®
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
V
V
F
I
F(AV)
RRM
T
j
(max)
2 x 20 A
170 V
175 °C
0.75 V
STPS40170C
A1
K
A2
K
K
FEATURES AND BENEFITS
■ High junction temperature capability
■ Low leakage current
■ Good trade off between leakage current and
forward voltage drop
■ Low thermal resistance
■ High frequency operation
■ Avalanche specification
DESCRIPTION
Dual center tab Schottky rectifier suited for High
Frequency Switched Mode Power Supplies.
Packaged in TO-220AB, D2PAK and TO-247,
these devices are intended for use to enhance the
reliability of the application.
A2
K
A1
TO-220AB
STPS40170CT
D2PA K
STPS40170CG
A2
K
A1
TO-247
STPS40170CW
Table 2: Order Codes
Part Numbers Marking
STPS40170CT STPS40170CT
STPS40170CG STPS40170CG
STPS40170CG-TR STPS40170CG
A2
A1
September 2005
REV. 1
STPS40170CW STPS40170CW
1/8
STPS40170C
Table 3: Absolute Ratings (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
P
ARM
T
T
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
Ptot
--------------
* : thermal runaway condition for a diode on its own heatsink
dTj
Table 4: Thermal Parameters
Symbol Parameter Value Unit
R
th(j-c)
R
th(c)
When the diodes 1 and 2 are used simultaneously:
∆ Tj(diode 1) = P(diode 1) x R
Repetitive peak reverse voltage 170 V
RMS forward current 60 A
T
Average forward current
Surge non repetitive forward current
Repetitive peak avalanche power
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature * 175 °C
j
1
-------------- ------------
<
Rth j a–()
= 150 °C δ = 0.5
c
= 10 ms sinusoidal
t
p
t
= 1 µs Tj = 25 °C
p
Junction to case
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
Per diode
Per device
Per diode
Total
Coupling
14100 W
1.2
0.85
0.5
20
40
250 A
°C/W
A
Table 5: Static Electrical Characteristics (per diode)
Symbol Parameter Tests conditions Min. Typ Max. Unit
T
= 25 °C
*
I
R
V
F
Pulse test: * tp = 5 ms, δ < 2%
To evaluate the conduction losses use the following equation: P = 0.64 x I
Reverse leakage current
**
Forward voltage drop
** tp = 380 µs,
δ < 2%
j
T
= 125 °C
j
= 25 °C
T
j
T
= 125 °C
j
= 25 °C
T
j
= 125 °C
T
j
V
R
I
F
I
F
= V
= 20A
= 40A
F(AV)
RRM
+ 0.055 I
F2(RMS)
30 µA
730 mA
0.92
0.69 0.75
1.00
0.79 0.86
V
2/8
STPS40170C
Figure 1: Average forward power dissipation
versus average forward current (per diode)
P
(W)
F(AV)
22
20
18
16
14
12
10
8
6
4
2
0
0 2 4 6 8 10121416182022242628
d=0.05
d=0.1
I
(A)
F(AV)
d=0.2
d=0.5
d
=t /T
d=1
T
t
p
p
Figure 3: Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2: Average forward current versus
ambient temperature (δ = 0.5, per diode)
I
(A)
F(AV)
22
20
18
16
14
12
10
8
6
4
2
0
T
t
=t /T
p
p
d
0 25 50 75 100 125 150 175
R
th(j-a)=Rth(j-c)
R
th(j-a)
=15°C/W
T
(°C)
amb
Figure 4: Normalized avalanche power
derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25
50 75 100 125 150
T (°C)
j
Figure 5: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode)
IM(A)
250
200
150
100
50
I
M
t
0
1.E-03 1.E-02 1.E-01 1.E+00
d=0.5
t(s)
TC=50°C
TC=75°C
TC=125°C
Figure 6: Relative variation of thermal
impedance junction to case versus pulse
duration
Z
th(j-c)/Rth(j-c)
1.0
0.9
0.8
0.7
d=0.5
0.6
0.5
d=0.2
0.4
d=0.1
0.3
0.2
Single pulse
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
tP(s)
d
=t /T
T
t
p
p
3/8