ST STM8S103K3, STM8S103F3, STM8S103F2 User Manual

STM8S103K3 STM8S103F3 STM8S103F2
LQFP32 7x7
UFQFPN32 5x5
TSSOP20
SO20W 300 mils
Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash, data
EEPROM,10-bit ADC, 3 timers, UART, SPI, I²C
Interrupt management
Nested interrupt controller with 32 interrupts
Up to 27 external interrupts on 6 vectors
Timers
Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-time insertion and flexible synchronization
16-bit general purpose timer, with 3 CAPCOM
channels (IC, OC or PWM)
8-bit basic timer with 8-bit prescaler
Features
Core
16 MHz advanced STM8 core with Harvard
architecture and 3-stage pipeline
Extended instruction set
Memories
Program memory: 8 Kbytes Flash; data retention
20 years at 55 °C after 10 kcycles
Data memory: 640 bytes true data EEPROM;
endurance 300 kcycles
RAM: 1 Kbytes
Auto wake-up timer
Window watchdog and independent watchdog
timers
Communications interfaces
UART with clock output for synchronous
operation, Smartcard, IrDA, LIN master mode
SPI interface up to 8 Mbit/s
I2C interface up to 400 Kbit/s
Analog to digital converter (ADC)
10-bit, ±1 LSB ADC with up to 5 multiplexed
channels, scan mode and analog watchdog
Clock, reset and supply management
2.95 to 5.5 V operating voltage
Flexible clock control, 4 master clock sources:
Low power crystal resonator oscillator
-
External clock input
-
Internal, user-trimmable 16 MHz RC
-
Internal low power 128 kHz RC
-
Clock security system with clock monitor
Power management:
Low power modes (wait, active-halt, halt)
-
Switch-off peripheral clocks individually
-
Permanently active, low consumption power-on
and power-down reset
June 2012
I/Os
Up to 28 I/Os on a 32-pin package including 21
high sink outputs
Highly robust I/O design, immune against current
injection
Development support
Embedded single wire interface module (SWIM)
for fast on-chip programming and non intrusive debugging
Unique ID
96-bit unique key for each device
DocID15441 Rev 9
1/117
www.st.com
STM8S103K3 STM8S103F3 STM8S103F2Contents

Contents

1 Introduction ..............................................................................................................8
2 Description ...............................................................................................................9
3 Block diagram ........................................................................................................10
4 Product overview ...................................................................................................11
4.1 Central processing unit STM8 .....................................................................................11
4.2 Single wire interface module (SWIM) and debug module (DM) ..................................11
4.3 Interrupt controller .......................................................................................................12
4.4 Flash program and data EEPROM memory ................................................................12
4.5 Clock controller ............................................................................................................13
4.6 Power management ....................................................................................................14
4.7 Watchdog timers ..........................................................................................................14
4.8 Auto wakeup counter ...................................................................................................15
4.9 Beeper ........................................................................................................................15
4.10 TIM1 - 16-bit advanced control timer .........................................................................15
4.11 TIM2 - 16-bit general purpose timer ..........................................................................16
4.12 TIM4 - 8-bit basic timer ..............................................................................................16
4.13 Analog-to-digital converter (ADC1) ............................................................................16
4.14 Communication interfaces .........................................................................................17
4.14.1 UART1 ...............................................................................................17
4.14.2 SPI .....................................................................................................18
4.14.3 I²C ......................................................................................................18
5 Pinout and pin description ...................................................................................19
5.1 STM8S103Kx UFQFPN32/LQFP32/SDIP32 pinout and pin description .....................20
5.2 STM8S103Fx TSSOP20/SO20/UFQFPN20 pinout and pin description .....................24
5.2.1 STM8S103Fx TSSOP20/SO20 pinout .................................................24
5.2.2 STM8S103Fx UFQFPN20 pinout ........................................................25
5.2.3 STM8S103Fx TSSOP20/SO20/UFQFPN20 pin description ................25
5.3 Alternate function remapping .......................................................................................27
6 Memory and register map .....................................................................................28
6.1 Memory map ................................................................................................................28
6.2 Register map ...............................................................................................................29
6.2.1 I/O port hardware register map ............................................................29
6.2.2 General hardware register map ..........................................................30
6.2.3 CPU/SWIM/debug module/interrupt controller registers .....................40
7 Interrupt vector mapping ......................................................................................42
8 Option bytes ...........................................................................................................44
8.1 Alternate function remapping bits ................................................................................46
DocID15441 Rev 92/117
ContentsSTM8S103K3 STM8S103F3 STM8S103F2
9 Unique ID ................................................................................................................49
10 Electrical characteristics ....................................................................................50
10.1 Parameter conditions .................................................................................................50
10.1.1 Minimum and maximum values .........................................................50
10.1.2 Typical values .....................................................................................50
10.1.3 Typical curves ....................................................................................50
10.1.4 Loading capacitor ...............................................................................50
10.1.5 Pin input voltage .................................................................................51
10.2 Absolute maximum ratings ........................................................................................51
10.3 Operating conditions ..................................................................................................53
10.3.1 VCAP external capacitor ....................................................................54
10.3.2 Supply current characteristics ............................................................55
10.3.3 External clock sources and timing characteristics .............................65
10.3.4 Internal clock sources and timing characteristics ...............................67
10.3.5 Memory characteristics ......................................................................70
10.3.6 I/O port pin characteristics .................................................................71
10.3.7 Reset pin characteristics ....................................................................79
10.3.8 SPI serial peripheral interface ............................................................82
10.3.9 I2C interface characteristics ...............................................................85
10.3.10 10-bit ADC characteristics ................................................................86
10.3.11 EMC characteristics .........................................................................90
11 Package information ............................................................................................94
11.1 32-pin LQFP package mechanical data .....................................................................94
11.2 32-lead UFQFPN package mechanical data .............................................................96
11.3 20-lead UFQFPN package mechanical data .............................................................97
11.4 SDIP32 package mechanical data .............................................................................98
11.5 20-pin TSSOP package mechanical data ................................................................100
11.6 20-pin SO package mechanical data .......................................................................101
11.7 UFQFPN recommended footprint ............................................................................102
12 Thermal characteristics ....................................................................................104
12.1 Reference document ...............................................................................................105
12.2 Selecting the product temperature range ................................................................105
13 Ordering information .........................................................................................106
13.1 STM8S103 FASTROM microcontroller option list ...................................................106
14 STM8 development tools ..................................................................................111
14.1 Emulation and in-circuit debugging tools .................................................................111
14.2 Software tools ..........................................................................................................111
14.2.1 STM8 toolset ....................................................................................112
14.2.2 C and assembly toolchains ..............................................................112
14.3 Programming tools ..................................................................................................112
15 Revision history .................................................................................................113
3/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2List of tables
List of tables
Table 1. STM8S103xx access line features .............................................................................................9
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers ..................................14
Table 3. TIM timer features ....................................................................................................................16
Table 4. Legend/abbreviations for pinout tables ...................................................................................19
Table 5. UFQFPN32/LQFP32/SDIP32 pin description ...........................................................................21
Table 6. STM8S103Fx pin description ...................................................................................................25
Table 7. I/O port hardware register map ................................................................................................29
Table 8. General hardware register map ...............................................................................................30
Table 9. CPU/SWIM/debug module/interrupt controller registers .........................................................40
Table 10. Interrupt mapping ...................................................................................................................42
Table 11. Option bytes .........................................................................................................................113
Table 12. Option byte description ...........................................................................................................44
Table 13. STM8S103K alternate function remapping bits for 32-pin devices ........................................46
Table 14. STM8S103F alternate function remapping bits for 20-pin devices ........................................47
Table 15. Unique ID registers (96 bits) .................................................................................................113
Table 16. Voltage characteristics ...........................................................................................................51
Table 17. Current characteristics ...........................................................................................................52
Table 18. Thermal characteristics ..........................................................................................................52
Table 19. General operating conditions .................................................................................................53
Table 20. Operating conditions at power-up/power-down ......................................................................54
Table 21. Total current consumption with code execution in run mode at VDD= 5 V .............................55
Table 22. Total current consumption with code execution in run mode at VDD= 3.3 V ..........................56
Table 23. Total current consumption in wait mode at VDD= 5 V ............................................................57
Table 24. Total current consumption in wait mode at VDD= 3.3 V .........................................................57
Table 25. Total current consumption in active halt mode at VDD= 5 V ..................................................58
Table 26. Total current consumption in active halt mode at VDD= 3.3 V ...............................................59
Table 27. Total current consumption in halt mode at VDD= 5 V .............................................................60
Table 28. Total current consumption in halt mode at VDD= 3.3 V ..........................................................60
Table 29. Wakeup times .........................................................................................................................60
Table 30. Total current consumption and timing in forced reset state ....................................................61
Table 31. Peripheral current consumption .............................................................................................62
Table 32. HSE user external clock characteristics .................................................................................65
Table 33. HSE oscillator characteristics .................................................................................................66
Table 34. HSI oscillator characteristics ..................................................................................................67
Table 35. LSI oscillator characteristics ...................................................................................................69
Table 36. RAM and hardware registers ..................................................................................................70
Table 37. Flash program memory/data EEPROM memory ....................................................................70
Table 38. I/O static characteristics .........................................................................................................71
Table 39. Output driving current (standard ports) ..................................................................................73
Table 40. Output driving current (true open drain ports) ........................................................................74
Table 41. Output driving current (high sink ports) ..................................................................................74
Table 42. NRST pin characteristics ........................................................................................................79
Table 43. SPI characteristics ..................................................................................................................82
Table 44. I2C characteristics ..................................................................................................................85
Table 45. ADC characteristics ................................................................................................................87
Table 46. ADC accuracy with R Table 47. ADC accuracy with R
< 10 kΩ , VDD= 5 V .........................................................................87
AIN
< 10 kΩ R
AIN
, VDD= 3.3 V ..............................................................88
AIN
DocID15441 Rev 94/117
List of tablesSTM8S103K3 STM8S103F3 STM8S103F2
Table 48. EMS data ................................................................................................................................91
Table 49. EMI data .................................................................................................................................91
Table 50. ESD absolute maximum ratings .............................................................................................92
Table 51. Electrical sensitivities .............................................................................................................93
Table 52. 32-pin low profile quad flat package mechanical data ............................................................94
Table 53. 32-lead, ultra thin, fine pitch quad flat no-lead package mechanical data .............................96
Table 54. 20-lead, ultra thin, fine pitch quad flat no-lead package (3 x 3) package mechanical data ....98
Table 55. 32-lead shrink plastic DIP (400 ml) package mechanical data ..............................................98
Table 56. 20-pin, 4.40 mm body, 0.65 mm pitch mechanical data .......................................................101
Table 57. 20-lead, plastic small outline (300 mils) mechanical data ....................................................101
Table 58. Thermal characteristics ........................................................................................................104
Table 59. Document revision history ....................................................................................................113
5/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2List of figures
List of figures
Figure 1. Block diagram .........................................................................................................................10
Figure 2. Flash memory organization ....................................................................................................13
Figure 3. STM8S103Kx UFQFPN32/LQFP32 pinout .............................................................................20
Figure 4. STM8S103Kx SDIP32 pinout .................................................................................................21
Figure 5. STM8S103Fx TSSOP20/SO20 pinout ....................................................................................24
Figure 6. STM8S103Fx UFQFPN20-pin pinout .....................................................................................25
Figure 7. Memory map ...........................................................................................................................28
Figure 8. Pin loading conditions .............................................................................................................50
Figure 9. Pin input voltage .....................................................................................................................51
Figure 10. f
CPUmax
Figure 11. External capacitor C Figure 12. Typ I Figure 13. Typ I Figure 14. Typ I Figure 15. Typ I Figure 16. Typ I Figure 17. Typ I
Figure 18. HSE external clocksource .....................................................................................................66
Figure 19. HSE oscillator circuit diagram ...............................................................................................67
Figure 20. Typical HSI frequency variation vs VDD@ 4 temperatures ..................................................69
Figure 21. Typical LSI frequency variation vs VDD@ 4 temperatures ...................................................69
Figure 22. Typical VILand VIHvs VDD@ 4 temperatures ......................................................................72
Figure 23. Typical pull-up resistance vs VDD@ 4 temperatures ............................................................73
Figure 24. Typical pull-up current vs VDD@ 4 temperatures .................................................................73
Figure 25. Typ. VOL@ VDD= 5 V (standard ports) ................................................................................75
Figure 26. Typ. VOL@ VDD= 3.3 V (standard ports) .............................................................................75
Figure 27. Typ. VOL@ VDD= 5 V (true open drain ports) ......................................................................76
Figure 28. Typ. VOL@ VDD= 3.3 V (true open drain ports) ...................................................................76
Figure 29. Typ. VOL@ VDD= 5 V (high sink ports) ................................................................................77
Figure 30. Typ. VOL@ VDD= 3.3 V (high sink ports) .............................................................................77
Figure 31. Typ. VDD- VOH@ VDD= 5 V (standard ports) .......................................................................78
Figure 32. Typ. VDD- VOH@ VDD= 3.3 V (standard ports) ...................................................................78
Figure 33. Typ. VDD- VOH@ VDD= 5 V (high sink ports) .......................................................................79
Figure 34. Typ. VDD- VOH@ VDD= 3.3 V (high sink ports) ....................................................................79
Figure 35. Typical NRST VILand VIHvs VDD@ 4 temperatures ...........................................................80
Figure 36. Typical NRST pull-up resistance vs VDD@ 4 temperatures .................................................81
Figure 37. Typical NRST pull-up current vs VDD@ 4 temperatures ......................................................81
Figure 38. Recommended reset pin protection ......................................................................................82
Figure 39. SPI timing diagram - slave mode and CPHA = 0 ..................................................................84
Figure 40. SPI timing diagram - slave mode and CPHA = 1 ..................................................................84
Figure 41. SPI timing diagram - master mode
Figure 42. Typical application with I2C bus and timing diagram ............................................................89
Figure 43. ADC accuracy characteristics ...............................................................................................89
Figure 44. Typical application with ADC ................................................................................................90
Figure 45. 32-pin low profile quad flat package (7 x 7) ..........................................................................94
Figure 46. 32-lead, ultra thin, fine pitch quad flat no-lead package (5 x 5) ............................................96
Figure 47. 20-lead, ultra thin, fine pitch quad flat no-lead package outline (3 x 3) ................................97
versus V
DD(RUN)
DD(RUN)
DD(RUN)
DD(WFI)
DD(WFI)
DD(WFI)
..............................................................................................................54
DD
.......................................................................................................55
EXT
vs. VDDHSE user external clock, f vs. f vs. VDDHSI RC osc, f
HSE user external clock, VDD= 5 V ....................................................63
CPU
= 16 MHz .................................................................64
CPU
vs. VDDHSE user external clock, f vs. f vs. VDDHSI RC osc, f
HSE user external clock, VDD= 5 V .....................................................65
CPU
= 16 MHz .................................................................65
CPU
(1)
...................................................................................85
= 16 MHz .............................................63
CPU
= 16 MHz ..............................................64
CPU
DocID15441 Rev 96/117
List of figuresSTM8S103K3 STM8S103F3 STM8S103F2
Figure 48. 32-lead shrink plastic DIP (400 ml) package ........................................................................98
Figure 49. 20-pin, 4.40 mm body, 0.65 mm pitch .................................................................................101
Figure 50. 20-lead, plastic small outline (300 mils) package ...............................................................101
Figure 51. Recommended footprint for on-board emulation ................................................................102
Figure 52. Recommended footprint without on-board emulation .........................................................103
Figure 53. STM8S103x access line ordering information scheme ......................................................106
7/117DocID15441 Rev 9

STM8S103K3 STM8S103F3 STM8S103F2Introduction

Introduction1
This datasheet contains the description of the device features, pinout, electrical characteristics, mechanical data and ordering information.
For complete information on the STM8S microcontroller memory, registers and peripherals,
please refer to the STM8S microcontroller family reference manual (RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S Flash programming manual (PM0051).
For information on the debug and SWIM (single wire interface module) refer to the STM8
SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
DocID15441 Rev 98/117

DescriptionSTM8S103K3 STM8S103F3 STM8S103F2

Description2
The STM8S103x access line 8-bit microcontrollers offer 8 Kbytes Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as low-density. They provide the following benefits: performance, robustness, and reduced system cost.
Device performance and robustness are ensured by advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 kwrite/erase cycles and a high system integration level with internal clock oscillators, watchdog and brown-out reset.
Full documentation is offered as well as a wide choice of development tools.
Table 1: STM8S103xx access line features
STM8S103F2STM8S103F3STM8S103K3Device
202032Pin count
161628Maximum number of GPIOs (I/Os)
161627Ext. interrupt pins
Low density Flash program memory (bytes)
Data EEPROM (bytes)
Peripheral set
(1)
No read-while-write (RWW) capability
777Timer CAPCOM channels
223Timer complementary outputs
554A/D converter channels
121221High sink I/Os
4K8K8K
640
(1)
640
(1)
640
(1)
1K1K1KRAM (bytes)
Multipurpose timer (TIM1), SPI, I2C, UART window WDG,independent WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4)
9/117DocID15441 Rev 9
XTAL 1-16 MHz
RC int. 16MHz
RC int. 128kHz
STM8 core
Debug/SWIM
SPI
UART1
16-bit general purpose
AWU timer
Reset block
Reset
POR
BOR
Clock controller
Detector
Clock to peripherals and core
8 Mbit/s
LIN master
Address and databus
Window WDG
8 Kbytes
640 bytes
1 Kbyte
ADC1
4 CAPCOM
Reset
400 Kbit/s
Single wire
debug interf.
SPI emul.
channels +3
program
Flash
16-bit advanced
control timer (TIM1)
8-bit basic timer
data EEPROM
RAM
Up to
Beeper
1/2/4 kHz
beep
Independent WDG
(TIM4)
3 CAPCOM channels
Up to
complementary outputs
timer (TIM2)
Up to 5
channels
I2C

STM8S103K3 STM8S103F3 STM8S103F2Block diagram

Block diagram3
Figure 1: Block diagram
DocID15441 Rev 910/117

Product overviewSTM8S103K3 STM8S103F3 STM8S103F2

Product overview4
The following section intends to give an overview of the basic features of the device functional modules and peripherals.
For more detailed information please refer to the corresponding family reference manual (RM0016).

Central processing unit STM84.1

The 8-bit STM8 core is designed for code efficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus - single cycle fetching for most instructions
X and Y 16-bit index registers - enabling indexed addressing modes with or without offset
and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64 K-level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers

Single wire interface module (SWIM) and debug module (DM)4.2

The single wire interface module and debug module permits non-intrusive, real-time in-circuit debugging and fast memory programming.
11/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Product overview
SWIM
Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.
R/W to RAM and peripheral registers in real-time
R/W access to all resources by stalling the CPU
Breakpoints on all program-memory instructions (software breakpoints)
Two advanced breakpoints, 23 predefined configurations

Interrupt controller4.3

Nested interrupts with three software priority levels
32 interrupt vectors with hardware priority
Up to 27 external interrupts on 6 vectors including TLI
Trap and reset interrupts

Flash program and data EEPROM memory4.4

8 Kbytes of Flash program single voltage Flash memory
640 bytes true data EEPROM
User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.
A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to the figure below.
The size of the UBC is programmable through the UBC option byte, in increments of 1 page (64-byte block) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:
Main program memory: Up to 8 Kbytes minus UBC
User-specific boot code (UBC): Configurable up to 8 Kbytes
The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
DocID15441 Rev 912/117
UBC area
Program memory area
Data memory area ( 640 bytes)
Remains write protected during IAP
Data EEPROM memory
Write access possible for IAP
Option bytes
Programmable bytes(1 page)
up to 8 Kbytes (in 1 page steps)
area from 64
Low density Flash program memory (8 Kbytes)
Product overviewSTM8S103K3 STM8S103F3 STM8S103F2
program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines.
Figure 2: Flash memory organization
Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program and data memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

Clock controller4.5

The clock controller distributes the system clock (f to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Master clock sources: Four different clock sources can be used to drive the master
clock:
-
1-16 MHz high-speed external crystal (HSE)
MASTER
) coming from different oscillators
13/117DocID15441 Rev 9
Bit
STM8S103K3 STM8S103F3 STM8S103F2Product overview
Up to 16 MHz high-speed user-external clock (HSE user-ext)
-
16 MHz high-speed internal RC oscillator (HSI)
-
128 kHz low-speed internal RC (LSI)
-
Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz
clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If an HSE clock
failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Peripheral clock
ADCPCKEN23ReservedPCKEN27UART1PCKEN13TIM1PCKEN17
AWUPCKEN22ReservedPCKEN26ReservedPCKEN12ReservedPCKEN16
ReservedPCKEN21ReservedPCKEN25SPIPCKEN11TIM2PCKEN15
clock
BitPeripheral
clock
BitPeripheral
clock
BitPeripheral
ReservedPCKEN20ReservedPCKEN24I2CPCKEN10TIM4PCKEN14

Power management4.6

For efficent power management, the application can be put in one of four different low-power modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
Active halt mode with regulator off: This mode is the same as active halt with regulator
on, except that the main voltage regulator is powered off, so the wake up time is slower.
Halt mode: In this mode the microcontroller uses the least power. The CPU and peripheral
clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

Watchdog timers4.7

The watchdog system is based on two independent timers providing maximum security to the applications.
DocID15441 Rev 914/117
Product overviewSTM8S103K3 STM8S103F3 STM8S103F2
Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application perfectly.
The application software must refresh the counter before time-out and during a limited time window.
A reset is generated in two situations:
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up to 64 ms.
2. Refresh out of window: The downcounter is refreshed before its value is lower than the one stored in the window register.
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.
It is clocked by the 128 kHZ LSI internal RC clock source, and thus stays active even in case of a CPU clock failure
The IWDG time base spans from 60 µs to 1 s.

Auto wakeup counter4.8

Used for auto wakeup from active halt mode
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration

Beeper4.9

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.
The beeper output port is only available through the alternate function remap option bit AFR7.

TIM1 - 16-bit advanced control timer4.10

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver
16-bit up, down and up/down autoreload counter with 16-bit prescaler
Four independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse mode output
Synchronization module to control the timer with external signals
15/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Product overview
Break input to force the timer outputs into a defined state
Three complementary outputs with adjustable dead time
Encoder mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

TIM2 - 16-bit general purpose timer4.11

16-bit autoreload (AR) up-counter
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768
3 individually configurable capture/compare channels
PWM mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update

TIM4 - 8-bit basic timer4.12

8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
Clock source: CPU clock
Interrupt source: 1 x overflow/update
Timer
Table 3: TIM timer features
Counter size (bits)
16TIM1
16TIM2
8TIM4
Prescaler
Any integer from 1 to 65536
Any power of 2 from 1 to 32768
Any power of 2 from 1 to 128
Counting mode
CAPCOM channels
Complem. outputs
Ext. trigger
Yes34Up/down
No03Up
No00Up
Timer synchronization/ chaining
No

Analog-to-digital converter (ADC1)4.13

The STM8S103xx family products contain a 10-bit successive approximation A/D converter (ADC1) with up to 5 external multiplexed input channels and the following main features:
Input voltage range: 0 to V
Conversion time: 14 clock cycles
Single and continuous and buffered continuous conversion modes
Buffer size (n x 10 bits) where n = number of input channels
Scan mode for single and continuous conversion of a sequence of channels
DD
DocID15441 Rev 916/117
Product overviewSTM8S103K3 STM8S103F3 STM8S103F2
Analog watchdog capability with programmable upper and lower thresholds
Analog watchdog interrupt
External trigger input
Trigger from TIM1 TRGO
End of conversion (EOC) interrupt

Communication interfaces4.14

The following communication interfaces are implemented:
UART1: Full feature UART, synchronous mode, SPI master mode, Smartcard mode, IrDA
mode, single wire mode, LIN2.1 master capability
SPI : Full and half-duplex, 8 Mbit/s
I²C: Up to 400 Kbit/s

UART14.14.1

Main features
One Mbit/s full duplex SCI
SPI emulation
High precision baud rate generator
Smartcard emulation
IrDA SIR encoder decoder
LIN master mode
Single wire half duplex mode
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space)
Programmable transmit and receive baud rates up to 1 Mbit/s (f
following any standard baud rate regardless of the input frequency
Separate enable bits for transmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
-
Idle line (interrupt)
-
Transmission error detection with interrupt generation
Parity control
Synchronous communication
Full duplex synchronous transfers
SPI master operation
8-bit data communication
Maximum speed: 1 Mbit/s at 16 MHz (f
CPU
/16)
/16) and capable of
CPU
17/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Product overview
LIN master mode
Emission: Generates 13-bit synch break frame
Reception: Detects 11-bit break frame
SPI4.14.2
Maximum speed: 8 Mbit/s (f
Full duplex synchronous transfers
Simplex synchronous transfers on two lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
CRC calculation
1 byte Tx and Rx buffer
Slave/master selection input pin
I²C4.14.3
I²C master features:
Clock generation
-
Start and stop generation
-
MASTER
/2) both for master and slave
I²C slave features:
Programmable I2C address detection
-
Stop bit detection
-
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds:
Standard speed (up to 100 kHz)
-
Fast speed (up to 400 kHz)
-
DocID15441 Rev 918/117

Pinout and pin descriptionSTM8S103K3 STM8S103F3 STM8S103F2

Pinout and pin description5
Table 4: Legend/abbreviations for pinout tables
I= Input, O = Output, S = Power supplyType
Output speed
configuration
Reset state
InputLevel
O1 = Slow (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
Output
Bold X (pin state after internal reset release).
Unless otherwise specified, the pin state is the same during the reset phase and after the internal reset release.
CM = CMOS
HS = High sinkOutput
float = floating, wpu = weak pull-upInputPort and control
T = True open drain, OD = Open drain, PP = Push pull
19/117DocID15441 Rev 9
I2C_SCL/(T) PB4
TIM1_ETR/AIN3/(HS) PB3
TIM1_CH3N/ AIN2/(HS) PB2
TIM1_CH2N/ AIN1/(HS) PB1
TIM1_CH1N/AIN0/(HS) PB0
PB7
PB6
I2C_SDA/ (T) PB5
32 31 30 29 28 27 26 25
24 23 22 21 20 19 18 17
9 10 11 12 13 14 15
16
1 2 3 4 5 6 7 8
VCAP
VDD
[SPI_NSS] TIM2_CH3/(HS) PA3
PF4
NRST
OSCIN/PA1
OSCOUT/PA2
VSS
PC3 (HS)/TIM1_CH3 PC2 (HS)/TIM1_CH2 PC1 (HS)/TIM1_CH1/UART1_CK PE5 (HS)/SPI_NSS
PC7 (HS)/SPI_MISO PC6 (HS)/SPI_MOSI PC5 (HS)/SPI_SCK PC4 (HS)/TIM1_CH4/CLK_CCO
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS) [TIM2_CH3]
PD1 (HS)/SWIM
PD0 (HS)/ TIM1_BKIN [CLK_CCO]
PD7 (HS)/TLI [TIM1_CH4]
PD6 (HS)/UART1_RX
PD5 (HS)/UART1_TX
PD4 (HS)/BEEP/TIM2_CH1
STM8S103K3 STM8S103F3 STM8S103F2Pinout and pin description
5.1

STM8S103Kx UFQFPN32/LQFP32/SDIP32 pinout and pin description

Figure 3: STM8S103Kx UFQFPN32/LQFP32 pinout
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDDnot implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).
DocID15441 Rev 920/117
8
1 2 3 4 5 6 7
9 10 11 12 13 14 15 16
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
[TIM2_CH2] ADC_ETR/(HS) PD3
BEEP/TIM2_CH1/(HS) PD4
UART1_TX(/HS)PD5 UART1_RX/(HS)PD6
[TIM1_CH4] TLI/(HS) PD7
OSCIN/PA1
OSCOUT/PA2
VSS
VCAP
VDD
[SPI_NSS] TIM2_CH3/(HS) PA3
PB6
PB3 (HS)/TIM1_ETR/AIN3
PB2 (HS)/TIM1_CH3N/AIN2
PB1 (HS)/TIM1_CH2N/AIN1
PB0 (HS)/TIM1_CH1N/AIN0
PE5/SPI_NSS
PC1 (HS)/TIM1_CH1/UART1_CK
PC2( HS)/TIM1_CH2
PC3 (HS)/TIM1_CH3
PC4( HS)/TIM1_CH4/CLK_CCO
PC5 (HS)/SPI_SCK
PC6 (HS)/SPI_MOSI
PC7 (HS)/SPI_MISO
PD0 (HS)/TIM1_BKIN [CLK_CCO]
PD1 (HS)/SWIM
PD2 (HS) [TIM2_CH3]
PB7
I2C_SDA/(T) PB5
NRST
PF4
PB4 (T)/I2C_SCL
Pinout and pin descriptionSTM8S103K3 STM8S103F3 STM8S103F2
Figure 4: STM8S103Kx SDIP32 pinout
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDDnot implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).
LQFP/
SDIP
UFQFP
32
32
27
38
49
611
712
Pin
name
OSCIN
OSCOUT
SS
DD
TIM2_CH3 [SPI_NSS]
Table 5: UFQFPN32/LQFP32/SDIP32 pin description
(2)
Type
wpufloating
Ext. interrupt
OutputInput
High sink
(1)
PPODSpeed
Main function (after reset)
ResetXI/ONRST16
Digital groundSV
1.8 V regulator capacitorSVCAP510
Digital power supplySV
Default alternate function
Resonator/ crystal inPort A1XXO1XXXI/OPA1/
Resonator/ crystal outPort A2XXO1XXXI/OPA2/
Timer 2 channel 3Port A3XXO3HSXXXI/OPA3/
Alternate function after remap [option bit]
SPI master/ slave select [AFR1]
21/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Pinout and pin description
SDIP
32
LQFP/
UFQFP
32
1116
1217
1318
1419
1520
Pin
name
I2C_SDA
I2C_SCL
TIM1_ETR
TIM1_CH3N
TIM1_CH2N
Type
wpufloating
Ext. interrupt
OutputInput
High sink
(1)
Main function (after
PPODSpeed
reset)
Port F4XXO1XXI/OPF4813
Port B7XXO1XXXI/OPB7914
Port B6XXO1XXXI/OPB61015
(3)
O1XXI/OPB5/
T
(3)
O1XXI/OPB4/
T
Port B3XXO3HSXXXI/OPB3/AIN3/
Port B2XXO3HSXXXI/OPB2/AIN2/
Port B1XXO3HSXXXI/OPB1/AIN1/
Default alternate function
I2C dataPort B5
I2C clockPort B4
Analog input 3/ Timer 1 external trigger
Analog input 2/ Timer 1 - inverted channel 3
Analog input 1/ Timer 1 - inverted channel 2
Alternate function after remap [option bit]
1621
TIM1_CH1N
1722
SPI_NSS
1823
TIM1_CH1/ UART1_CK
1924
TIM1_CH2
2025
TIM1_CH3
2126
TIM1_CH4/ CLK_CCO
2227
SPI_SCK
2328
SPI_MOSI
Port B0XXO3HSXXXI/OPB0/AIN0/
Port E5XXO3HSXXXI/OPE5/
Port C1XXO3HSXXXI/OPC1/
Port C4XXO3HSXXXI/OPC4/
Port C6XXO3HSXXXI/OPC6/
Analog input 0/ Timer 1 - inverted channel 1
SPI master/slave select
Timer 1 - channel 1 UART1 clock
Timer 1 - channel 2Port C2XXO3HSXXXI/OPC2/
Timer 1 - channel 3Port C3XXO3HSXXXI/OPC3/
Timer 1 - channel 4 /configurable clock output
SPI clockPortC5XXO3HSXXXI/OPC5/
SPI master out/slave in
DocID15441 Rev 922/117
Pinout and pin descriptionSTM8S103K3 STM8S103F3 STM8S103F2
SDIP
32
LQFP/
UFQFP
32
2429
2530
2631
2732
281
292
Pin
name
SPI_MISO
TIM1_BKIN [CLK_CCO]
SWIM
(4)
[TIM2_CH3]
TIM2_CH2/ ADC_ETR
TIM2_CH1
Type
wpufloating
Ext. interrupt
OutputInput
High sink
(1)
PPODSpeed
Main function (after reset)
Port C7XXO3HSXXXI/OPC7/
Port D2XXO3HSXXXI/OPD2
Port D3XXO3HSXXXI/OPD3/
Port D4XXO3HSXXXI/OPD4/BEEP/
Default alternate function
SPI master in/ slave out
Timer 1 - break inputPort D0XXO3HSXXXI/OPD0/
SWIM data interfacePort D1XXO4HSXXXI/OPD1/
Timer 2 - channel 2/ADC external trigger
Timer 2 - channel 1/BEEP output
Alternate function after remap [option bit]
Configurable clock output [AFR5]
Timer 2 ­channel 3[AFR1]
303
314
325
(1)
I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings (see Electrical characteristics). (2)
When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application. (3)
In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDDare not implemented). (4)
The PD1 pin is in input pull-up during the reset phase and after internal reset release.
UART1_TX
UART1_RX
[TIM1_CH4]
UART1 data transmitPort D5XXO3HSXXXI/OPD5/
UART1 data receivePort D6XXO3HSXXXI/OPD6/
Top level interruptPort D7XXO3HSXXXI/OPD7/ TLI
Timer 1 ­channel 4 [AFR6]
23/117DocID15441 Rev 9
20 19 18 17 16 15 14 13
1 2 3 4 5 6 7 8
UART1_CK/TIM2_CH1/BEEP/(HS)PD4
NRST
V
DD
VCAP
V
SS
OSCOUT/PA2
PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR
PD1 (HS)/SWIM
PB4 (T)/I2C_SCL [ADC_ETR]
PC3 (HS)/TIM1_CH3 [TLI] [TIM1_CH1N]
PC4 (HS)/TIM1_CH4/CLK_CCO/AIN2 [TIM1_CH2N]
PC5 (HS)/SPI_SCK [TIM2_CH1]
12 11
9 10
[SPI_NSS] TIM2_CH3/(HS) PA3
PD2 (HS)/AIN3 [TIM2_CH3]
OSCIN/PA1
PB5 (T)/I2C_SDA [TIM1_BKIN]
UART1_TX/AIN5/(HS) PD5 UART1_RX/AIN6/(HS) PD6
PC6 (HS)/SPI_MOSI [TIM1_CH1]
PC7 (HS)/SPI_MISO [TIM1_CH2]
STM8S103K3 STM8S103F3 STM8S103F2Pinout and pin description
5.2

STM8S103Fx TSSOP20/SO20/UFQFPN20 pinout and pin description

STM8S103Fx TSSOP20/SO20 pinout5.2.1

Figure 5: STM8S103Fx TSSOP20/SO20 pinout
1. HS high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDDnot implemented).
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).
DocID15441 Rev 924/117
2
1
3
4
5
6 7 8
9
11
12
13
14
15
16171819
VCAP
VSS
OSCOUT/PA2
OSCIN/PA1
[SPI_NSS] TIM2_CH3/(HS) PA3
NRST
PD4 (HS)/BEEP / TIM2_CH1/UART1_CK
PD5 (HS)/AIN5/UART1_TX
PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR
PD2 (HS)/AIN3 [TIM2_CH3]
PC4 (HS)/TIM1_CH4/CLK_CCO/AIN2 [TIM1_CH2N]
PC5 (HS)/SPI_SCK [TIM2_CH1]
PC6 (HS)/SPI_MOSI [TIM1_CH1]
PC7 (HS)/SPI_MISO [TIM1_CH2]
PD1(HS)/SWIM
[TIM1_BKIN] I2C_SDA/(T) PB5
10
[TIM1_CH1N] [TLI] TIM1_CH3/(HS) PC3
PD6 (HS)/AIN6/UART1_RX
20
V
DD
[ADC_ETR] I2C_SCL/(T) PB4
Pinout and pin descriptionSTM8S103K3 STM8S103F3 STM8S103F2

STM8S103Fx UFQFPN20 pinout5.2.2

Figure 6: STM8S103Fx UFQFPN20-pin pinout
Pin no.
1. HS high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDDnot implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).

STM8S103Fx TSSOP20/SO20/UFQFPN20 pin description5.2.3

Table 6: STM8S103Fx pin description
181
192
TIM2_ CH1/ UART1 _CK
UART1 _TX
TypePin name
Ext.
wpufloatingUFQFPN20TSSOP/SO20
interr.
OutputInput
High sink
(1)
Main function (after
PPODSpeed
reset)
Port D4XXO3HSXXXI/OPD4/ BEEP/
Port D5XXO3HSXXXI/OPD5/ AIN5/
Default alternate function
Timer 2 ­channel 1/BEEP output/ UART1 clock
Analog input 5/ UART1 data transmit
Alternate function after remap [option bit]
25/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Pinout and pin description
Pin no.
OutputInput
TypePin name
203
25
47
69
710
811
1013
1114
1215
1316
1417
1619
1720
UART1 _RX
PA1/ OSCIN
SS
DD
[SPI_ NSS]
[TIM1_ BKIN]
[TLI] [TIM1_ CH1N]
TIM1_ CH4/AIN2/[TIM1_ CH2N]
[TIM2_ CH1]
[TIM1_ CH1]
[TIM1_ CH2]
CH3]
CH2/ ADC_ ETR
(2)
wpufloatingUFQFPN20TSSOP/SO20
Ext. interr.
High sink
(1)
O1XXI/OPB5/ I2C_ SDA
(3)
O1XXI/OPB4/ I2C_ SCL912
(3)
Main function (after
PPODSpeed
reset)
Port D6XXO3HSXXXI/OPD6/ AIN6/
ResetXI/ONRST14
Port A1XXO1XXXI/O
Port A2XXO1XXXI/OPA2/ OSCOUT36
Digital groundSV
1.8 V regulator capacitorSVCAP58
Digital power supplySV
Port A3XXO3HSXXXI/OPA3/ TIM2_ CH3
Port C3XXO3HSXXXI/OPC3/ TIM1_CH3
Port C4XXO3HSXXXI/OPC4/ CLK_CCO/
Port C6XXO3HSXXXI/OPC6/ SPI_MOSI
Port C7XXO3HSXXXI/OPC7/ SPI_MISO
Port D1XXO4HSXXXI/OPD1/ SWIM1518
Port D3XXO3HSXXXI/OPD3/ AIN4/ TIM2_
Default alternate function
Analog input 6/ UART1 data receive
Resonator/ crystal in
Resonator/ crystal out
Timer 2 channel 3
I2C dataPort B5T
I2C clockPort B4T
Timer 1 ­channel 3
Configurable clock output/Timer 1
- channel 4/Analog input 2
SPI clockPort C5XXO3HSXXXI/OPC5/ SPI_SCK
SPI master out/slave in
SPI master in/ slave out
SWIM data interface
Analog input 3Port D2XXO3HSXXXI/OPD2/AIN3/[TIM2_
Analog input 4/ Timer 2 ­channel 2/ADC external trigger
Alternate function after remap [option bit]
SPI master/ slave select [AFR1]
Timer 1 - break input [AFR4]
ADC external trigger [AFR4]
Top level interrupt [AFR3] Timer 1 ­inverted channel 1 [AFR7]
Timer 1 - inverted channel 2 [AFR7]
Timer 2 - channel 1 [AFR0]
Timer 1 - channel 1 [AFR0]
Timer 1 - channel 2 [AFR0]
Timer 2 - channel 3 [AFR1]
(1)
I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings. (2)
When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if halt/active-halt is used in the application. (3)
In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDDare not implemented).
DocID15441 Rev 926/117
Pinout and pin descriptionSTM8S103K3 STM8S103F3 STM8S103F2

Alternate function remapping5.3

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. When the remapping option is active, the default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the family reference manual, RM0016).
27/117DocID15441 Rev 9
0x00 9FFF
Flash program memory
(8 Kbytes)
0x00 0000
RAM
0x00 03FF
(1 Kbyte)
513 bytes stack
0x00 4000 0x00 427F
640 bytes data EEPROM
Reserved
Reserved
Reserved
0x00 4280
0x00 A000
0x02 7FFF
0x00 47FF
0x00 8000
32 interrupt vectors
0x00 807F
GPIO and periph. reg.
0x00 5000
0x00 57FF
0x00 5800
0x00 7FFF
0x00 480B
0x00 4FFF
0x00 7EFF
CPU/SWIM/debug/ITC
registers
0x00 7F00
Reserved
Reserved
Option bytes
0x00 480A
0x00 4800
0x00 0800
0x00 3FFF
0x00 8080
Reserved
Unique ID
0x00 4864 0x00 4865 0x00 4870 0x00 4871

STM8S103K3 STM8S103F3 STM8S103F2Memory and register map

Memory and register map6

Memory map6.1

Figure 7: Memory map
DocID15441 Rev 928/117
Memory and register mapSTM8S103K3 STM8S103F3 STM8S103F2

Register map6.2

I/O port hardware register map6.2.1

Table 7: I/O port hardware register map
0x00 5000
0x00 5005
0x00 500A
Port A
Port B
Port C
Register nameRegister labelBlockAddress
Reset status
0x00Port A data output latch registerPA_ODR
(1)
Port A input pin value registerPA_IDR0x00 5001
0xXX
0x00Port A data direction registerPA_DDR0x00 5002
0x00Port A control register 1PA_CR10x00 5003
0x00Port A control register 2PA_CR20x00 5004
0x00Port B data output latch registerPB_ODR
(1)
Port B input pin value registerPB_IDR0x00 5006
0xXX
0x00Port B data direction registerPB_DDR0x00 5007
0x00Port B control register 1PB_CR10x00 5008
0x00Port B control register 2PB_CR20x00 5009
0x00Port C data output latch registerPC_ODR
(1)
Port C input pin value registerPB_IDR0x00 500B
0xXX
0x00Port C data direction registerPC_DDR0x00 500C
0x00 500F
0x00 5014
Port D
Port E
0x00Port C control register 1PC_CR10x00 500D
0x00Port C control register 2PC_CR20x00 500E
0x00Port D data output latch registerPD_ODR
(1)
Port D input pin value registerPD_IDR0x00 5010
0xXX
0x00Port D data direction registerPD_DDR0x00 5011
0x02Port D control register 1PD_CR10x00 5012
0x00Port D control register 2PD_CR20x00 5013
0x00Port E data output latch registerPE_ODR
(1)
Port E input pin value registerPE_IDR0x00 5015
0xXX
0x00Port E data direction registerPE_DDR0x00 5016
0x00Port E control register 1PE_CR10x00 5017
29/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Memory and register map
0x00 5019
Port F
(1)
Depends on the external circuitry.

General hardware register map6.2.2

Register nameRegister labelBlockAddress
Port F input pin value registerPF_IDR0x00 501A
Table 8: General hardware register map
Register nameRegister labelBlockAddress
Reset status
0x00Port E control register 2PE_CR2Port E0x00 5018
0x00Port F data output latch registerPF_ODR
0xXX
0x00Port F data direction registerPF_DDR0x00 501B
0x00Port F control register 1PF_CR10x00 501C
0x00Port F control register 2PF_CR20x00 501D
Reset status
(1)
0x00 5059
0x00 5061
Reserved area (60 bytes)0x00 501E to
Flash0x00 505A
0x00Flash control register 1FLASH_CR1
0x00Flash control register 2FLASH_CR20x00 505B
FLASH_NCR20x00 505C
0xFFFlash complementary control register
2
0x00Flash protection registerFLASH _FPR0x00 505D
FLASH _NFPR0x00 505E
0xFFFlash complementary protection
register
FLASH _IAPSR0x00 505F
0x00Flash in-application programming
status register
Reserved area (2 bytes)0x00 5060 to
DocID15441 Rev 930/117
Memory and register mapSTM8S103K3 STM8S103F3 STM8S103F2
0x00 509F
0x00 50B2
Register nameRegister labelBlockAddress
Reset status
FLASH _PUKRFlash0x00 5062
0x00Flash program memory unprotection
register
Reserved area (1 byte)0x00 5063
0x00Data EEPROM unprotection registerFLASH _DUKRFlash0x00 5064
Reserved area (59 bytes)0x00 5065 to
0x00External interrupt control register 1EXTI_CR1ITC0x00 50A0
0x00External interrupt control register 2EXTI_CR20x00 50A1
Reserved area (17 bytes)0x00 50A2 to
(1)
Reset status registerRST_SRRST0x00 50B3
0xXX
0x00 50BF
Reserved area (12 bytes)0x00 50B4 to
0x01Internal clock control registerCLK_ICKRCLK0x00 50C0
0x00External clock control registerCLK_ECKR0x00 50C1
Reserved area (1 byte)0x00 50C2
0xE1Clock master status registerCLK_CMSRC0x00 50C3
0xE1Clock master switch registerCLK_SWR0x00 50C4
0xXXClock switch control registerCLK_SWCR0x00 50C5
0x18Clock divider registerCLK_CKDIVR0x00 50C6
0xFFPeripheral clock gating register 1CLK_PCKENR10x00 50C7
0x00Clock security system registerCLK_CSSR0x00 50C8
31/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Memory and register map
0x00 50D0
50DF
Register nameRegister labelBlockAddress
Reset status
0x00Configurable clock control registerCLK_CCOR0x00 50C9
0xFFPeripheral clock gating register 2CLK_PCKENR20x00 50CA
CLK_HSITRIMR0x00 50CC
0x00HSI clock calibration trimming
register
SWIM clock control registerCLK_SWIMCCR0x00 50CD
0bXXXX XXX0
ReservLK ed area (3 bytes)0x00 50CE to
0x7FWWDG control registerWWDG_CRWWDG0x00 50D1
0x7FWWDR window registerWWDG_WR0x00 50D2
Reserved area (13 bytes)0x00 50D3 to 00
0x00 50EF
(2)
IWDG key registerIWDG_KRIWDG0x00 50E0
0xXX
0x00IWDG prescaler registerIWDG_PR0x00 50E1
0xFFIWDG reload registerIWDG_RLR0x00 50E2
Reserved area (13 bytes)0x00 50E3 to
0x00AWU control/status register 1AWU_CSR1AWU0x00 50F0
AWU_APR0x00 50F1
0x3FAWU asynchronous prescaler buffer
register
0x00AWU timebase selection registerAWU_TBR0x00 50F2
0x1FBEEP control/status registerBEEP_CSRBEEP0x00 50F3
DocID15441 Rev 932/117
Memory and register mapSTM8S103K3 STM8S103F3 STM8S103F2
0x00 50FF
Register nameRegister labelBlockAddress
Reset status
Reserved area (12 bytes)0x00 50F4 to
0x00SPI control register 1SPI_CR1SPI0x00 5200
0x00SPI control register 2SPI_CR20x00 5201
0x00SPI interrupt control registerSPI_ICR0x00 5202
0x02SPI status registerSPI_SR0x00 5203
0x00SPI data registerSPI_DR0x00 5204
0x07SPI CRC polynomial registerSPI_CRCPR0x00 5205
0xFFSPI Rx CRC registerSPI_RXCRCR0x00 5206
0x00 520F
0xFFSPI Tx CRC registerSPI_TXCRCR0x00 5207
Reserved area (8 bytes)0x00 5208 to
0x00I2C control register 1I2C_CR1I2C0x00 5210
0x00I2C control register 2I2C_CR20x00 5211
0x00I2C frequency registerI2C_FREQR0x00 5212
0x00I2C Own address register lowI2C_OARL0x00 5213
0x00I2C Own address register highI2C_OARH0x00 5214
Reserved0x00 5215
0x00I2C data registerI2C_DR0x00 5216
0x00I2C status register 1I2C_SR10x00 5217
33/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Memory and register map
0x00 522F
Register nameRegister labelBlockAddress
Reset status
0x00I2C status register 2I2C_SR20x00 5218
0x0XI2C status register 3I2C_SR30x00 5219
0x00I2C interrupt control registerI2C_ITR0x00 521A
0x00I2C Clock control register lowI2C_CCRL0x00 521B
0x00I2C Clock control register highI2C_CCRH0x00 521C
0x02I2C TRISE registerI2C_TRISER0x00 521D
0x00I2C packet error checking registerI2C_PECR0x00 521E
Reserved area (17 bytes)0x00 521F to
0xC0UART1 status registerUART1_SRUART10x00 5230
0xXXUART1 data registerUART1_DR0x00 5231
0x00UART1 baud rate register 1UART1_BRR10x00 5232
0x00UART1 baud rate register 2UART1_BRR20x00 5233
0x00UART1 control register 1UART1_CR10x00 5234
0x00UART1 control register 2UART1_CR20x00 5235
0x00UART1 control register 3UART1_CR30x00 5236
0x00UART1 control register 4UART1_CR40x00 5237
0x00UART1 control register 5UART1_CR50x00 5238
0x00UART1 guard time registerUART1_GTR0x00 5239
0x00UART1 prescaler registerUART1_PSCR0x00 523A
DocID15441 Rev 934/117
Memory and register mapSTM8S103K3 STM8S103F3 STM8S103F2
0x00 523F
Register nameRegister labelBlockAddress
Reset status
Reserved area (21 bytes)0x00 523B to
0x00TIM1 control register 1TIM1_CR1TIM10x00 5250
0x00TIM1 control register 2TIM1_CR20x00 5251
0x00TIM1 slave mode control registerTIM1_SMCR0x00 5252
0x00TIM1 external trigger registerTIM1_ETR0x00 5253
0x00TIM1 interrupt enable registerTIM1_IER0x00 5254
0x00TIM1 status register 1TIM1_SR10x00 5255
0x00TIM1 status register 2TIM1_SR20x00 5256
0x00TIM1 event generation registerTIM1_EGR0x00 5257
TIM1_CCMR10x00 5258
0x00TIM1 capture/compare mode register
1
TIM1_CCMR20x00 5259
0x00TIM1 capture/compare mode register
2
TIM1_CCMR30x00 525A
0x00TIM1 capture/compare mode register
3
TIM1_CCMR40x00 525B
0x00TIM1 capture/compare mode register
4
TIM1_CCER10x00 525C
0x00TIM1 capture/compare enable
register 1
TIM1_CCER20x00 525D
0x00TIM1 capture/compare enable
register 2
0x00TIM1 counter highTIM1_CNTRH0x00 525E
35/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Memory and register map
Register nameRegister labelBlockAddress
Reset status
0x00TIM1 counter lowTIM1_CNTRL0x00 525F
0x00TIM1 prescaler register highTIM1_PSCRH0x00 5260
0x00TIM1 prescaler register lowTIM1_PSCRL0x00 5261
0xFFTIM1 auto-reload register highTIM1_ARRH0x00 5262
0xFFTIM1 auto-reload register lowTIM1_ARRL0x00 5263
0x00TIM1 repetition counter registerTIM1_RCR0x00 5264
0x00TIM1 capture/compare register 1 highTIM1_CCR1H0x00 5265
0x00TIM1 capture/compare register 1 lowTIM1_CCR1L0x00 5266
0x00TIM1 capture/compare register 2 highTIM1_CCR2H0x00 5267
0x00 52FF
0x00TIM1 capture/compare register 2 lowTIM1_CCR2L0x00 5268
0x00TIM1 capture/compare register 3 highTIM1_CCR3H0x00 5269
0x00TIM1 capture/compare register 3 lowTIM1_CCR3L0x00 526A
0x00TIM1 capture/compare register 4 highTIM1_CCR4H0x00 526B
0x00TIM1 capture/compare register 4 lowTIM1_CCR4L0x00 526C
0x00TIM1 break registerTIM1_BKR0x00 526D
0x00TIM1 dead-time registerTIM1_DTR0x00 526E
0x00TIM1 output idle state registerTIM1_OISR0x00 526F
Reserved area (147 bytes)0x00 5270 to
0x00TIM2 control register 1TIM2_CR1TIM20x00 5300
DocID15441 Rev 936/117
Memory and register mapSTM8S103K3 STM8S103F3 STM8S103F2
Register nameRegister labelBlockAddress
Reset status
Reserved0x00 5301
Reserved0x00 5302
0x00TIM2 Interrupt enable registerTIM2_IER0x00 5303
0x00TIM2 status register 1TIM2_SR10x00 5304
0x00TIM2 status register 2TIM2_SR20x00 5305
0x00TIM2 event generation registerTIM2_EGR0x00 5306
TIM2_CCMR10x00 5307
0x00TIM2 capture/compare mode register
1
TIM2_CCMR20x00 5308
0x00TIM2 capture/compare mode register
2
TIM2_CCMR30x00 5309
0x00TIM2 capture/compare mode register
3
TIM2_CCER10x00 530A
0x00TIM2 capture/compare enable
register 1
TIM2_CCER20x00 530B
0x00TIM2 capture/compare enable
register 2
0x00TIM2 counter highTIM2_CNTRH0x00 530C
0x00TIM2 counter lowTIM2_CNTRL0x00 530D
0x00TIM2 prescaler registerTIM2_PSCR0x00 530E
0xFFTIM2 auto-reload register highTIM2_ARRH0x00 530F
0xFFTIM2 auto-reload register lowTIM2_ARRL0x00 5310
0x00TIM2 capture/compare register 1 highTIM2_CCR1H0x00 5311
37/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Memory and register map
0x00 533F
Register nameRegister labelBlockAddress
Reset status
0x00TIM2 capture/compare register 1 lowTIM2_CCR1L0x00 5312
0x00TIM2 capture/compare reg. 2 highTIM2_CCR2H0x00 5313
0x00TIM2 capture/compare register 2 lowTIM2_CCR2L0x00 5314
0x00TIM2 capture/compare register 3 highTIM2_CCR3H0x00 5315
0x00TIM2 capture/compare register 3 lowTIM2_CCR3L0x00 5316
Reserved area (43 bytes)0x00 5317 to
0x00TIM4 control register 1TIM4_CR1TIM40x00 5340
Reserved0x00 5341
0x00 53DF
0x00 53F3
Reserved0x00 5342
0x00TIM4 interrupt enable registerTIM4_IER0x00 5343
0x00TIM4 status registerTIM4_SR0x00 5344
0x00TIM4 event generation registerTIM4_EGR0x00 5345
0x00TIM4 counterTIM4_CNTR0x00 5346
0x00TIM4 prescaler registerTIM4_PSCR0x00 5347
0xFFTIM4 auto-reload registerTIM4_ARR0x00 5348
Reserved area (153 bytes)0x00 5349 to
0x00ADC data buffer registersADC _DBxRADC10x00 53E0 to
0x00 53FF
Reserved area (12 bytes)0x00 53F4 to
DocID15441 Rev 938/117
Memory and register mapSTM8S103K3 STM8S103F3 STM8S103F2
Register nameRegister labelBlockAddress
Reset status
0x00ADC control/status registerADC _CSRADC10x00 5400
0x00ADC configuration register 1ADC_CR10x00 5401
0x00ADC configuration register 2ADC_CR20x00 5402
0x00ADC configuration register 3ADC_CR30x00 5403
0xXXADC data register highADC_DRH0x00 5404
0xXXADC data register lowADC_DRL0x00 5405
ADC_TDRH0x00 5406
0x00ADC Schmitt trigger disable register
high
ADC_TDRL0x00 5407
0x00ADC Schmitt trigger disable register
low
0x03ADC high threshold register highADC_HTRH0x00 5408
0xFFADC high threshold register lowADC_HTRL0x00 5409
0x00ADC low threshold register highADC_LTRH0x00 540A
0x00ADC low threshold register lowADC_LTRL0x00 540B
ADC_AWSRH0x00 540C
0x00ADC analog watchdog status register
high
ADC_AWSRL0x00 540D
0x00ADC analog watchdog status register
low
ADC _AWCRH0x00 540E
0x00ADC analog watchdog control
register high
ADC_AWCRL0x00 540F
0x00ADC analog watchdog control
register low
39/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Memory and register map
Reserved area (1008 bytes)0x00 5410 to
0x00 57FF
(1)
Depends on the previous reset source.
(2)
Write only register.

CPU/SWIM/debug module/interrupt controller registers6.2.3

Table 9: CPU/SWIM/debug module/interrupt controller registers
0x00 7F00
Register nameRegister labelBlockAddress
Reset status
Reset statusRegister nameRegister labelBlockAddress
0x00AccumulatorA
0x00Program counter extendedPCE0x00 7F01
0x00Program counter highPCH0x00 7F02
0x00Program counter lowPCL0x00 7F03
0x00 7F0B to 0x00 7F5F
0x00 7F70
CPU
ITC
(1)
0x00X index register highXH0x00 7F04
0x00X index register lowXL0x00 7F05
0x00Y index register highYH0x00 7F06
0x00Y index register lowYL0x00 7F07
0x03Stack pointer highSPH0x00 7F08
0xFFStack pointer lowSPL0x00 7F09
0x28Condition code registerCCR0x00 7F0A
Reserved area (85 bytes)
0x00Global configuration registerCFG_GCRCPU0x00 7F60
0xFFInterrupt software priority register 1ITC_SPR1
0xFFInterrupt software priority register 2ITC_SPR20x00 7F71
0xFFInterrupt software priority register 3ITC_SPR30x00 7F72
0xFFInterrupt software priority register 4ITC_SPR40x00 7F73
0xFFInterrupt software priority register 5ITC_SPR50x00 7F74
DocID15441 Rev 940/117
Memory and register mapSTM8S103K3 STM8S103F3 STM8S103F2
Reset statusRegister nameRegister labelBlockAddress
0xFFInterrupt software priority register 6ITC_SPR60x00 7F75
0xFFInterrupt software priority register 7ITC_SPR70x00 7F76
0xFFInterrupt software priority register 8ITC_SPR80x00 7F77
0x00 7F78 to 0x00 7F79
0x00 7F81 to 0x00 7F8F
0x00 7F90
DM
DM_BK1RE
DM_BK2RE0x00 7F93
DM_CSR10x00 7F98
Reserved area (2 bytes)
0x00SWIM control status registerSWIM_CSRSWIM0x00 7F80
Reserved area (15 bytes)
0xFFDM breakpoint 1 register extended
byte
0xFFDM breakpoint 1 register high byteDM_BK1RH0x00 7F91
0xFFDM breakpoint 1 register low byteDM_BK1RL0x00 7F92
0xFFDM breakpoint 2 register extended
byte
0xFFDM breakpoint 2 register high byteDM_BK2RH0x00 7F94
0xFFDM breakpoint 2 register low byteDM_BK2RL0x00 7F95
0x00DM debug module control register 1DM_CR10x00 7F96
0x00DM debug module control register 2DM_CR20x00 7F97
0x10DM debug module control/status
register 1
0x00 7F9F
(1)
Accessible by debug module only
DM_CSR20x00 7F99
0x00DM debug module control/status
register 2
0xFFDM enable function registerDM_ENFCTR0x00 7F9A
Reserved area (5 bytes)0x00 7F9B to
41/117DocID15441 Rev 9

STM8S103K3 STM8S103F3 STM8S103F2Interrupt vector mapping

Interrupt vector mapping7
Table 10: Interrupt mapping
IRQ no.
block
DescriptionSource
Port A external interruptsEXTI03
Wakeup from halt mode
(1)
Yes
active-halt mode
(1)
Vector addressWakeup from
0x00 8000YesYesResetRESET
0x00 8004--Software interruptTRAP
0x00 8008--External top level interruptTLI0
0x00 800CYes-Auto wake up from haltAWU1
0x00 8010--Clock controllerCLK2
0x00 8014Yes
0x00 8018YesYesPort B external interruptsEXTI14
0x00 801CYesYesPort C external interruptsEXTI25
0x00 8020YesYesPort D external interruptsEXTI36
0x00 8024YesYesPort E external interruptsEXTI47
0x00 8028--Reserved8
0x00 802C--Reserved9
0x00 8030YesYesEnd of transferSPI10
11
22
TIM1
ADC1
0x00 8034--TIM1 update/ overflow/ underflow/
trigger/ break
0x00 8038--TIM1 capture/ compareTIM112
0x00 803C--TIM2 update/ overflowTIM213
0x00 8040--TIM2 capture/ compareTIM214
0x00 8044--Reserved15
0x00 8048--Reserved16
0x00 804C--Tx completeUART117
0x00 8050--Receive register DATA FULLUART118
0x00 8054YesYesI2C interruptI2C19
0x00 8058--Reserved20
0x00 805C--Reserved21
0x00 8060--ADC1 end of conversion/ analog
watchdog interrupt
DocID15441 Rev 942/117
Interrupt vector mappingSTM8S103K3 STM8S103F3 STM8S103F2
IRQ
block
no.
(1)
Except PA1
DescriptionSource
Wakeup from halt mode
active-halt mode
Vector addressWakeup from
0x00 8064--TIM4 update/ overflowTIM423
0x00 8068--EOP/WR_PG_DISFlash24
Reserved
0x00 806C to 0x00 807C
43/117DocID15441 Rev 9

STM8S103K3 STM8S103F3 STM8S103F2Option bytes

Option bytes8
Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Except for the ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form (OPTx) and a complemented one (NOPTx) for redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in the table below.
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the ROP option that can only be modified in ICP mode (via SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.
Table 11: Option bytes
Addr.
0x4800
0x4801
0x4803
0x4805h
0x4807
0x4809
Option name
protection (ROP)
code(UBC)
function remapping (AFR)
option
option
startup
byte no.
Option bitsOption
01234567
AFR6AFR7OPT2Alternate
ReservedOPT3Miscell.
ReservedNOPT30x4806
ReservedNOPT40x4808
TRIM
NHSI TRIM
LSI_ ENHSI
NLSI_ EN
EXT CLKReservedOPT4Clock
NEXT CLK
IWDG _HW
NIWDG _HW
SEL
WUSEL
WWDG _HW
NWWDG _HW
NPRSC1NCKA
_HALT
G_HALT
SC0
Factory default setting
0x00ROP [7:0]OPT0Read-out
0x00UBC [7:0]OPT1User boot
0xFFNUBC [7:0]NOPT10x4802
0x00AFR0AFR1AFR2AFR3AFR4AFR5
0xFFNAFR0NAFR1NAFR2NAFR3NAFR4NAFR5NAFR6NAFR7NOPT20x4804
0x00WWDG
0xFFNWW
0x00PRS C0PRS C1CKAWU
0xFFNPR
0x00HSECNT [7:0]OPT5HSE clock
0xFFNHSECNT [7:0]NOPT50x480A
OPT0
Table 12: Option byte description
DescriptionOption byte no.
ROP[7:0] Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
DocID15441 Rev 944/117
Option bytesSTM8S103K3 STM8S103F3 STM8S103F2
DescriptionOption byte no.
Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM memory readout protection for details.
OPT1
OPT2
OPT3
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Page 0 defined as UBC, memory write-protected
0x02: Pages 0 to 1 defined as UBC, memory write-protected.
Page 0 and 1 contain the interrupt vectors.
...
0x7F: Pages 0 to 126 defined as UBC, memory write-protected
Other values: Pages 0 to 127 defined as UBC, memory write-protected
Note: Refer to the family reference manual (RM0016) section on Flash write protection for more details.
AFR[7:0]
Refer to following section for alternate function remapping decriptions of bits [7:2] and [1:0] respectively.
HSITRIM:High speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
LSI_EN:Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
45/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Option bytes
DescriptionOption byte no.
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
OPT4
OPT5
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
CKAWUSEL:Auto wake-up unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for for AWU
PRSC[1:0] AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
HSECNT[7:0]:HSE crystal oscillator stabilization time
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles

Alternate function remapping bits8.1

Table 13: STM8S103K alternate function remapping bits for 32-pin devices
Option byte no.
OPT2
Description
AFR7 Alternate function remapping option 7
Reserved.
AFR6 Alternate function remapping option 6
0: AFR6 remapping option inactive: Default alternate function
1: Port D7 alternate function = TIM1_CH4.
AFR5 Alternate function remapping option 5
0: AFR5 remapping option inactive: Default alternate function
(1)
DocID15441 Rev 946/117
(2)
(2)
.
.
Option bytesSTM8S103K3 STM8S103F3 STM8S103F2
Option byte no.
Description
(1)
1: Port D0 alternate function = CLK_CCO.
AFR[4:2] Alternate function remapping options 4:2
Reserved.
AFR1 Alternate function remapping option 1
0: AFR1 remapping option inactive: Default alternate functions
1: Port A3 alternate function = SPI_NSS; port D2 alternate function = TIM2_CH3.
AFR0 Alternate function remapping option 0
Reserved.
(1)
Do not use more than one remapping option in the same port. It is forbidden to enable
both AFR1 and AFR0.
(2)
Refer to pinout description.
Table 14: STM8S103F alternate function remapping bits for 20-pin devices
DescriptionOption byte no.
(2)
.
OPT2
AFR7 Alternate function remapping option 7
0: AFR7 remapping option inactive: Default alternate functions
(1)
.
1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function = TIM1_CH2N.
AFR6 Alternate function remapping option 6
Reserved.
AFR5 Alternate function remapping option 5
Reserved.
AFR4 Alternate function remapping option 4
0: AFR4 remapping option inactive: Default alternate functions
(1)
.
1: Port B4 alternate function = ADC_ETR; port B5 alternate function = TIM1_BKIN.
AFR3 Alternate function remapping option 3
0: AFR3 remapping option inactive: Default alternate function
(1)
.
1: Port C3 alternate function = TLI.
AFR2 Alternate function remapping option 2
47/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Option bytes
DescriptionOption byte no.
Reserved
AFR1 Alternate function remapping option 1
(2)
0: AFR1 remapping option inactive: Default alternate functions
(1)
.
1: Port A3 alternate function = SPI_NSS; port D2 alternate function = TIM2_CH3.
AFR0 Alternate function remapping option 0
0: AFR0 remapping option inactive: Default alternate functions
(1)
.
1: Port C5 alternate function = TIM2_CH1; port C6 alternate function = TIM1_CH1; port C7 alternate function = TIM1_CH2.
(1)
Refer to pinout description.
(2)
Do not use more than one remapping option in the same port. It is forbidden to enable
both AFR1 and AFR0.
(2)
DocID15441 Rev 948/117

Unique IDSTM8S103K3 STM8S103F3 STM8S103F2

Unique ID9
The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.
The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.
The unique device identifier is ideally suited:
For use as serial numbers
For use as security keys to increase the code security in the program memory while using
and combining this unique ID with software cryptograhic primitives and protocols before programming the internal memory.
To activate secure boot processes
Table 15: Unique ID registers (96 bits)
Address
0x4865
0x4867
0x486A
description
X co-ordinate
on the wafer
Y co-ordinate
on the wafer
Lot number
Unique ID bitsContent
01234567
U_ID[7:0]
U_ID[15:8]0x4866
U_ID[23:16]
U_ID[31:24]0x4868
U_ID[39:32]Wafer number0x4869
U_ID[47:40]
U_ID[55:48]0x486B
U_ID[63:56]0x486C
U_ID[71:64]0x486D
U_ID[79:72]0x486E
U_ID[87:80]0x486F
U_ID[95:88]0x4870
49/117DocID15441 Rev 9
STM8 PIN
50 pF

STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics

Electrical characteristics10

Parameter conditions10.1

Unless otherwise specified, all voltages are referred to VSS.

Minimum and maximum values10.1.1

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100 % of the devices with an ambient temperature at TA= 25 °C and TA= T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ± 3 Σ).

Typical values10.1.2

Unless otherwise specified, typical data are based on TA= 25 °C, VDD= 5 V. They are given only as design guidelines and are not tested.
Amax
(given by
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ± 2 Σ).

Typical curves10.1.3

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

Loading capacitor10.1.4

The loading conditions used for pin parameter measurement are shown in the following figure.
Figure 8: Pin loading conditions
DocID15441 Rev 950/117
STM8 PIN
V
IN
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2

Pin input voltage10.1.5

The input voltage measurement on a pin of the device is described in the following figure.
Figure 9: Pin input voltage

Absolute maximum ratings10.2

Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Table 16: Voltage characteristics
UnitMaxMinRatingsSymbol
V
V
|V
|V
V
DDx
IN
DDx
SSx
ESD
- V
SS
- VDD|
- VSS|
Supply voltage
Input voltage on true open drain pins
Input voltage on any other pin
Variations between different power pins
Variations between all the different ground pins
Electrostatic discharge voltage
(1)
(2)
(2)
VDD+ 0.3VSS- 0.3
See "Absolute maximum ratings
6.5-0.3
6.5VSS- 0.3
V
50-
mV
50-
(electrical sensitivity)"
(1)
All power (VDD) and ground (VSS) pins must always be connected to the external power supply
(2)
I
cannot be respected, the injection current must be limited externally to the I
must never be exceeded. This is implicitly insured if VINmaximum is respected. If VINmaximum
INJ(PIN)
INJ(PIN)
value. A positive injection is induced by VIN>VDDwhile a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding VINmaximum must always be respected
51/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Table 17: Current characteristics
Unit
mA
I
VDD
I
VSS
I
IO
RatingsSymbol
Total current into VDDpower lines (source)
Total current out of VSSground lines (sink)
(2)
(2)
Output current sunk by any I/O and control pin
Max
Output current source by any I/Os and control pin
I
INJ(PIN)
(3) (4)
Injected current on NRST pin
Injected current on OSCIN pin
Injected current on any other pin
ΣI
INJ(PIN)
(1)
Data based on characterization results, not tested in production.
(2)
All power (VDD) and ground (VSS) pins must always be connected to the external supply.
(3)
I
(3)
Total injected current (sum of all I/O and control pins)
must never be exceeded. This is implicitly insured if VINmaximum is respected. If VINmaximum
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I
(5)
(5)
INJ(PIN)
value. A positive
(1)
100
80
20
- 20
± 4
± 4
± 4
± 20
injection is induced by VIN>VDDwhile a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding VINmaximum must always be respected
(4)
ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I
INJ(PIN)
(5)
and ΣI
INJ(PIN)
in the I/O port pin characteristics section does not affect the ADC accuracy.
When several inputs are submitted to a current injection, the maximum ΣI
INJ(PIN)
is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI
INJ(PIN)
maximum current injection on four I/O port pins of the device.
STG
J
Table 18: Thermal characteristics
UnitValueRatingsSymbol
-65 to +150Storage temperature rangeT °C
150Maximum junction temperatureT
DocID15441 Rev 952/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2

Operating conditions10.3

Table 19: General operating conditions
UnitMaxMinConditionsParameterSymbol
CPU
DD
VCAP
(3)
P
D
(1)
C
: capacitance of
EXT
external capacitor
ESR of external
capacitor
ESL of external
capacitor
Power dissipation at TA= 85 °C
for suffix 6
at 1 MHz
MHz160Internal CPU clock frequencyf
V5.52.95Standard operating voltageV
nF3300470
(2)
Ω0.3-
nH15-
238-TSSOP20
220-SO20W
220-UFQFPN20
330-LQFP32
526-UFQFPN32
330-SDIP32
mW
59-TSSOP20
55-SO20W
Power dissipation at TA= 125 °C
for suffix 3
55-UFQFPN20
83-LQFP32
132-UFQFPN32
83-SDIP32
T
A
version
T
A
version
T
J
Junction temperature range
Maximum power dissipationAmbient temperature for 6 suffix
85-40
Maximum power dissipationAmbient temperature for 3 suffix
125-40
°C
105-406 suffix version
130-403 suffix version
53/117DocID15441 Rev 9
16
12
8 4
0
2.95
4.0
5.0
5.5
f
CPU
(MHz)
Functionality guaranteed
@TA-40 to 125 °C
Supply voltage
Functionality not guaranteed in this area
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
(1)
Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.
(2)
This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
(3)
To calculate P
value for T
Dmax(TA
given in the previous table and the value for ΘJAgiven in Thermal characteristics.
Jmax
), use the formula P
Dmax
=(T
- TA)/ΘJA(see Thermal characteristics ) with the
Jmax
t
VDD
Figure 10: f
CPUmax
versus V
DD
Table 20: Operating conditions at power-up/power-down
(1)
UnitMaxTypMinConditionsParameterSymbol
-2VDDrise time rate
μs/V
-2VDDfall time rate
TEMP
IT+
IT-
HYS(BOR)
(1)
Reset is always generated after a t
minimum ooperating voltage (VDDmin) when the t

VCAP external capacitor10.3.1

Stabilization for the main regulator is achieved connecting an external capacitor C V
CAP
pin. C
is specified in the Operating conditions section. Care should be taken to limit
EXT
the series inductance to less than 15 nH.
2.852.72.6Power-on reset thresholdV
2.82.652.5Brown-out reset thresholdV
delay. The application must ensure that VDDis still above the
TEMP
DocID15441 Rev 954/117
delay has elapsed.
TEMP
EXT
ms1.7-- -VDDrisingReset release delayt
V
mV-70-Brown-out reset hysteresisV
to the
ESR
R
Leak
ESL
C
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 11: External capacitor C
EXT
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.

Supply current characteristics10.3.2

The current consumption is measured as described in Pin input voltage.
Total current consumption in run mode10.3.2.1
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at VDDor VSS(no load)
All peripherals are disabled (clock stopped by peripheral clock gating registers) except if
explicitly mentioned.
I
DD(RUN)
Subject to general operating conditions for VDDand TA.
Table 21: Total current consumption with code execution in run mode at VDD= 5 V
TypConditionsParameterSymbol
Max
(1)
-2.3HSE crystal osc. (16 MHz)
f
= f
CPU
16 MHz
MASTER
=
2.352HSE user ext. clock (16 MHz)
21.7HSI RC osc. (16 MHz)
Supply current
in run mode,
code executed
from RAM
Supply current
in run mode,
code executed
from Flash
= f
CPU
MASTER
125 kHz
f
= f
CPU
MASTER
15.625 kHz
f
= f
CPU
MASTER
128 kHz
f
= f
CPU
MASTER
16 MHz
/128 =
/128 =
=
4.5HSE crystal osc. (16 MHz)
=
-0.86HSE user ext. clock (16 MHz)f
0.870.7HSI RC osc. (16 MHz)
0.580.46HSI RC osc. (16 MHz/8)
0.550.41LSI RC osc. (128 kHz)
4.754.3HSE user ext. clock (16 MHz)
4.53.7HSI RC osc. (16 MHz)
Unit
mA
55/117DocID15441 Rev 9
f
CPU
= f
MASTER
=
2 MHz
f
I
DD(RUN)
Supply current
in run mode,
code executed
from Flash
= f
CPU
125 kHz
f
= f
CPU
MASTER
MASTER
/128 =
/128 =
15.625 kHz
f
CPU
= f
MASTER
=
128 kHz
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
(1)
Unit
(2)
TypConditionsParameterSymbol
Max
1.050.84HSI RC osc. (16 MHz/8)
0.90.72HSI RC osc. (16 MHz)
mA
0.580.46HSI RC osc. (16 MHz/8)
0.570.42LSI RC osc. (128 kHz)
Table 22: Total current consumption with code execution in run mode at VDD= 3.3 V
TypConditionsParameterSymbol
f
CPU
= f
MASTER
=
16 MHz
Supply current
in run mode,
= f
CPU
MASTER
128 = 125 kHz
/
code executed
from RAM
f
CPU
= f
MASTER
/
128 = 15.625 kHz
I
DD(RUN)
f
CPU
= f
MASTER
=
128 kHz
f
Supply current
= f
CPU
16 MHz
MASTER
=
in run mode,
code executed
from Flash
f
CPU
= f
MASTER
=
(2)
2 MHz
Max
2.32HSE user ext. clock (16 MHz)
0.870.7HSI RC osc. (16 MHz)
0.580.46HSI RC osc. (16 MHz/8)
0.550.41LSI RC osc. (128 kHz)
4.73.9HSE user ext. clock (16 MHz)
4.53.7HSI RC osc. (16 MHz)
1.050.84HSI RC osc. (16 MHz/8)
Unit
(1)
-1.8HSE crystal osc. (16 MHz)
21.5HSI RC osc. (16 MHz)
-0.81HSE user ext. clock (16 MHz)f
mA
-4HSE crystal osc. (16 MHz)
CPU
= f
MASTER
/
DocID15441 Rev 956/117
0.90.72HSI RC osc. (16 MHz)f
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
128 = 125 kHz
f
= f
CPU
MASTER
128 = 15.625 kHz
f
= f
CPU
MASTER
/
HSI RC osc. (16 MHz/8)
=
128 kHz
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
Total current consumption in wait mode10.3.2.2
Table 23: Total current consumption in wait mode at VDD= 5 V
f
= f
CPU
16 MHz
MASTER
=
TypConditionsParameterSymbol
Max
(1)
Unit
0.580.46
0.570.42LSI RC osc. (128 kHz)
TypConditionsParameterSymbol
Max
(1)
Unit
-1.6HSE crystal osc. (16 MHz)
1.31.1HSE user ext. clock (16 MHz)
1.10.89HSI RC osc. (16 MHz)
f
I
DD(WFI)
Supply
current in
= f
CPU
125 kHz
MASTER
/128 =
wait mode
f
CPU
= f
MASTER
/128 =
15.625 kHz
f
CPU
= f
MASTER
=
128 kHz
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
Table 24: Total current consumption in wait mode at VDD= 3.3 V
HSE crystal osc.
(16 MHz)
I
DD(WFI)
Supply current
in wait mode
f
= f
CPU
16 MHz
MASTER
=
(2)
0.880.7HSI RC osc. (16 MHz) mA
0.570.45HSI RC osc. (16 MHz/8)
0.540.4LSI RC osc. (128 kHz)
TypConditionsParameterSymbol
Max
(1)
Unit
mA-1.1
57/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
HSE user ext. clock
(16 MHz)
HSI RC osc.
(16 MHz)
f
CPU
= f
MASTER
/ 128 =
125 kHz
f
CPU
= f
MASTER
/ 128 =
15.625 kHz
f
CPU
= f
MASTER
=
128 kHz
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
HSI RC osc.
(16 MHz)
HSI RC osc.
(16 MHz/8)
LSI RC osc.
(128 kHz)
(2)
TypConditionsParameterSymbol
Max
(1)
Unit
1.31.1
1.10.89
0.880.7
0.570.45
0.540.4
I
DD(AH)
I
DD(AH)
I
DD(AH)
I
DD(AH)
Total current consumption in active halt mode10.3.2.3
Table 25: Total current consumption in active halt mode at VDD= 5 V
Conditions
ParameterSymbol
Supply current in active halt mode
Supply current in active halt mode
Supply current in active halt mode
Supply current in active halt mode
Main voltage regulator
(2)
(MVR)
(3)
Clock sourceFlash mode
HSE crystal osc.
Operating modeOn
(16 MHz)
LSI RC osc.
Operating modeOn
(128 kHz)
HSE crystal osc.
Power-down modeOn
(16 MHz)
LSI RC osc.
Power-down modeOn
(128 kHz)
Typ
Max at 85 °C
(1)
Max at 125 °C
(1)
--1030
300260200
--970
230200150
Unit
μA
DocID15441 Rev 958/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Conditions
Main
ParameterSymbol
voltage regulator
(2)
(MVR)
(3)
Clock sourceFlash mode
Supply current
I
DD(AH)
in active halt
Operating mode
mode
Off
Supply current
I
DD(AH)
in active halt
Power-down mode
mode
(1)
Data based on characterization results, not tested in production
(2)
Configured by the REGAH bit in the CLK_ICKR register.
(3)
Configured by the AHALT bit in the FLASH_CR1 register.
Table 26: Total current consumption in active halt mode at VDD= 3.3 V
Conditions
Main
ParameterSymbol
voltage regulator
(2)
(MVR)
(3)
Clock sourceFlash mode
LSI RC osc.
(128 kHz)
LSI RC osc.
(128 kHz)
Typ
Typ
Max at 85 °C
(1)
Max at 85 °C
(1)
Max at 125 °C
(1)
1108566
402010
Max at 125 °C
(1)
Unit
Unit
HSE crystal osc. (16 MHz)Operating modeOn
I
DD(AH)
Supply current
in active halt
mode
LSI RC osc.
I
DD(AH)
Supply current
Operating mode
(128 kHz)
in active halt
I
DD(AH)
mode
On
HSE crystal osc. (16 MHz)
Power-down
mode
I
DD(AH)
Supply current
I
DD(AH)
in active halt
mode
Off
I
DD(AH)
(1)
Data based on characterization results, not tested in production
(2)
Configured by the REGAH bit in the CLK_ICKR register.
(3)
Configured by the AHALT bit in the FLASH_CR1 register.
Operating mode
Power-down
mode
LSI RC osc.
(128 kHz)
(128 kHz)
μA--550
290260200
--970
μA
230200150
1058066LSI RC osc.
351810
59/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Total current consumption in halt mode10.3.2.4
Table 27: Total current consumption in halt mode at VDD= 5 V
Flash in operating mode, HSI clock after wakeup
I
DD(H)
Supply current in halt mode
Flash in power-down mode, HSI clock after wakeup
(1)
Data based on characterization results, not tested in production
Table 28: Total current consumption in halt mode at VDD= 3.3 V
Flash in operating mode, HSI clock after wakeup
I
DD(H)
Supply current in halt mode
Flash in power-down mode, HSI clock after wakeup
(1)
Data based on characterization results, not tested in production
(1)
Max at 125 °C
(1)
Unit
TypConditionsParameterSymbol
Max at 85 °C
1057563
μA
55206.0
(1)
Max at 125 °C
(1)
Unit
TypConditionsParameterSymbol
Max at 85 °C
1007560
μA
30174.5
t
WU(WFI)
t
WU(AH)
Low power mode wakeup times10.3.2.5
Wakeup time from
wait mode to run
(3)
Wakeup time active
halt mode to run
(3)
mode
Wakeup time active
halt mode to run
(3)
mode
Table 29: Wakeup times
CPU
= f
MASTER
= 16 MHzmode
MVR voltage
Flash in operating
regulator
(4)
on
MVR voltage
regulator
(4)
on
mode
Flash in
power-down
DocID15441 Rev 960/117
(5)
(5)
HSI
(after
wakeup)
HSI
(after
wakeup)mode
(1)
TypConditionsParameterSymbol
Max
See
-0 to 16 MHz note
Unit
(2)
0.56f
(6)
1
(6)
(6)
2
μs
-3
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
(1)
TypConditionsParameterSymbol
Max
Unit
Wakeup time active
MVR voltage
Flash in operating
halt mode to run
(3)
mode
Wakeup time active
halt mode to run
(3)
mode
regulator
(4)
off
MVR voltage
regulator
(4)
off
mode
Flash in
power-down
Wakeup time from
t
WU(H)
(1)
Data guaranteed by design, not tested in production.
(2)
t
WU(WFI)
(3)
Measured from interrupt event to interrupt vector fetch.
(4)
Configured by the REGAH bit in the CLK_ICKR register.
(5)
Configured by the AHALT bit in the FLASH_CR1 register.
(6)
Plus 1 LSI clock depending on synchronization.
halt mode to run
(3)
mode
= 2 x 1/f
master
+ 6 x 1/f
CPU.
(5)
(5)
(5)
(5)
HSI
(after
wakeup)
HSI
(after
wakeup)mode
(6)
(6)
-48
-50
-52Flash in operating mode
-54Flash in power-down mode
Total current consumption and timing in forced reset state10.3.2.6
Table 30: Total current consumption and timing in forced reset state
I
DD(R)
(2)
state
t
RESETBL
Reset pin release to
vector fetch
(1)
Data guaranteed by design, not tested in production.
(2)
Characterized with all I/Os tied to VSS.
Current consumption of on-chip peripherals10.3.2.7
Subject to general operating conditions for VDDand TA.
TypConditionsParameterSymbol
Max
(1)
Unit
-400VDD= 5 VSupply current in reset μA
-300VDD= 3.3 V
μs150-
61/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
HSI internal RC/f
CPU
= f
MASTER
= 16 MHz, VDD= 5 V
Table 31: Peripheral current consumption
UnitTyp.ParameterSymbol
I
DD(TIM1)
I
DD(TIM2)
I
DD(TIM4)
I
DD(UART1)
I
DD(SPI)
I
DD(I2C)
I
DD(ADC1)
(1)
Data based on a differential IDDmeasurement between reset configuration and timer counter running
TIM1 supply current
TIM2 supply current
TIM4 timer supply current
UART1 supply current
SPI supply current
I2C supply current
ADC1 supply current when converting
(1)
(1)
(1)
(2)
(2)
(2)
(3)
210
130
50
120
45
65
1000
μA
at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
(2)
Data based on a differential IDDmeasurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.
(3)
Data based on a differential IDDmeasurement between reset configuration and continuous A/D
conversions. Not tested in production.
Current consumption curves10.3.2.8
The following figures show typical current consumption measured with code executing in RAM.
DocID15441 Rev 962/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 12: Typ I
Figure 13: Typ I
DD(RUN)
DD(RUN)
vs. VDDHSE user external clock, f
vs. f
HSE user external clock, VDD= 5 V
CPU
CPU
= 16 MHz
63/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Figure 14: Typ I
Figure 15: Typ I
DD(WFI)
DD(RUN)
vs. VDDHSI RC osc, f
CPU
vs. VDDHSE user external clock, f
= 16 MHz
= 16 MHz
CPU
DocID15441 Rev 964/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 16: Typ I
Figure 17: Typ I
DD(WFI)
DD(WFI)
vs. f
HSE user external clock, VDD= 5 V
CPU
vs. VDDHSI RC osc, f
CPU
= 16 MHz
f
HSE_ext
V
HSEH
V
HSEL
LEAK_HSE

External clock sources and timing characteristics10.3.3

HSE user external clock
Subject to general operating conditions for VDDand TA.
Table 32: HSE user external clock characteristics
User external clock source frequency
(1)
OSCIN input pin high level voltage
(1)
OSCIN input pin low level voltage
OSCIN input leakage currentI
VSS< VIN< V
DD
UnitMaxMinConditionsParameterSymbol
MHz160
DD
VDD+ 0.3 V0.7 x V
V
V
SS
0.3 x V
DD
μA+1-1
65/117DocID15441 Rev 9
(1)
V
HSEH
V
HSEL
External clock source
OSCIN
f
HSE
STM8
Data based on characterization results, not tested in production.
Figure 18: HSE external clocksource
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
f
HSE
F
(1)
C
I
DD(HSE)
g
m
SU(HSE)
External high speed
oscillator frequency
Feedback resistorR
Recommended load
capacitance
HSE oscillator power
consumption
Oscillator
transconductance
(4)
Table 33: HSE oscillator characteristics
(2)
C = 20 pF,
f
= 16 MHz
OSC
C = 10 pF,
f
=16 MHz
OSC
VDDis stabilizedStartup timet
6 (startup)
1.6 (stabilized)
6 (startup)
1.2 (stabilized)
UnitMaxTypMinConditionsParameterSymbol
MHz161
kΩ220
pF20
(3)
mA
(3)
mA/V5
ms1
DocID15441 Rev 966/117
OSCOUT
OSCIN
f
HSE
to core
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
(1)
C is approximately equivalent to 2 x crystal Cload.
(2)
The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rmvalue. Refer to crystal manufacturer for more details
(3)
Data based on characterization results, not tested in production.
(4)
t
SU(HSE)
is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 19: HSE oscillator circuit diagram
HSE oscillator critical gmequation
g
mcrit
= (2 × Π × f
)2× Rm(2Co + C)
HSE
2
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1= CL2= C: Grounded external capacitance
gm>> g
mcrit

Internal clock sources and timing characteristics10.3.4

Subject to general operating conditions for VDDand TA.
High speed internal RC oscillator (HSI)
Table 34: HSI oscillator characteristics
UnitMaxTypMinConditionsParameterSymbol
HSI
Frequencyf
MHz-16-
67/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
UnitMaxTypMinConditionsParameterSymbol
ACC
t
su(HSI)
I
DD(HSI)
HSI
Accuracy of HSI
oscillator
Accuracy of HSI
oscillator (factory
calibrated)
HSI oscillator
wakeup time
including
calibration
HSI oscillator
power
consumption
User-trimmed with
CLK_HSITRIMR register for
given VDDand T
conditions
VDD= 5 V, TA= 25°C
A
(1)
(2)
VDD= 5 V, 25 °C ≤
TA≤ 85 °C
2.95 ≤ VDD≤ 5.5 V,-40 °C
≤ TA≤ 125 °C
-3.0
(2)
(3)
--
1.0
1.0--1.0 %
2.0--2.0
(2)
-
--
170-
3.0
1.0
250
(3)
(2)
μs
μA
(1)
Refer to application note.
(2)
Data based on characterization results, not tested in production.
(3)
Guaranteed by design, not tested in production.
DocID15441 Rev 968/117
Figure 20: Typical HSI frequency variation vs VDD@ 4 temperatures
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDDand TA.
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
LSI
su(LSI)
DD(LSI)
Table 35: LSI oscillator characteristics
Frequencyf
LSI oscillator wake-up timet
LSI oscillator power consumptionI
Figure 21: Typical LSI frequency variation vs VDD@ 4 temperatures
UnitMaxTypMinParameterSymbol
kHz150128110
μs7--
μA-5-
69/117DocID15441 Rev 9

Memory characteristics10.3.5

RAM and hardware registers
Table 36: RAM and hardware registers
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
UnitMinConditionsParameterSymbol
V
RM
(1)
Minimum supply voltage without losing data stored in RAM (in halt mode or under reset)
Data retention mode
(1)
Halt mode (or reset)
V
IT-max
(2)
V
or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.
(2)
Refer to the Operating conditions section for the value of V
IT-max
Flash program memory/data EEPROM memory
Table 37: Flash program memory/data EEPROM memory
ConditionsParameterSymbol
V
DD
Operating voltage
(all modes, execution/
f
CPU
≤ 16 MHz
Min
(1)
UnitMaxTyp
V5.5-2.95
write/erase)
t
prog
Standard programming time
(including erase) for
byte/word/block (1 byte/
6.66-
4 bytes/64 bytes)
Fast programming time for
1 block (64 bytes)
3.333-
ms
t
erase
N
RW
t
RET
Erase time for 1 block
(64 bytes)
Erase/write cycles
(2)
(program memory)
Erase/write cycles
(data memory)
(2)
Data retention (program
and data memory) after 10k
erase/write cycles at
TA= +55 °C
DocID15441 Rev 970/117
TA= +85 °C
TA= +125 °C
T
= 55°C
RET
100 000
300 000
3.333-
--
cycles
-1 M
years--20
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
ConditionsParameterSymbol
Min
(1)
UnitMaxTyp
Data retention (data
memory) after 300k
erase/write cycles at
RET
= 85°C
--1
T
TA= +125 °C
I
DD
Supply current (Flash
programming or erasing
mA-2-
for 1 to 128 bytes)
(1)
Data based on characterization results, not tested in production.
(2)
The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes
even when a write/erase operation addresses a single byte.

I/O port pin characteristics10.3.6

General characteristics
Subject to general operating conditions for VDDand TAunless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.
V
IL
V
IH
V
hys
R
pu
tR, t
Table 38: I/O static characteristics
UnitMaxTypMinConditionsParameterSymbol
Input low level voltage
VDD= 5 V
--0.3
0.3 x
V
DD
V
Input high level voltage
Hysteresis
Pull-up resistor
F
Rise and fall time
(10 % - 90 %)
(1)
VDD= 5 V, VIN= V
Fast I/Os
Load = 50 pF
SS
0.7 x V
DD
Standard and high sink I/Os
VDD+
-
0.3
mV-700-
805530
(3)
--
--
35
125
(3)
ns
Load = 50 pF
(3)
Fast I/Os
--
20
71/117DocID15441 Rev 9
Load = 20 pF
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
UnitMaxTypMinConditionsParameterSymbol
Standard and high sink I/Os
--
50
(3)
Load = 20 pF
I
lkg
I
lkg ana
I
lkg(inj)
Digital input leakage current
Analog input leakage current
Leakage current in adjacent I/O
(1)
Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not
VSS≤ VIN≤V
VSS≤ VIN≤ V
DD
DD
Injection current ±4 mA
--
--
--
±1
±250
±1
(2)
(2)
(2)
tested in production.
(2)
Data based on characterisation results, not tested in production.
(3)
Data guaranteed by design.
Figure 22: Typical VILand VIHvs VDD@ 4 temperatures
μA
nA
μA
DocID15441 Rev 972/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 23: Typical pull-up resistance vs VDD@ 4 temperatures
Figure 24: Typical pull-up current vs VDD@ 4 temperatures
Table 39: Output driving current (standard ports)
UnitMaxMinConditionsParameterSymbol
Output low level with 8 pins sunk
V
OL
Output low level with 4 pins sunk
Output high level with 8 pins sourced
V
OH
IIO= 10 mA,
VDD= 5 V
IIO= 4 mA,
VDD= 3.3 V
IIO= 10 mA,
VDD= 5 V
2.0-
(1)
1.0
-
V
-2.8
73/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
UnitMaxMinConditionsParameterSymbol
Output high level with 4 pins sourced
IIO= 4 mA,
VDD= 3.3 V
(1)
Data based on characterization results, not tested in production
Table 40: Output driving current (true open drain ports)
V
OL
V
OL
V
OL
(1)
Data based on characterization results, not tested in production
Output low level with 2 pins sunk
Output low level with 2 pins sunk
Output low level with 2 pins sunk
IIO= 10 mA, VDD= 5 V
IIO= 10 mA, VDD= 3.3 V
IIO= 20 mA, VDD= 5 V
Table 41: Output driving current (high sink ports)
V
OL
Output low level with 8 pins sunk
IIO= 10 mA,
VDD= 5 V
2.1
(1)
1 .0
1.5
2.0
(1)
(1)
-
UnitMaxConditionsParameterSymbol
V
UnitMaxMinConditionsParameterSymbol
V0.8-
Output low level with 4 pins sunk
IIO= 10 mA,
VDD= 3.3 V
V
OL
Output low level with 4 pins sunk
IIO= 20 mA,
VDD= 5 V
Output high level with 8 pins sourced
IIO= 10 mA,
VDD= 5 V
V
OH
Output high level with 4 pins sourced
Output high level with 4 pins sourced
IIO= 10 mA,
VDD= 3.3 V
IIO= 20 mA,
VDD= 5 V
(1)
Data based on characterization results, not tested in production
2.1
3.3
(1)
1.0
-
(1)
1.5
-
V
(1)
(1)
-4.0
-
-
DocID15441 Rev 974/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 25: Typ. VOL@ VDD= 5 V (standard ports)
Figure 26: Typ. VOL@ VDD= 3.3 V (standard ports)
75/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Figure 27: Typ. VOL@ VDD= 5 V (true open drain ports)
Figure 28: Typ. VOL@ VDD= 3.3 V (true open drain ports)
DocID15441 Rev 976/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 29: Typ. VOL@ VDD= 5 V (high sink ports)
Figure 30: Typ. VOL@ VDD= 3.3 V (high sink ports)
77/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Figure 31: Typ. VDD- VOH@ VDD= 5 V (standard ports)
Figure 32: Typ. VDD- VOH@ VDD= 3.3 V (standard ports)
DocID15441 Rev 978/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 33: Typ. VDD- VOH@ VDD= 5 V (high sink ports)
Figure 34: Typ. VDD- VOH@ VDD= 3.3 V (high sink ports)
V
IL(NRST)

Reset pin characteristics10.3.7

Subject to general operating conditions for VDDand TAunless otherwise specified.
Table 42: NRST pin characteristics
NRST input low
level voltage
(1)
--0.3
DD
UnitMaxTypMinConditionsParameterSymbol
V0.3 x V
79/117DocID15441 Rev 9
V
IH(NRST)
V
OL(NRST)
R
PU(NRST)
t
I FP(NRST)
t
IN FP(NRST)
NRST input high
level voltage
(1)
NRST output low
level voltage
(1)
NRST pull-up
resistor
(2)
NRST input filtered
(3)
pulse
NRST input not
filtered pulse
(3)
IOL=2 mA
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
UnitMaxTypMinConditionsParameterSymbol
DD
VDD+ 0.3-0.7 x V
0.5--
805530
75--
ns
--500
t
OP(NRST)
(1)
Data based on characterization results, not tested in production.
(2)
The RPUpull-up equivalent resistor is based on a resistive transistor
(3)
Data guaranteed by design, not tested in production.
NRST output
(3)
pulse
20
Figure 35: Typical NRST VILand VIHvs VDD@ 4 temperatures
μs--
DocID15441 Rev 980/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 36: Typical NRST pull-up resistance vs VDD@ 4 temperatures
Figure 37: Typical NRST pull-up current vs VDD@ 4 temperatures
The reset network shown in the following figure protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below V
IL(NRST)
max. (see Table
38: I/O static characteristics ), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If NRST signal is used to reset external circuitry, attention must be taken to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. Minimum recommended capacity is 100 nF.
81/117DocID15441 Rev 9
External
reset
circuit
(optional)
0.1 μF
NRST
VDD
RPU
Filter
Internal reset
STM8
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Figure 38: Recommended reset pin protection

SPI serial peripheral interface10.3.8

Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f t
MASTER
= 1/f
MASTER
.
MASTER
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
frequency and VDDsupply voltage conditions.
f
1/
SCK
t
c(SCK)
f
1/
SCK
t
c(SCK)
t
r(SCK)
t
f(SCK)
su(NSS)
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
ParameterSymbol
frequency
1/ t
SCK
c(SCK)
fall time
time
time
time
Table 43: SPI characteristics
Conditions
(1)
Master modeSPI clock
SPI clock frequencyf
Capacitive load: C = 30 pFSPI clock rise and
Slave modeNSS setup timet
Master modeSCK high and low
0
4 x
t
MASTER
t
SCK
2 - 15
UnitMaxMin
MHz80
(2)
MHz7
25-
-
-70Slave modeNSS hold timet
t
SCK
/
/
ns
2 +15
-5Master modeData input setup
-5Slave mode
-7Master modeData input hold
-10Slave mode
DocID15441 Rev 982/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
UnitMaxMin
-25
(2)
-27
-11
t
a(SO)
t
dis(SO)
(3) (4)
(3) (5)
ParameterSymbol
access time
Conditions
Slave modeData output
Slave modeData output
(1)
3 x
­t
MASTER
disable time
t
v(SO)
(3)
Data output valid
time
t
v(MO)
(3)
Data output valid
time
t
h(SO)
(3)
Data output hold
time
t
h(MO)
(3)
Data output hold
time
(1)
Parameters are given by selecting 10 MHz I/O output frequency.
(2)
Data characterization in progress.
(3)
Values based on design simulation and/or characterization results, and not tested in
Slave mode
(after enable edge)
Master mode
(after enable edge)
Slave mode
(after enable edge)
Master mode
(after enable edge)
-
65
30-
(2)
(2)
production.
(4)
Min time is for the minimum time to drive the output and the max time is for the maximum
time to validate the data.
(5)
Min time is for the minimum time to invalidate the output and the max time is for the
maximum time to put the data in Hi-Z.
83/117DocID15441 Rev 9
ai14134
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MSB O UT
MSB IN
BIT6 OUT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSSinput
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MSB O UT
MSB IN
BIT6 OUT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Figure 39: SPI timing diagram - slave mode and CPHA = 0
Figure 40: SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.
DocID15441 Rev 984/117
ai14136b
SCK intput
CPHA=0
MOSI
OUTUT
MISO
INPUT
CPHA=0
MSBIN
MSB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
BIT1 OUT
NSSinput
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Figure 41: SPI timing diagram - master mode
(1)
w(SCLL)
w(SCLH)
su(SDA)
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
h(STA)
su(STA)
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.

I2C interface characteristics10.3.9

Table 44: I2C characteristics
ParameterSymbol
SDA data hold timet
Standard mode I2C
(2)
Min
(3)
Max
(2)
-0
Fast mode I2C
(2)
Min
Max
-1.3-4.7SCL clock low timet
-0.6-4.0SCL clock high timet
-100-250SDA setup timet
(4)
0
900
300-1000-SDA and SCL rise time
300-300-SDA and SCL fall time
-0.6-4.0START condition hold timet
-0.6-4.7Repeated START condition setup timet
(2)
(3)
(1)
Unit
μs
ns
μs
85/117DocID15441 Rev 9
t
f(SDA)
t
r(SDA)
t
su(SDA)th(SDA)
t
f(SCL)
t
r(SCL)
t
w(SCLL)
t
w(SCLH)
t
h(STA)
t
su(STO)
t
su(STA)tw(STO:STA)
SDA
SCL
4.7k SDA
SCL
100
100
4.7k
I2C bus
START
START
STOP
REPEATED
START
STM8S
V
DD
V
DD
ai17490
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Unit
(1)
(2)
-0.6-4.0STOP condition setup timet
su(STO)
t
w(STO:STA)
ParameterSymbol
STOP to START condition time
Standard mode I2C
(2)
Min
Max
Fast mode I2C
Min
(2)
(2)
Max
(bus free)
b
(1)
f
MASTER
(2)
Data based on standard I2C protocol requirement, not tested in production
(3)
The maximum hold time of the start condition has only to be met if the interface does not stretch the
, must be at least 8 MHz to achieve max fast I2C speed (400kHz)
low time
(4)
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge
the undefined region of the falling edge of SCL
Figure 42: Typical application with I2C bus and timing diagram
μs-1.3-4.7
pF400-400Capacitive load for each bus lineC
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD.

10-bit ADC characteristics10.3.10

Subject to general operating conditions for VDD, f
DocID15441 Rev 986/117
MASTER
, and TAunless otherwise specified.
ADC
Table 45: ADC characteristics
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
UnitMaxTypMinConditionsParameterSymbol
-
1VDD=2.95 to 5.5 VADC clock frequencyf
4
MHz
-
1VDD=4.5 to 5.5 V
6
V
C
Conversion voltage range
AIN
Internal sample and hold
ADC
capacitor
(1)
S
(1)
f
ADC
V
SS
-
= 4 MHzMinimum sampling timet
-
-
3
0.75
DD
-
-
VV
pF
μs
-
-
7
μs
μs3.5f
STAB
t
CONV
-
f
= 6 MHz
ADC
Wake-up time from standbyt
= 4 MHzMinimum total conversion time
ADC
0.5
-
(including sampling time, 10-bit resolution)
ADC
(1)
During the sample time the input capacitance C
= 6 MHz
AIN
14
(3 pF max) can be charged/discharged
1/f
μs2.33f
ADC
by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS.After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tSdepend on programming.
|ET|
|EO|
Table 46: ADC accuracy with R
(2)
(2)
< 10 kΩ , VDD= 5 V
AIN
= 2 MHzTotal unadjusted error
ADC
= 4 MHz
ADC
= 6 MHz
ADC
= 2 MHzOffset error
ADC
(1)
TypConditionsParameterSymbol
UnitMax
3.51.6f
42.2f
LSB
4.52.4f
2.51.1f
87/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
(1)
TypConditionsParameterSymbol
UnitMax
|EG|
|ED|
|EL|
(2)
(2)
(2)
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
= 4 MHz
= 6 MHz
= 2 MHzGain error
= 4 MHz
= 6 MHz
= 2 MHzDifferential linearity error
= 4 MHz
= 6 MHz
= 2 MHzIntegral linearity error
= 4 MHz
31.5f
31.8f
31.5f
32.1f
42.2f
1.50.7f
1.50.7f
1.50.7f
1.50.6f
20.8f
= 6 MHz
ADC
(1)
Data based on characterization results, not tested in production.
(2)
ADC accuracy vs. negative injection current: Injecting negative current on any of the
20.8f
analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I
INJ(PIN)
and ΣI
INJ(PIN)
in the I/O
port pin characteristics section does not affect the ADC accuracy.
|ET|
|EO|
Table 47: ADC accuracy with R
(2)
(2)
ADC
ADC
ADC
< 10 kΩ R
AIN
= 2 MHzTotal unadjusted error
= 4 MHz
= 2 MHzOffset error
, VDD= 3.3 V
AIN
TypConditionsParameterSymbol
(1)
UnitMax
3.51.6f
41.9f
LSB
2.51f
DocID15441 Rev 988/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
(1)
TypConditionsParameterSymbol
UnitMax
= 4 MHz
ADC
|EG|
|ED|
|EL|
(1)
Data based on characterization results, not tested in production.
(2)
ADC accuracy vs. negative injection current: Injecting negative current on any of the
(2)
(2)
(2)
ADC
ADC
ADC
ADC
ADC
ADC
= 2 MHzGain error
= 4 MHz
= 2 MHzDifferential linearity error
= 4 MHz
= 2 MHzIntegral linearity error
= 4 MHz
2.51.5f
31.3f
32f
10.7f
1.50.7f
1.50.6f
20.8f
analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I
INJ(PIN)
and ΣI
INJ(PIN)
in I/O port
pin characteristics does not affect the ADC accuracy.
Figure 43: ADC accuracy characteristics
1. Example of an actual transfer curve.
2. The ideal transfer curve
89/117DocID15441 Rev 9
STM8
10-bit A/D
conversion
R
AIN
C
AIN
V
AIN
AINx
V
DD
V
T
0.6 V
V
T
0.6 V
I
L
± 1 µA
C
ADC
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
3. End point correlation line
ET= Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
EO= Offset error: deviation between the first actual transition and the first ideal one.
EG= Gain error: deviation between the last ideal transition and the last actual one.
ED= Differential linearity error: maximum deviation between actual steps and the ideal one.
EL= Integral linearity error: maximum deviation between any actual transition and the end point correlation line.
Figure 44: Typical application with ADC

EMC characteristics10.3.11

Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)10.3.11.1
While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
FESD: Functional electrostatic discharge (positive and negative) is applied on all pins of
the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDDand V
SS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709 (EMC design guide for STMicrocontrollers).
Designing hardened software to avoid noise problems10.3.11.2
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
DocID15441 Rev 990/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques for improving microcontroller EMC performance).
Table 48: EMS data
ConditionsParameterSymbol
Level/ class
V
FESD
Voltage limits to be applied on any I/O pin to induce a functional
VDD= 3.3 V, TA= 25 °C, f
MASTER
= 16 MHz
(HSI clock), conforming to IEC 61000-4-2
2/B
(1)
disturbance
V
EFTB
Fast transient voltage burst limits to be applied through 100 pF on V
DD
and VSSpins to induce a
VDD= 3.3 V, TA= 25 °C ,f
MASTER
= 16 MHz
(HSI clock),conforming to IEC 61000-4-4
4/A
(1)
functional disturbance
(1)
Data obtained with HSI clock configuration, after applying HW recommendations described
in AN2860 (EMC guidelines for STM8S microcontrollers).
Electromagnetic interference (EMI)10.3.11.3
Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE IEC 61967-2 which specifies the board and the loading of each pin.
Table 49: EMI data
Conditions
Max f
ParameterSymbol
General conditions
Monitored frequency band
HSE/fCPU
16 MHz/
8 MHz
Peak level
S
EMI
VDD= 5 V
TA= 25 °C
LQFP32 package
0.1 MHz to
30 MHz
30 MHz to
(1)
Unit
16 MHz/
16 MHz
55
dBμV
54
91/117DocID15441 Rev 9
Conditions
STM8S103K3 STM8S103F3 STM8S103F2Electrical characteristics
Max f
ParameterSymbol
General conditions
Monitored frequency band
HSE/fCPU
16 MHz/
8 MHz
Conforming to
130 MHz
(1)
Unit
16 MHz/
16 MHz
SAE IEC 61967-2
130 MHz to
55
1 GHz
SAE EMI level
(1)
Data based on characterisation results, not tested in production.
SAE EMI level
2.52.5
Absolute maximum ratings (electrical sensitivity)10.3.11.4
Based on three different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)10.3.11.5
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.
Table 50: ESD absolute maximum ratings
(1)
UnitMaximum
V
V
ESD(HBM)
V
ESD(CDM)
(Human body model)
ClassConditionsRatingsSymbol
value
TA= 25°C, conforming toElectrostatic discharge
JESD22-A114voltage
4000A
TALQFP32 package =Electrostatic discharge
25°C, conforming tovoltage
1000IV
SD22-C101(Charge device model)
DocID15441 Rev 992/117
Electrical characteristicsSTM8S103K3 STM8S103F3 STM8S103F2
(1)
Data based on characterization results, not tested in production
Static latch-up10.3.11.6
Two complementary static tests are required on 10 parts to assess the latch-up performance:
A supply overvoltage (applied to each power supply pin)
A current injection (applied to each input, output and configurable I/O pin) are performed
on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
Table 51: Electrical sensitivities
ConditionsParameterSymbol
Static latch-up classLU
(1)
Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).
Class
ATA= 25 °C
ATA= 85 °C
ATA= 125 °C
(1)
93/117DocID15441 Rev 9
5V_ME
L
A1 K
L1
c
A
A2
ccc
C
D D1 D3
E3
E1 E
16
17
24
25
b
32
1
Pin 1 identification
8
9

STM8S103K3 STM8S103F3 STM8S103F2Package information

Package information11
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK®packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

32-pin LQFP package mechanical data11.1

Figure 45: 32-pin low profile quad flat package (7 x 7)
®
®
Table 52: 32-pin low profile quad flat package mechanical data
mmDim.
inches
(1)
MaxTypMinMaxTypMin
0.06301.600A
0.00590.00200.1500.050A1
0.05710.05510.05311.4501.4001.350A2
0.01770.01460.01180.4500.3700.300b
0.00790.00350.2000.090c
0.36220.35430.34659.2009.0008.800D
0.28350.27560.26777.2007.0006.800D1
DocID15441 Rev 994/117
Package informationSTM8S103K3 STM8S103F3 STM8S103F2
mmDim.
inches
(1)
0.22055.600D3
0.22055.600E3
0.03150.800e
0.03941.000L1
(1)
Values in inches are converted from mm and rounded to 4 decimal digits
MaxTypMinMaxTypMin
0.36220.35430.34659.2009.0008.800E
0.28350.27560.26777.2007.0006.800E1
0.02950.02360.01770.7500.6000.450L
7.0°3.5°0.0°7.0°3.5°0.0°k
0.00390.100ccc
95/117DocID15441 Rev 9
AOB8_ME
STM8S103K3 STM8S103F3 STM8S103F2Package information

32-lead UFQFPN package mechanical data11.2

Figure 46: 32-lead, ultra thin, fine pitch quad flat no-lead package (5 x 5)
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint
life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this backside pad to PCB ground.
4. Dimensions are in millimeters.
Table 53: 32-lead, ultra thin, fine pitch quad flat no-lead package mechanical data
mmDim.
inches
(1)
MaxTypMinMaxTypMin
0.02360.02170.01970.6000.5500.500A
0.00200.00080.0500.0200A1
0.00790.200A3
DocID15441 Rev 996/117
103_A0A5_ME
11
15
1620
1
5
D
e
b
e
E
A1
A
ddd
L2
10
L1
A3
L3
L4
D
E
TOP VIEW
SIDE VIEW
BOTTOMVIEW
Pin 1
Package informationSTM8S103K3 STM8S103F3 STM8S103F2
mmDim.
(1)
Values in inches are converted from mm and rounded to 4 decimal digits.
inches
(1)

20-lead UFQFPN package mechanical data11.3

MaxTypMinMaxTypMin
0.01180.00980.00710.3000.2500.180b
0.20280.19690.19095.1505.0004.850D
0.14570.12603.7003.4503.200D2
0.20280.19690.19095.1505.0004.850E
0.14570.13580.12603.7003.4503.200E2
0.01970.500e
0.01970.01570.01180.5000.4000.300L
0.00310.080ddd
Figure 47: 20-lead, ultra thin, fine pitch quad flat no-lead package outline (3 x 3)
97/117DocID15441 Rev 9
STM8S103K3 STM8S103F3 STM8S103F2Package information
1. Drawing is not to scale.
Table 54: 20-lead, ultra thin, fine pitch quad flat no-lead package (3 x 3) package
mechanical data
mmDim.
inches
(1)
MaxTypMinMaxTypMin
0.11813.000D
0.11813.000E
0.02360.02170.01970.6000.5500.500A
0.00200.00080.00000.0500.0200.000A1
0.00600.152A3
0.01970.500e
0.02360.02170.01970.6000.5500.500L1
0.01570.01380.01180.4000.3500.300L2
0.00590.150L3
0.00790.200L4
0.00200.050ddd
(1)
Values in inches are converted from mm and rounded to 4 decimal digits.

SDIP32 package mechanical data11.4

Figure 48: 32-lead shrink plastic DIP (400 ml) package
Table 55: 32-lead shrink plastic DIP (400 ml) package mechanical data
mmDim.
inches
(1)
0.01180.00980.00710.3000.2500.180b
MaxTypMinMaxTypMin
0.20000.14800.14005.0803.7593.556A
0.02000.508A1
DocID15441 Rev 998/117
Package informationSTM8S103K3 STM8S103F3 STM8S103F2
mmDim.
inches
(1)
MaxTypMinMaxTypMin
0.18000.14000.12004.5723.5563.048A2
0.02300.01800.01400.5840.4570.356B
0.05500.04000.03001.3971.0160.762B1
0.01400.01000.00790.3560.2540.203C
1.12011.10001.079928.45027.94027.430D
0.43500.40980.390011.05010.4109.906E
0.37000.35000.30009.3988.8907.620E1
0.07001.778e
(1)
Values in inches are converted from mm and rounded to 4 decimal digits
0.400010.160eA
0.500012.700eB
0.15000.12000.10003.8103.0482.540L
99/117DocID15441 Rev 9
YA_ME
1
20
CP
c
L
EE1
D
A2
A
k
eb
10
11
A1
L1
aaa
STM8S103K3 STM8S103F3 STM8S103F2Package information

20-pin TSSOP package mechanical data11.5

Figure 49: 20-pin, 4.40 mm body, 0.65 mm pitch
Table 56: 20-pin, 4.40 mm body, 0.65 mm pitch mechanical data
mmDim.
inches
(1)
MaxTypMinMaxTypMin
0.04721.200A
0.00590.00200.1500.050A1
0.04130.03940.03151.0501.0000.800A2
0.01180.00750.3000.190b
0.00790.00350.2000.090c
0.25980.25590.25206.6006.5006.400D
0.25980.25200.24416.6006.4006.200E
0.17720.17320.16934.5004.4004.300E1
0.02560.650e
0.02950.02360.01770.7500.6000.450L
0.03941.000L1
DocID15441 Rev 9100/117
Loading...