®
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
STPS3L25S
I
F(AV)
V
RRM
3A
25 V
Tj (max) 150°C
V
(max) 0.44 V
F
FEATURES AND BENEFITS
VERY LOW FORWARD VOLTAGE DROP FOR
n
LESS POWER DISSIPATION
OPTIMIZED CONDUCTION/REVERSE LOSSES
n
TRADE-OFF WHICH MEANS THE HIGHEST
EFFICIENCY IN THE APPLICATIONS
HIGH POWER SURFACE MOUNT MINIATURE
n
PACKAGE
AVALANCHE CAPABILITY SPECIFIED
n
DESCRIPTION
Single Schottky rectifier suited to Switched Mode
PowerSuppliesandhighfrequencyDCtoDCconverters.
Packaged in SMC, this device is especially intended for useas an antiparallel diode on synchronous rectification freewheel MOSFET’s at the
secondary of 3.3V SMPS and DC/DC units.
ABSOLUTE RATINGS (limiting values)
SMC
JEDEC DO-214AB
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
T
stg
P
ARM
Repetitive peak reverse voltage 25 V
RMS forward current 10 A
Average forward current TL= 115°C δ = 0.5 3 A
Surge non repetitive forward current tp = 10 ms Sinusoidal 75 A
Repetitive peak reverse current tp= 2 µs square F=1kHz 1 A
Non repetitive peak reverse current tp = 100 µs square 1 A
Storage temperature range - 65 to + 150 °C
Repetitive peak avalanche power tp = 1µs Tj = 25°C 1500 W
Tj Maximum operating junction temperature * 150 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
*:
<
dTj Rth j a
July 2003 - Ed: 4A
thermal runaway condition for a diode on its own heatsink
−1()
1/4
STPS3L25S
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-l)
Junction to lead 20 °C/W
STATIC ELECTRICAL CHARACTERISTICS
Symbol Tests Conditions Tests Conditions Min. Typ. Max. Unit
IR* Reverse leakage current Tj = 25°CV
R=VRRM
90 µA
Tj = 125°C1530mA
V
* Forward voltage drop Tj = 25°CI
F
= 3 A 0.49 V
F
Tj = 125°C 0.37 0.44
Tj=25°CI
= 6 A 0.6
F
Tj = 125°C 0.5 0.58
Pulse test: * tp = 380 µs, δ <2%
To evaluate the maximum conduction losses use the following equation :
P=0.3 xI
F(AV)
+ 0.047 I
F2(RMS)
Fig. 1: Average forward power dissipation versus
average forward current.
PF(av)(W)
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2/5
δ = 0.05
δ = 0.1
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 2: Average forward current versus ambient
temperature (δ=0.5).
IF(av)(A)
3.5
3.0
2.5
2.0
Rth(j-a)=90°C/W
1.5
1.0
0.5
0.0
0 25 50 75 100 125 150
δ
T
=tp/T
tp
Rth(j-a)=Rth(j-l)
Tamb(°C)