F
Forward voltage drop Tj = 25°CI
Tj = 125°CI
Tj=25°CI
Tj = 125°CI
=20A
F
=20A
F
=40A
F
=40A
F
Pulse test:*tp=380µs,δ<2%
To evaluate the conduction losses use the following equation :
P=0.28xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
F(AV)
+ 0.0105 I
F2(RMS)
Fig. 2: Average current versus ambient
temperature (δ = 0.5, per diode).
1.5
°C/W
0.8
0.1 °C/W
0.8 mA
30 70 mA
0.53 V
0.42 0.49
0.69
0.6 0.7
PF(av)(W)
16
14
12
δ = 0.05
10
8
6
4
2
0
024681012141618202224
δ = 0.1
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
IF(av)(A)
22
20
18
16
14
12
10
8
6
4
2
0
0 25 50 75 100 125 150
δ
=tp/T
T
tp
Rth(j-a)=Rth(j-c)
Rth(j-a)=15°C/W
Tamb(°C)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
2/5