Features
■ Negligible switching losses
■ Low thermal resistance
■ Avalanche capability specified
■ AEC Q101 qualified
■ ECOPACK
®
2 compliant component
Description
STPS3L60-Y
Automotive power Schottky rectifier
Schottky rectifier suited for switched mode power
supplies and high frequency DC to DC
converters.
Packaged in SMC this device is intended for use
in DC/DC chargers for automotive applications.
STPS3L60SY
SMC
(JEDEC DO-214AB)
Table 1. Device summary
I
3 A
F(AV)
V
RRM
150 °C
T
j (max)
V
F (max)
60 V
0.65 V
September 2011 Doc ID 17537 Rev 1 1/7
www.st.com
7
Characteristics STPS3L60-Y
1 Characteristics
Table 2. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
P
T
Repetitive peak reverse voltage 60 V
RRM
Forward rms current 10 A
= 100 °C δ = 0.5
Average forward current
Surge non repetitive forward
current
Repetitive peak reverse current
Repetitive peak avalanche power
ARM
Storage temperature range -65 to +175 °C
stg
T
Operating junction temperature range
j
T
C
t
= 10 ms Sinusoidal 75 A
p
t
= 2 µs square F=1 kHz
p
= 1 µs Tj = 25 °C
t
p
(1)
1600 W
-40 to +150 °C
3A
1A
dV/dt Critical rate of rise reverse voltage 10000 V/µs
dPtot
---------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
Table 3. Thermal resistances
1
--------------------------
<
Rth j a–()
Symbol Parameter Value Unit
Junction to leads 20 ° C/W
R
th (j-l)
Table 4. Static electrical characteristics
Symbol Parameter Tests conditions Min. Typ. Max. Unit
(1)
I
Reverse leakage current
R
Tj = 25 °C
= 125 °C
T
j
VR = V
RRM
10 15
55
µA
mA
T
= 25 °C
j
T
= 125 °C
(1)
VF
1. Pulse test: tp = 380 µs, δ < 2%
Forward voltage drop
j
T
= 25 °C
j
= 125 °C
T
j
To evaluate the conduction losses use the following equation:
P = 0.54 x I
2/7 Doc ID 17537 Rev 1
F(AV)
+ 0.037x I
F2(RMS)
I
= 3 A 0.7
F
I
= 3 A 0.56 0.65
F
I
= 6 A 0.94
F
= 6 A 0.67 0.76
I
F
V
STPS3L60-Y Characteristics
Figure 1. Average forward power dissipation
versus average forward current
PF(av)(W)
2.5
2.0
δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.5
δ = 1
1.5
1.0
T
0.5
=tp/T
0.0
IF(av) (A)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
δ
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1 µs)
ARM
1
0.1
Figure 2. Average forward current versus
ambient temperature (
IF(av)(A)
3.5
3.0
2.5
2.0
1.5
δ
=tp/T
T
tp
1.0
0.5
0.0
0 25 50 75 100 125 15
Rth(j-a)=Rth(j-l)
Rth(j-a)=75°C/W
Tamb (° C)
δ = 0.5)
Figure 4. Normalized avalanche power
derating versus junction
temperature
P(Tj)
ARM
P (25 °C)
ARM
1.2
1
0.8
0.6
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values)
IM(A)
14
12
10
8
6
4
IM
2
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=50°C
Tc=100°C
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 6. Relative variation of thermal
impedance junction to lead versus
pulse duration
Zth(j-l)/Rth(j-l)
1.0
0.9
0.8
0.7
δ = 0.5
0.6
0.5
δ = 0.2
0.4
0.3
δ = 0.1
0.2
Single pulse
0.1
0.0
1E-3 1E-2 1E-1 1E+0
tp(s)
δ
T
=tp/T
tp
Doc ID 17537 Rev 1 3/7