ST STPS40170C User Manual

®
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
V
V
F
I
F(AV)
RRM
T
j
(max)
2 x 20 A
175 °C
0.75 V
STPS40170C
A1
K
A2
K
K
FEATURES AND BENEFITS
High junction temperature capability
Low leakage current
Good trade off between leakage current and
forward voltage drop
Low thermal resistance
High frequency operation
Avalanche specification
DESCRIPTION
Dual center tab Schottky rectifier suited for High Frequency Switched Mode Power Supplies. Packaged in TO-220AB, D2PAK and TO-247, these devices are intended for use to enhance the reliability of the application.
A2
K
A1
TO-220AB
STPS40170CT
D2PA K
STPS40170CG
A2
K
A1
TO-247
STPS40170CW
Table 2: Order Codes
Part Numbers Marking
STPS40170CT STPS40170CT
STPS40170CG STPS40170CG
STPS40170CG-TR STPS40170CG
A2
A1
September 2005
REV. 1
STPS40170CW STPS40170CW
1/8
STPS40170C
d
-
Table 3: Absolute Ratings (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
P
ARM
T
T
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
Ptot
--------------
* : thermal runaway condition for a diode on its own heatsink
dTj
Table 4: Thermal Parameters
Symbol Parameter Value Unit
R
th(j-c)
R
th(c)
When the diodes 1 and 2 are used simultaneously:
Tj(diode 1) = P(diode 1) x R
Repetitive peak reverse voltage 170 V
RMS forward current 60 A
T
Average forward current
Surge non repetitive forward current
Repetitive peak avalanche power
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature * 175 °C
j
1
-------------- ------------
<
Rth j a()
= 150 °C δ = 0.5
c
= 10 ms sinusoidal
t
p
t
= 1 µs Tj = 25 °C
p
Junction to case
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
Per diode Per device
Per diode Total
Coupling
14100 W
1.2
0.85
0.5
20 40
250 A
°C/W
A
Table 5: Static Electrical Characteristics (per diode)
Symbol Parameter Tests conditions Min. Typ Max. Unit
T
= 25 °C
*
I
R
V
F
Pulse test: * tp = 5 ms, δ < 2%
To evaluate the conduction losses use the following equation: P = 0.64 x I
Reverse leakage current
**
Forward voltage drop
** tp = 380 µs,
δ < 2%
j
T
= 125 °C
j
= 25 °C
T
j
T
= 125 °C
j
= 25 °C
T
j
= 125 °C
T
j
V
R
I
F
I
F
= V
= 20A
= 40A
F(AV)
RRM
+ 0.055 I
F2(RMS)
30 µA
730 mA
0.92
0.69 0.75
1.00
0.79 0.86
V
2/8
STPS40170C
Figure 1: Average forward power dissipation versus average forward current (per diode)
P
(W)
F(AV)
22
20
18
16
14
12
10
8
6
4
2
0
0 2 4 6 8 10121416182022242628
d=0.05
d=0.1
I
(A)
F(AV)
d=0.2
d=0.5
d
=t /T
d=1
T
t
p
p
Figure 3: Normalized avalanche power derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2: Average forward current versus ambient temperature (δ = 0.5, per diode)
I
(A)
F(AV)
22
20
18
16
14
12
10
8
6
4
2
0
T
t
=t /T
p
p
d
0 25 50 75 100 125 150 175
R
th(j-a)=Rth(j-c)
R
th(j-a)
=15°C/W
T
(°C)
amb
Figure 4: Normalized avalanche power derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25
50 75 100 125 150
T (°C)
j
Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values, per diode)
IM(A)
250
200
150
100
50
I
M
t
0
1.E-03 1.E-02 1.E-01 1.E+00
d=0.5
t(s)
TC=50°C
TC=75°C
TC=125°C
Figure 6: Relative variation of thermal impedance junction to case versus pulse duration
Z
th(j-c)/Rth(j-c)
1.0
0.9
0.8
0.7
d=0.5
0.6
0.5
d=0.2
0.4
d=0.1
0.3
0.2
Single pulse
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
tP(s)
d
=t /T
T
t
p
p
3/8
Loading...
+ 5 hidden pages