®
Table 1: Main Product Characteristics
I
F(AV)
V
RRM
1 A
30 V
Tj (max) 150°C
(max) 0.46 V
V
F
STPS130
POWER SCHOTTKY RECTIFIER
FEATURES AND BENEFITS
■ Very low forward voltage drop for less power
dissipation
■ Optimized conduction/reverse losses trade-off
(JEDEC DO-214AC)
SMA
STPS130A
SMB
(JEDEC DO-214AA)
STPS130U
which means the highest yield in the
applications
■ Surface mount miniature packages
■ Avalanche capability specified
DESCRIPTION
Single Schottky rectifier suited to Switched Mode
Power Supplies and high frequency DC to DC
converters.
Table 2: Order Codes
Part Number Marking
STPS130A S130
STPS130U G12
Packaged in SMA and SMB, this device is
especially intended for use in parallel with
MOSFETs in synchronous rectification and low
voltage secondary rectification.
Table 3: Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
T
Repetitive peak reverse voltage 30 V
RMS forward voltage 7 A
Average forward current
TL = 130°C δ = 0.5
Surge non repetitive forward current tp = 10ms sinusoidal 45 A
Repetitive peak reverse current tp = 2µs F = 1kHz square 1 A
Non repetitive peak reverse current tp = 100µs square 1 A
Repetitive peak avalanche power tp = 1µs Tj = 25°C 1200 W
Storage temperature range -65 to + 150 °C
stg
Maximum operating junction temperature * 150 °C
j
1A
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
---------------
* : thermal runaway condition for a diode on its own heatsink
dTj
1
--------------- ----------->
Rth j a–()
August 2004
REV. 5
1/7
STPS130
Table 4: Thermal Resistance
Symbol Parameter Value Unit
R
th(j-l)
Junction to lead
Table 5: Static Electrical Characteristics
Symbol Parameter Tests conditions Min. Typ Max. Unit
= 25°C
T
IR *
Reverse leakage current
j
Tj = 125°C
Tj = 25°C
VF **
Pulse test: * tp = 380 µs, δ < 2%
To evaluate the conduction losses use the following equation: P = 0.37 x I
Forward voltage drop
** tp = 5 ms, δ < 2%
Tj = 125°C
= 25°C
T
j
T
= 125°C
j
V
= V
R
IF = 1A
IF = 2A
F(AV)
SMA 30
SMB 23
RRM
0.37 0.46
0.45 0.55
+ 0.090 I
F2(RMS)
°C/W
10
1.5 10
0.55
0.63
µA
mA
V
Figure 1: Average forward power dissipation
versus average forward current
P (W)
F(AV)
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2
δ = 0.05
δ = 0.1
I (A)
F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3: Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2: Average forward current versus
ambient temperature (δ = 0.5)
I (A)
F(AV)
1.2
1.0
0.8
R =100°C/W
T (°C)
amb
th(j-a)
0.6
0.4
0.2
0.0
0 25 50 75 100 125 150
δ
=tp/T
T
tp
R=R
th(j-a) th(j-I)
Figure 4: Normalized avalanche power
derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
2/7
STPS130
Figure 5: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMA)
I (A)
M
8
7
6
5
4
3
2
I
M
1
0
1.0E-3 1.0E-2 1.0E-1 1.0E+0
t
δ
=0.5
t(s)
T =50°C
a
T =75°C
a
T =100°C
a
Figure 7: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35µm, recommended pad layout) (SMA)
Z/R
th(j-c) th(j-c)
1.0
Figure 6: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMB)
I (A)
M
8
7
6
5
4
3
2
I
M
1
0
1.0E-3 1.0E-2 1.0E-1 1.0E+0
t
δ
=0.5
t(s)
T =50°C
a
T =75°C
a
T =100°C
a
Figure 8: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35µm, recommended pad layout) (SMB)
Z/R
th(j-c) th(j-c)
1.0
0.8
0.6
δ = 0.5
0.4
δ = 0.2
0.2
δ = 0.1
Single pulse
0.0
1E-2 1E-1 1E+0 1E+1 1E+2 1E+3
t (s)
p
δ
=tp/T
T
tp
Figure 9: Reverse leakage current versus
reverse voltage applied (typical values)
I (µA)
R
5E+3
T =125°C
1E+3
1E+2
1E+1
1E+0
1E-1
0 5 10 15 20 25 30
j
T =70°C
j
T =25°C
j
V (V)
R
0.8
0.6
δ = 0.5
0.4
δ = 0.2
0.2
δ = 0.1
Single pulse
0.0
1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3
t (s)
p
δ
=tp/T
T
tp
Figure 10: Junction capacitance versus
reverse voltage applied (typical values)
C(pF)
500
200
100
50
20
V (V)
10
12 5102030
R
F=1MHz
T =25°C
j
3/7