VERY SMALL CONDUCTION LOSSES
LOW DYNAMIC LOSSES AS A RESULT OF
n
THE SCHOTTKY BARRIER
AVALANCHE CAPABILITY SPECIFIED
n
DESCRIPTION
Dual center tap Schottky barrier rectifier designed
for highfrequencySwitchedModePowerSupplies
and DC to DC converters.
Packaged in TO-220ABand TO-247 this device is
intended for use in low voltage, high frequency
inverters, free-wheeling and polarity protection
applications.
ABSOLUTE RATINGS (limiting values, per diode)
A1
A2
A1
TO-220AB
STPS40L40CT
K
A2
K
A2
K
A1
TO-247
STPS40L40CW
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage
RMS forward current
Average forward currentTc = 130°C
Surge non repetitive forward currenttp = 10 ms Sinusoidal
Repetitive peak reverse currenttp=2µs square F = 1kHz
Non repetitive peak reverse currenttp = 100 µs square
Repetitive peak avalanche powertp = 1µsTj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTjRth ja
July 2003 - Ed: 7A
Per diode
δ = 0.5
Per device
thermal runawaycondition for a diode on its own heatsink
−1()
40V
30A
20
40
230A
2A
3A
8100W
-65 to+150°C
150°C
10000V/µs
A
1/5
STPS40L40CT/CW
THERMAL RESISTANCES
SymbolParameterValueUnit
R
th (j-c)
Junction to case
Per diode
Total
R
th(c)
Coupling
When the diodes 1 and 2 areused simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
SymbolParameterTests ConditionsMin.Typ.Max.Unit
*
I
R
Reverse leakage currentTj = 25°CV
R=VRRM
Tj = 100°C
V
*
F
Forward voltage dropTj = 25°CI
Tj = 125°CI
Tj=25°CI
Tj = 125°CI
=20A
F
=20A
F
=40A
F
=40A
F
Pulse test:*tp=380µs,δ<2%
To evaluate the conduction losses use the following equation :
P=0.28xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
F(AV)
+ 0.0105 I
F2(RMS)
Fig.2:Averagecurrentversusambient
temperature (δ = 0.5, per diode).
1.5
°C/W
0.8
0.1°C/W
0.8mA
3070mA
0.53V
0.420.49
0.69
0.60.7
PF(av)(W)
16
14
12
δ = 0.05
10
8
6
4
2
0
024681012141618202224
δ = 0.1
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P(1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.011
p
101001000
IF(av)(A)
22
20
18
16
14
12
10
8
6
4
2
0
0255075100125150
δ
=tp/T
T
tp
Rth(j-a)=Rth(j-c)
Rth(j-a)=15°C/W
Tamb(°C)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P(25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0255075100125150
T (°C)
j
2/5
STPS40L40CT/CW
Fig. 5: Non repetitive surge peak forward current
versus overload duration (maximum values, per
diode).
IM(A)
250
225
200
175
150
125
100
75
I
M
50
25
0
1E-31E-21E-11E+0
t
δ
=0.5
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values, per diode).
IR(mA)
5E+2
1E+2
Tj=150°C
Tj=125°C
Fig. 6: Relative variation of thermal impedance
junction to case versus pulse duration.
Informationfurnished isbelievedto be accurateand reliable. However,STMicroelectronics assumesnoresponsibility fortheconsequences of
useof suchinformation nor forany infringement ofpatents or otherrights ofthirdparties whichmay result fromits use. Nolicense is grantedby
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change withoutnotice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval ofSTMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics