Main product characteristics
I
F(AV)
V
RRM
T
(max) 150° C
j
(max) 0.57 V
V
F
3 A
40 V
STPS340
Power Schottky rectifier
K
A
NC
DPAK
STPS340B
Features and Benefits
■ Very small conduction losses
■ Negligible switching losses
■ Low forward voltage drop
■ Low thermal resistance
■ Extremely fast switching
■ Surface mounted device
■ Avalanche capability specified
Description
Single chip Schottky rectifier suited for switch
mode power supplies and high frequency DC to
DC converters.
Packaged in DPAK, SMC, SMB, and low profile
SMB, this device is intended for use in low and
medium voltage operation, high frequency
inverters, free wheeling and polarity protection
applications where low switching losses are
required.
A
K
SMB
STPS340U
K
SMB flat
STPS340UF
Order codes
Part Number Marking
STPS340U U34
STPS340S S34
STPS340B S340
A
K
SMC
STPS340S
A
STPS340B-TR S340
STPS340UF FU34
February 2007 Rev 9 1/11
www.st.com
11
Characteristics STPS340
1 Characteristics
Table 1. Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
P
T
1. condition to avoid thermal runaway for a diode on its own heatsink
Table 2. Thermal resistance
Repetitive peak reverse voltage 40 V
RRM
RMS forward current DPAK 6 A
T
= 135° C δ = 0.5 DPAK
c
Average forward current
Surge non repetitive forward current tp =10 ms sinusoidal 75 A
FSM
Repetitive peak avalanche power tp = 1 µs Tj = 25° C 1300 W
ARM
Storage temperature range -65 to + 150 °C
stg
Operating junction temperature
T
j
dPtot
--------------dTj
1
--------------------------
<
Rth j a–()
= 105° C δ = 0.5 SMB/SMC
L
T
= 115° C δ = 0.5 SMB flat
L
(1)
3A T
150 °C
Symbol Parameter Value Unit
SMB 25
R
th(j-l)
Junction to lead
°C/W SMB flat 15
SMC 20
th(j-c)
Junction to case DPAK 5.5 °C/W
R
Table 3. Static electrical characteristics
Symbol Parameter Test Conditions Min. Typ. Max. Unit
= 25° C
T
(1)
I
V
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
R
(1)
Forward voltage drop
F
j
= 125° C 2 10 mA
T
j
= 25° C
T
j
T
= 125° C 0.52 0.57
j
= 25° C
T
j
T
= 125° C 0.63 0.72
j
To evaluate the conduction losses use the following equation:
P = 0.42 x I
2/11
F(AV)
+ 0.050 I
F2(RMS)
V
R
= 3 A
I
F
= 6 A
I
F
= V
20 µA
RRM
0.63
V
0.84
STPS340 Characteristics
Figure 1. Average forward power dissipation
versus average forward current (per
diode)
P (W)
F(AV)
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Average forward current versus
ambient temperature (δ = 0.5, per
diode) (SMB flat)
I (A)
F(AV)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0 25 50 75 100 125 150
δ
=tp/T
T
tp
R=R
th(j-a) th(j-l)
T (°C)
amb
SMB flat
R =40°C/W
th(j-a)
. S =2.5 cm
CU
2
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values) (SMB)
I (A)
M
10
9
8
7
6
5
4
3
2
IM
1
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
SMB
T =25°C
a
T =75°C
a
T =125°C
a
Figure 2. Average forward current versus
ambient temperature (δ = 0.5, per
diode) (DPAK / SMB / SMC)
I (A)
F(AV)
3.5
3.0
2.5
R =65°C/W
δ
=tp/T
th(j-a)
T
tp
2.0
1.5
1.0
0.5
0.0
0 25 50 75 100 125 150
R=R
th(j-a) th(j-l)
T (°C)
amb
DPAK
SMB / SMC
Figure 4. Non repetitive surge peak forward
current versus overload duration
(maximum values) (DPAK)
I (A)
M
60
50
40
30
20
IM
10
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
DPAK
T =25°C
c
T =75°C
c
T =125°C
c
Figure 6. Non repetitive surge peak forward
current versus overload duration
(maximum values) (SMC)
I (A)
M
12
11
10
9
8
7
6
5
4
3
IM
2
1
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
SMC
T =25°C
a
T =75°C
a
T =125°C
a
3/11
Characteristics STPS340
Figure 7. Non repetitive surge peak forward
current versus overload duration
(maximum values) SMB flat
I (A)
M
25
20
15
10
5
IM
t
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t(s)
SMB flat
T =25°C
L
T =75°C
L
T =125°C
L
Figure 9. Normalized avalanche power
derating versus junction
temperature
P( t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 11. Relative variation of thermal
impedance junction to ambient
versus pulse duration (SMB)
Z/ R
th(j-a) th(j-a)
1.0
SMB
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Single pulse
0.1
0.0
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
t (s)
p
δ
=tp/T
T
tp
Figure 8. Normalized avalanche power
derating versus pulse duration
P( t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.1 0.01 1
p
10 100 1000
Figure 10. Relative variation of thermal
impedance junction to ambient
versus pulse duration (DPAK)
Z/ R
th(j-a) th(j-a)
1.0
DPAK
0.9
0.8
0.7
0.6
0.5
0.4
Single pulse
0.3
0.2
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
t (s)
p
δ
T
=tp/T
Figure 12. Relative variation of thermal
impedance junction to ambient
versus pulse duration (SMC)
Z/ R
th(j-a) th(j-a)
1.0
SMC
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Single pulse
0.1
0.0
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
t (s)
p
δ
T
=tp/T
tp
tp
4/11