ST STPS120MF User Manual

Power Schottky rectifier in flat package
Features
Very low profile package: 0.85 mm
Backward compatible with standard STmite
footprint
Very small conduction losses
Extremely fast switching
Low forward voltage drop for higher efficiency
and extended battery life
Low thermal resistance
Avalanche capability specified
Hologen free molding compound
Description
STPS120MF
K
STmite flat
(DO222-AA)

Table 1. Device summary

I
F(AV)
V
RRM
(max) 150 °C
T
j
V
(max) 0.41 V
F
A
1 A
20 V
Single Schottky rectifier suited for switch mode power supplies and high frequency dc to dc converters.
Packaged in STmite flat, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications. Due to the very small size of the package this device fits battery powered equipment (cellular, notebook, PDA’s, printers) as well as chargers and PCMCIA cards.
May 2008 Rev 1 1/7
www.st.com
Characteristics STPS120MF

1 Characteristics

Table 2. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
P
ARM
T
stg
T
Repetitive peak reverse voltage 20 V
Forward current rms 2 A
Average forward current Tc = 140 °C δ = 0.5 1 A
Surge non repetitive forward current tp = 10 ms sinusoidal 50 A
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 1400 W
Storage temperature range -65 to + 150 °C
Maximum operating junction temperature
j
(1)
150 °C
dV/dt Critical rate of rise of reverse voltage (rated VR, Tj = 25 °C) 10000 V/µs
dPtot
---------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj

Table 3. Thermal resistance

1
--------------------------
<
Rth j a–()
Symbol Parameter Value Unit
R
th(j-c)
R
th(j-a)
1. Mounted with minimum recommended pad size, PC board FR4

Table 4. Static electrical characteristics

Junction to case 20 °C/W
(1)
Junction to ambient 250 °C/W
Symbol Parameter Test conditions Min. Typ. Max. Unit
(1)
I
V
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
R
(1)
Forward voltage drop
F
Tj = 25° C
VR = V
V
R
V
R
I
= 1 A
F
= 2 A
I
F
RRM
= 10 V
= 5 V
= 100° C 275 850
T
j
= 25° C
T
j
T
= 100° C 145 450
j
= 25° C
T
j
T
= 100° C 105 300
j
= 25° C
T
j
T
= 100° C 0.36 0.41
j
= 25° C
T
j
T
= 100° C 0.42 0.48
j
1.3 3.9
0.6 2.0
0.4 10.
0.44 0.49
0.48 0.54
To evaluate the conduction losses use the following equation: P = 0.34 x I
F(AV)
+ 0.07 I
F2(RMS)
µA
V
2/7
STPS120MF Characteristics
Figure 1. Conduction losses versus average
current
P (W)
F(AV)
0.6
δ=0.1
0.5
0.4
0.3
0.2
0.1
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
δ=0.05
I (A)
F(AV)
δ=0.2
δ
=tp/T
δ=0.5
δ=1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1 µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
I (A)
F(AV)
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0 25 50 75 100 125 150
R
th(j-a)
=250°C/W
T (°C)
amb
R
th(j-a)=Rth(j-c)
Figure 4. Normalized avalanche power
derating versus junction temperature
P(Tj)
ARM
P (25 °C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 5. Non repetitive surge peak forward
current versus overload duration (maximum values)
I (A)
M
6
5
4
3
2
I
M
1
0
1.E-03 1.E-02 1.E-01 1.E+00
t
=0.5
δ
t(s)
Ta=25°C
Ta=75°C
Ta=125°C
Figure 6. Relative variation of thermal
impedance junction to ambient versus pulse duration
Z/R
th(j-a) th(j-a)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Single pulse
0.1
0.0
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
3/7
t (s)
p
Loading...
+ 4 hidden pages