STPS3150
Power Schottky rectifier
Features
■ Negligible switching losses
■ Low forward voltage drop for higher efficiency
and extented battery life
■ Low thermal resistance
■ ECOPACK
®
2 compliant component
Description
150 V Power Schottky rectifier are suited for
switch mode power supplies on up to 24 V rails
and high frequency converters.
Packaged in Axial, SMB, and low-profile SMB, this
device is intended for use in consumer and
computer applications like TV, STB, PC and DVD
where low drop forward voltage is required to
reduce power dissipation.
A
K
SMB
STPS3150U
A
K
SMB flat
STPS3150UF
Table 1. Device summary
Symbol Value
I
F(AV)
V
RRM
(max) 175 °C
T
j
(max) 0.67 V
V
F
A
K
DO-201AD
STPS3150
3 A
150 V
July 2011 Doc ID 9474 Rev 5 1/10
www.st.com
10
Characteristics STPS3150
1 Characteristics
Table 2. Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
I
F(AV)
I
Repetitive peak reverse voltage 150
RRM
Average forward current
SMB T
DO-201AD TL = 140 °C δ = 0.5
SMB flat T
= 130 °C δ = 0.5
L
= 150 °C δ = 0.5
L
SMB
Surge non repetitive
FSM
forward current
DO-201AD 100
= 10 ms sinusoidal
t
p
3
80
SMB flat 80
T
1. condition to avoid thermal runaway for a diode on its own heatsink
Table 3. Thermal resistance
Storage temperature range -65 to + 175 °C
stg
Operating junction temperature
T
j
dPtot
--------------dTj
1
--------------------------
<
Rth j a–()
(1)
175 °C
Symbol Parameter Value Unit
V
A
A
SMB flat 10
R
th(j-l)
Junction to lead
°C/WSMB 20
Lead length = 10 mm DO-201AD 15
Table 4. Static electrical characteristics
Symbol Parameter Tests conditions Min. Typ. Max. Unit
Reverse leakage
(1)
I
R
current
(2)
V
1. tp = 5 ms, δ < 2%
2. tp = 380 µs, δ < 2%
Forward voltage drop
F
= 25 °C
T
j
= 125 °C 0.6 2.0 mA
T
j
= 25 °C
T
j
T
= 125 °C 0.63 0.67
j
= 25 °C
T
j
Tj = 125 °C 0.70 0.75
VR = V
= 3 A
I
F
= 6 A
I
F
RRM
0.4 2.0 µA
0.78 0.82
0.85 0.89
To evaluate the conduction losses use the following equation:
P = 0.59 x I
F(AV)
+ 0.023 I
F2(RMS)
V
2/10 Doc ID 9474 Rev 5
STPS3150 Characteristics
Figure 1. Average forward power
dissipation versus average
forward current
P (W)
F(AV)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
δ = 0.05
I (A)
F(AV)
δ = 0.1
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Average forward current versus
ambient temperature (δ = 0.5)
(SMB flat)
I (A)
F(AV)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0 25 50 75 100 125 150 175
δ
=tp/T
T
tp
R=R
th(j-a) th(j-l)
T (°C)
amb
SMB flat
R =40°C/W
th(j-a)
. S =2.5 cm
CU
2
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values)
I (A)
M
14
12
10
8
6
4
IM
2
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
DO-201AD
T =25°C
a
T =75°C
a
T =125°C
a
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
(DO-201AD / SMB)
I (A)
F(AV)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0 25 50 75 100 125 150 175
δ
=tp/T
T
tp
R =75°C/W
th(j-a)
T (°C)
R=R
th(j-a) th(j-I)
amb
DO-201AD
SMB
Figure 4. Non repetitive surge peak forward
current versus overload duration
(maximum values)
I (A)
M
12
11
10
9
8
7
6
5
4
3
IM
2
1
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
SMB
T =25°C
a
T =75°C
a
T =125°C
a
Figure 6. Non repetitive surge peak forward
current versus overload duration
(maximum values)
I (A)
M
50
45
40
35
30
25
20
15
IM
10
5
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
SMB flat
T =25°C
L
T =75°C
L
T =125°C
L
Doc ID 9474 Rev 5 3/10