ST STPS10150C User Manual

Main product characteristics

STPS10150C

High voltage power Schottky rectifier

I
F(AV)
V
RRM
T
j
(max) 0.75 V
V
F
2 x 5 A
150 V
175° C
Features and benefits
HIgh junction temperature capability
forward voltage drop
Low leakage current
Avalanche capability specified
Insulated package
– TO-220FPAB
Insulating voltage = 2000 V Typical package capacitance 12 pF
Description
Dual center tap schottky rectifier designed for
A1
A2
K
TO-220FPAB
STPS10150CFP
K
A2
A1
D2PA K
STPS10150CG
TO-220AB
STPS10150CT
Order Codes
Part Number Marking
STPS10150CT STPS10150CT
STPS10150CG STPS10150CG
STPS10150CG-TR STPS10150CG
STPS10150CFP STPS10150CFP
A1
K
A1
high frequency Switched Mode Power Supplies.

Table 1. Absolute ratings (limiting values)

Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
P
ARM
T
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
---------------
1. condition to avoid thermal runaway for a diode on its own heatsink
T
dTj
stg
j
Repetitive peak reverse voltage 150
RMS forward voltage 10
Average forward current δ = 0.5
TO-220AB
2
PA K
D
TO-22 0FPAB TC = 145° C Per device 10
= 155° C Per diode 5
T
C
Surge non repetitive forward current tp = 10 ms sinusoidal 120
Repetitive peak avalanche power tp = 1 µs Tj = 25° C 3100
Storage temperature range -65 to + 175 ° C
Maximum operating junction temperature
1
------------------ --------
<
Rth j a–()
(1)
175 ° C
A2
K
A2
V
A
A
A
W
June 2006 Rev 6 1/9
www.st.com
9
Characteristics STPS10150C

1 Characteristics

Table 2. Thermal resistance

Symbol Parameter Value Unit
TO-220AB, D
2
PA K
4
Per diode
TO-220FPAB 7
R
th(j-c)
Junction to case
TO-220AB, D
2
PA K
2.4
To t a l
TO-220FPAB 5.3
2
R
th(c)
Coupling
TO-220AB, D
TO-220FPAB 3.7
PA K 0 . 7
When the diodes 1 and 2 are used simultaneously: T
(diode 1) = P(diode 1) x R
j

Table 3. Static electrical characteristics (per diode)

Symbol Parameter Tests conditions Min. Typ Max. Unit
(1)
I
R
Reverse leakage current
T
T
Tj = 25° C
VF
(2)
Forward voltage drop
T
T
T
1. tp = 5 ms, δ < 2%
= 380 µs, δ < 2%
2. t
p
(Per diode) + P(diode 2) x R
th(j-l)
= 25° C
j
= 125° C 0.40 2.0 mA
j
= V
V
R
RRM
th(c)
2.0 µA
0.92
= 5 A
I
= 125° C 0.69 0.75
j
= 25° C
j
= 125° C 0.79 0.85
j
F
= 10 A
I
F
1
° C/W
V
To evaluate the conduction losses use the following equation: P = 0.65 x I
F(AV)
+ 0.02 I
F2(RMS)
Figure 1. Average forward power
dissipation versus average forward current (per diode)
P(W)
F(av)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
δ = 0.05
2/9
δ = 0.2
δ = 0.1
I(A)
F(av)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 2. Average forward current versus
ambient temperature (δ = 0.5, per diode)
I (A)
F(av)
6.0
5.0
4.0
3.0
2.0
1.0
=tp/T
d
0.0 0 25 50 75 100 125 150 175
R
th(j-a)=Rth(j-c)
T
tp
TO-220FPABTO-220FPAB
T (°C)
amb
R
th(j-a)
TO-220AB/D²PAKTO-220AB/D²PAK
=15 °C/W
STPS10150C Characteristics
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak
forward current versus overload duration - maximum values, per diode (TO-220AB, D
I(A)
M
80
70
60
50
40
30
20
IM
10
0 1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
2
PAK)
Tc=50°C
Tc=75°C
Tc=125°C
Figure 4. Normalized avalanche power
derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
T (°C)
0
j
25 50 75 100 125 150
Figure 6. Non repetitive surge peak forward
current versus overload duration
- maximum values, per diode (TO-220FPAB)
I(A)
M
70
60
50
40
30
20
I
M
10
0
1.E-3 1.E-2 1.E-1 1.E+0
d=0.5
t
t(s)
TC=50 °C
TC=75 °C
TC=125 °C
Figure 7. Relative variation of thermal
impedance junction to case versus pulse duration (TO-220AB, D
Zth(j-c)/Rth(j-c)
1.0
Single pulse
TO-220AB
D²PAK
0.1
1.E-3 1.E-2 1.E-1 1.E+0
tp(s)
2
PAK)
Figure 8. Relative variation of thermal
impedance junction to case versus pulse duration (TO-220FPAB)
Zth(j-c)/Rth(j-c)
1.0
Single pulse
TO-220FPAB
0.1
0.0
1.E-3 1.E-2 1.E-1 1.E+0 1.E+1
3/9
tp(s)
Loading...
+ 6 hidden pages