ST STM8L052R8 User Manual

STM8L052R8
LQFP64
Value Line, 8-bit ultralow power MCU, 64-KB Flash,
256-byte data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC
Datasheet production data
Features
– Operating power supply: 1.8 V to 3.6 V – Temperature range: -40 °C to 85 °C
Low power features
– 5 low power modes: Wait, Low power run
(5.9 µA), Low power wait (3 µA), Active-halt with full RTC (1.4 µA), Halt (400 nA)
– Dynamic power consumption:
200 µA/MHz + 330 µA – Ultra-low leakage per I/0: 50 nA – Fast wakeup from Halt: 4.7 µs
Advanced STM8 core
– Harvard architecture and 3-stage pipeline – Max freq. 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources
Reset and supply management
– Low power, ultra-safe BOR reset with 5
programmable thresholds – Ultra low power POR/PDR – Programmable voltage detector (PVD)
Clock management
– 32 kHz and 1 to 16 MHz crystal oscillators – Internal 16 MHz factory-trimmed RC – 38 kHz low consumption RC – Clock security system
Low power RTC
– BCD calendar with alarm interrupt
– Digital calibration with +/- 0.5ppm accuracy – Advanced anti-tamper detection
LCD: 8x24 or 4x28 w/ step-up converter
Memories
– 64 KB Flash program memory and
256 bytes data EEPROM with ECC, RWW – Flexible write and read protection modes – 4 KB of RAM
DMA
– 4 channels supporting ADC, SPIs, I2C,
USARTs, timers
– 1 channel for memory-to-memory
12-bit ADC up to 1 Msps/28 channels
– Internal reference voltage
Timers
– Three 16-bit timers with 2 channels (used
as IC, OC, PWM), quadrature encoder
– One 16-bit advanced control timer with 3
channels, supporting motor control – One 8-bit timer with 7-bit prescaler – 2 watchdogs: 1 Window, 1 Independent – Beeper timer with 1, 2 or 4 kHz frequencies
Communication interfaces
– Two synchronous serial interfaces (SPI) –Fast I
2
C 400 kHz SMBus and PMBus
– Three USARTs (ISO 7816 interface + IrDA)
Up to 54 I/Os, all mappable on interrupt vectors
Development support
– Fast on-chip programming and non-
intrusive debugging with SWIM – Bootloader using USART
June 2012 Doc ID 023337 Rev 1 1/109
This is information on a product in full production.
www.st.com
1
Contents STM8L052R8
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ultra low power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 System configuration controller and routing interface . . . . . . . . . . . . . . . 19
3.11 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/109 Doc ID 023337 Rev 1
STM8L052R8 Contents
3.14.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 59
8.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.9 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3.11 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Doc ID 023337 Rev 1 3/109
Contents STM8L052R8
9 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4/109 Doc ID 023337 Rev 1
STM8L052R8 List of tables
List of tables
Table 1. High density value line STM8L05xxx low power device features and
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3. Legend/abbreviation for Table 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 4. High density value line STM8L05xxx pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 5. Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 9. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 10. Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 11. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 12. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 13. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 14. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 15. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 16. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 17. Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 18. Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 19. Total current consumption and timing in Low power run mode at VDD = 1.8 V to
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 20. Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . 69
Table 21. Total current consumption and timing in Active-halt mode
at VDD = 1.8 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. . 71
Table 23. Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V . . . . . . . . . . . . 72
Table 24. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 25. Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 26. HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 27. LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 28. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 29. LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 30. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 31. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 32. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 33. Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 34. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 36. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 37. Output driving current (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 38. Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 85
Table 39. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 40. SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 41. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 42. LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 43. Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 44. ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 45. ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Doc ID 023337 Rev 1 5/109
List of tables STM8L052R8
Table 46. ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 47. ADC1 accuracy with VDDA = VREF
= 1.8 V to 2.4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
+
Table 48. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 49. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 50. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 51. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 52. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 53. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . 105
Table 54. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6/109 Doc ID 023337 Rev 1
STM8L052R8 List of figures
List of figures
Figure 1. High density value line STM8L05xxx device block diagram . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. High density value line STM8L05xxx clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. STM8L052R8 64-pin LQFP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 5. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 6. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 7. Power supply thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 8. Typical I Figure 9. Typical I Figure 10. Typical I Figure 11. Typical I Figure 12. Typical I Figure 13. Typical I
DD(RUN)
DD(RUN)
DD(Wait)
DD(Wait)
DD(LPR)
DD(LPW)
Figure 14. Typical IDD(AH) vs. V Figure 15. Typical IDD(Halt) vs. V
from RAM vs. VDD (HSI clock source), f
from Flash vs. V from RAM vs. V from Flash (HSI clock source), f vs. V
vs. V
(LSI clock source), all peripherals OFF . . . . . . . . . . . . . . . . . . . . 68
DD
(LSI clock source), all peripherals OFF
DD
(LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DD
(internal reference voltage OFF) . . . . . . . . . . . . . . . . . . . . . . . . 72
DD
(HSI clock source), f
DD
(HSI clock source), f
DD
= 16 MHz 1). . . . . . . . . . . . . . . . . . . 66
CPU
=16 MHz
CPU
= 16 MHz
CPU
= 16 MHz 1). . . . . . . . . . . . . 66
CPU
Figure 16. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 17. LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 18. Typical HSI frequency vs. V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DD
Figure 19. Typical LSI clock source frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 20. Typical VIL and VIH vs. VDD (standard I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 21. Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 22. Typical pull-up resistance R Figure 23. Typical pull-up current I
pu
vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
PU
vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 24. Typical VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 25. Typical VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 26. Typical VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 27. Typical VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 28. Typical VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 29. Typical VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 30. Typical NRST pull-up resistance R Figure 31. Typical NRST pull-up current I
vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
PU
vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
pu
Figure 32. Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 33. SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 34. SPI1 timing diagram - slave mode and CPHA=1 Figure 35. SPI1 timing diagram - master mode
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 36. Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 37. ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 38. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 39. Power supply and reference decoupling (V
not connected to V
REF+
Figure 40. Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 100
Figure 41. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 105
Figure 42. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 43. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1) . . . . . . . . . . . . . . . . . 64
1) . . . . . . . . . . . . . . . . 64
(1)
. . . . . . . . . . . . . . . . . 69
). . . . . . . . . . . . . 100
DDA
Doc ID 023337 Rev 1 7/109
Introduction STM8L052R8

1 Introduction

This document describes the features, pinout, mechanical data and ordering information of the high density value line STM8L052R8 microcontroller with a Flash memory density of 64 Kbytes.
For further details on the whole STMicroelectronics high density family please refer to
Section 2.2: Ultra low power continuum.
For detailed information on device operation and registers, refer to the reference manual (RM0031).
For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054).
For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).
High density value line devices provide the following benefits:
Integrated system
64 Kbytes of high density embedded Flash program memory – 256 bytes of data EEPROM – 4 Kbytes of RAM – Internal high speed and low-power low speed RC – Embedded reset
Ultra low power consumption
1 µA in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low power wait mode and low power run mode
Advanced features
Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access
Short development cycles
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals
Wide choice of development tools
These features make the value line STM8L05xxx ultra low power microcontroller family suitable for a wide range of consumer and mass market applications.
Refer to Table 1: High density value line STM8L05xxx low power device features and
peripheral counts and Section 3: Functional overview for an overview of the complete range
of peripherals proposed in this family.
Figure 1 shows the block diagram of the high density value line STM8L05xxx family.
8/109 Doc ID 023337 Rev 1
STM8L052R8 Description

2 Description

The high density value line STM8L05xxx devices are members of the STM8L ultra low power 8-bit family.
The value line STM8L05xxx ultra low power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-application debugging and ultra-fast Flash programming.
High density value line STM8L05xxx microcontrollers feature embedded data EEPROM and low-power, low-voltage, single-supply program Flash memory.
All devices offer 12-bit ADC, real-time clock, four 16-bit timers, one 8-bit timer as well as standard communication interface such as two SPIs, I2C, three USARTs and 8x24 or 4x28­segment LCD. The 8x24 or STM8L05xxx.
4x 28-segment LCD is available on the high density value line
The STM8L05xxx family operates from 1.8 V to 3.6 V and is available in the temperature range.
The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.
All value line STM8L ultra low power products are based on the same architecture with the same memory mapping and a coherent pinout.
-40 to +85 °C
Doc ID 023337 Rev 1 9/109
Description STM8L052R8

2.1 Device overview

Table 1. High density value line STM8L05xxx low power device features and
peripheral counts
Features STM8L052R8
Flash (Kbytes) 64
Data EEPROM (bytes) 256
RAM (Kbytes) 4
LCD 8x24 or 4x28
Basic
1
(8-bit)
Timers
General purpose
Advanced control
3
(16-bit)
1
(16-bit)
SPI 2 Communication interfaces
I2C 1
USART 3
GPIOs 54
12-bit synchronized ADC (number of channels)
(1)
1
(28)
RTC, window watchdog, independent watchdog,
Others
16-MHz and 38-kHz internal RC,
1- to 16-MHz and 32-kHz external oscillator
CPU frequency 16 MHz
Operating voltage 1.8 V to 3.6 V
Operating temperature -40 to +85 °C
Package LQFP64
1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).
10/109 Doc ID 023337 Rev 1
STM8L052R8 Description

2.2 Ultra low power continuum

The ultra low power value line STM8L05xxx and STM8L15xxx are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the STM8L family, the devices are part of STMicroelectronics microcontrollers ultra low power strategy which also includes STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features.
They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.
Note: 1 The STM8L05xxx is pin-to-pin compatible with STM8L101xx devices.
2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family.
Please refer to STM32L15x documentation for more information on these devices.
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex™-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra low power performance to range from 5 up to 33.3 DMIPs.
Shared peripherals
STM8L05x, STM8L15x and STM32L15xx share identical peripherals which ensure a very easy migration from one family to another:
Analog peripheral: ADC1
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L and STM32L devices use a common architecture:
Same power supply range from 1.8 to 3.6 V
Architecture optimized to reach ultra-low consumption both in low power modes and
Run mode
Fast startup strategy from low power modes
Flexible system clock
Ultra-safe reset: same reset strategy for both STM8L and STM32L including power-on
reset, power-down reset, brownout reset and programmable voltage detector
Features
ST ultra low power continuum also lies in feature compatibility:
More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm
Memory density ranging from 4 to 128 Kbytes
Doc ID 023337 Rev 1 11/109
Functional overview STM8L052R8
MS30323V1
Clock controller and CSS
Clocks
Address, control and data buses
64-Kbyte
4-Kbyte RAM
to core and peripherals
IWDG
(38 kHz clock)
Port A
Port B
Port C
Power
VOLT. REG.
LCD driver
WWDG
256 bytes
Port D
Port E
Beeper
RTC
Program memory
Data EEPROM
@V
DD
V
DD18
V
DD
=1.8 V
V
SS
SWIM
SCL, SDA,
SPI1_MOSI, SPI1_MISO,
SPI1_SCK, SPI1_NSS
USART1_RX, USART1_TX,
USART1_CK
ADC1_INx
V
DDA, VSSA
SMB
@V
DDA/VSSA
12-bit ADC1
V
REF+
3.6 V
NRST
PA[7:0]
PB[7:0]
PC[7:0]
PD[7:0]
PE[7:0]
PF[7:0]
BEEP
ALARM, CALIB, TAMP1/2/3
SEGx, COMx
POR/PDR
OSC_IN,
OSC_OUT
OSC32_IN,
OSC32_OUT
to
BOR
PVD
PVD_IN
RESET
DMA1 (4 channels)
3 channels
2 channels
2 channels
V
LCD
= 2.5 to 3.6 V
LCD booster
Internal reference
voltage
VREFINT out
IR_TIM
1-16 MHz oscillator
16 MHz internal RC
32 kHz oscillator
STM8 Core
16-bit Timer 1
16-bit Timer 2
38 kHz internal RC
Interrupt controller
16-bit Timer 3
Debug module
(SWIM)
8-bit Timer 4
Infrared interface
SPI1
I²C1
USART1
V
REF-
Port F
16-bit Timer 5
2 channels
SPI2
SPI2_MOSI, SPI2_MISO,
SPI2_SCK, SPI2_NSS
USART2_RX, USART2_TX,
USART2_CK
USART2
USART3_RX, USART3_TX,
USART3_CK
USART3
PG[7:0]
Port G
YPSY
up to
up to

3 Functional overview

Figure 1. High density value line STM8L05xxx device block diagram

1. Legend: ADC: Analog-to-digital converter BOR: Brownout reset DMA: Direct memory access I²C: Inter-integrated circuit multimaster interface LCD: Liquid crystal display POR/PDR: Power on reset / power down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog IWDG: independent watchdog
12/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview

3.1 Low power modes

The high density value line STM8L05xxx devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Wait mode: The CPU clock is stopped, but selected peripherals keep running. An
internal or external interrupt, event or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode).
Low power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra low power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode.
Low power wait mode: This mode is entered when executing a Wait for event in Low
power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1) and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode.
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or reset.
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs.
Doc ID 023337 Rev 1 13/109
Functional overview STM8L052R8

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.
It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus - single cycle fetching most instructions
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64-Kbyte level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The high density value line STM8L05xxx devices feature a nested vectored interrupt controller:
Nested interrupts with 3 software priority levels
32 interrupt vectors with hardware priority
Up to 40 external interrupt sources on 11 vectors
Trap and reset interrupts
14/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview

3.3 Reset and supply management

3.3.1 Power supply scheme

The device requires a 1.8 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows:
V
V
V

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry that ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently.
, V
, V
, V
, V
, V
SS1
DD1
SS2
DD2
SS3
= 1.8 to 3.6 V: external power supply for I/Os and
DD3
for the internal regulator. Provided externally through V ground pin is VSS. V
SS1/VSS2/VSS3/VSS4
and V
DD1/VDD2/VDD3
unconnected.
SSA ; VDDA
V
must be connected to VDD and VSS, respectively.
SSA
REF+
externally through V
= 1.8 to 3.6 V: external power supplies for analog peripherals. V
; V
(for ADC1): external reference voltage for ADC1. Must be provided
REF-
REF+
and V
REF-
pin.
pins, the corresponding
DD
must not be left
DDA
and
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V
DD
for any external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
power supply and compares it to the V levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V V
DD/VDDA
is higher than the V a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The high density value line STM8L05xxx embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.
This regulator has two different modes:
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event
(WFE) modes
Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low
power wait modes
When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.
is below a specified threshold, V
threshold. This PVD offers 7 different
PVD
DD/VDDA
threshold. The interrupt service routine can then generate
PVD
drops below the V
POR/PDR
PVD
or V
, without the need
BOR
threshold and/or when
Doc ID 023337 Rev 1 15/109
Functional overview STM8L052R8

3.4 Clock management

The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock sources: 4 different clock sources can be used to drive the system
clock:
1-16 MHz High speed external crystal (HSE)
16 MHz High speed internal RC oscillator (HSI)
32.768 kHz Low speed external crystal (LSE)
38 kHz Low speed internal RC (LSI)
RTC and LCD clock sources: The above four sources can be chosen to clock the
RTC and the LCD, whatever the system clock.
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If a HSE clock
failure occurs, the system clock is automatically switched to HSI.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
16/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview
HSE OSC
1-16 MHz
HSI RC 16 MHz
LSI RC 38 kH z
LSE OSC
32 768 k
H
z
HSI
LSI
RTC
prescaler
/1;2;4;8;16;32;64
PCLK
to peripherals
RTCCLK/2
to LCD
to IWDG
SYSCLK
HSE
LSI LSE
OSC_OUT
OSC32_OUT
OSC_IN
OSC32_IN
clock output
CCO
prescaler
/1;2;4;8;16;32;64
HSI LSI HSE LSE
CCO
to core and
memory
SYSCLK Presc aler
/1;2;4;8;16;32;64;128
IWDGCLK
RTCSEL[3:0]
LSE
CLKBEEPSEL[1:0]
to BEEP
BEEPCLK
MS30324V1
CSS
configurable
.
/ 2
Peripheral
Clock enable (20 bits)
to RTC
RTCCLK
clock enable (1 bit)
LCDCLK
to LCD
SYSCLK
Halt
clock enable (1 bit)
LCD peripheral
RTCCLK
LCD peripheral
CSS_LSE

Figure 2. High density value line STM8L05xxx clock tree diagram

1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE
bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE
bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x reference manual (RM0031).

3.5 Low power real-time clock

The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically.The subsecond field can also be read in binary format.
The calendar can be corrected from 1 to 32767 RTC clock pulses. This allows to make a synchronization to a master clock.
The RTC offers a digital calibration which allows an accuracy of +/-0.5ppm.
It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability.
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours.
Periodic alarms based on the calendar can also be generated from every second to
A clock security system detects a failure on LSE, and can provide an interrupt with wakeup capability. The RTC clock can automatically switch to LSI in case of LSE failure.
The RTC also provides 3 anti-tamper detection pins. This detection embeds aprogrammable filter and can wakeup the MCU.
every year.
Doc ID 023337 Rev 1 17/109
Functional overview STM8L052R8

3.6 LCD (Liquid crystal display)

The LCD is only available on STM8L052xx devices.
The liquid crystal display drives up to 8 common terminals and up to 24 segment terminals to drive up to 192 pixels. It can also be configured to drive up to 4 common and 28 segments (up to 112 pixels).
Internal step-up converter to guarantee contrast control whatever V
Static 1/2, 1/3, 1/4, 1/8 duty supported.
Static 1/2, 1/3, 1/4 bias supported.
Phase inversion to reduce power consumption and EMI.
Up to 8 pixels which can be programmed to blink.
The LCD controller can operate in Halt mode.
DD
.
Note: Unnecessary segments and common pins can be used as general I/O pins.

3.7 Memories

The high density value line STM8L05xxx devices have the following main features:
4 Kbytes of RAM
The non-volatile memory is divided into three arrays:
64 Kbytes of high density embedded Flash program memory
256 bytes of data EEPROM
–Option bytes
The EEPROM embeds the error correction code (ECC) feature. It supports the read-while­write (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix.
The option byte protects part of the Flash program memory from write and readout piracy.

3.8 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, I2C1, SPI1, SPI 2, USART1, USART2, USART3 and the five timers.
18/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview

3.9 Analog-to-digital converter

12-bit analog-to-digital converter (ADC1) with 28 channels (including 4 fast channels),
temperature sensor and internal reference voltage
Conversion time down to 1 µs with f
Programmable resolution
Programmable sampling time
Single and continuous mode of conversion
Scan capability: automatic conversion performed on a selected group of analog inputs
Analog watchdog: interrupt generation when the converted voltage is outside the
SYSCLK
= 16 MHz
programmed threshold
Triggered by timer
Note: ADC1 can be served by DMA1.

3.10 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1 and the internal reference voltage V

3.11 Timers

The high density value line STM8L05xxx devices contain one advanced control timer (TIM1), three 16-bit general purpose timers (TIM2, TIM3 and TIM5) and one 8-bit basic timer (TIM4).
All the timers can be served by DMA1.
Ta bl e 2 compares the features of the advanced control, general-purpose and basic timers.

Table 2. Timer feature comparison

Timer
TIM1
TIM2
TIM3
TIM5
TIM4 8-bit up
Counter
resolution
16-bit up/down
Counter
type
Prescaler factor
Any integer
from 1 to 65536
Any power of 2
from 1 to 128
Any power of 2
from 1 to 32768
DMA1
request
generation
Ye s
.
REFINT
Capture/compare
channels
3 + 1 3
2
0
Complementary
outputs
None
Doc ID 023337 Rev 1 19/109
Functional overview STM8L052R8

3.11.1 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.
16-bit up, down and up/down autoreload counter with 16-bit prescaler
3 independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse mode output
1 additional capture/compare channel which is not connected to an external I/O
Synchronization module to control the timer with external signals
Break input to force timer outputs into a defined state
3 complementary outputs with adjustable dead time
Encoder mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)

3.11.2 16-bit general purpose timers

16-bit autoreload (AR) up/down-counter
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
2 individually configurable capture/compare channels
PWM mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)

3.11.3 8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow.

3.12 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

3.12.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.12.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures.
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.
20/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview

3.13 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

3.14 Communication interfaces

3.14.1 SPI

The serial peripheral interfaces (SPI1 and SPI2) provide half/ full duplex synchronous serial communication with external devices.
Maximum speed: 8 Mbit/s (f
Full duplex synchronous transfers
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
Hardware CRC calculation
Slave/master selection input pin
SYSCLK
Note: SPI1 and SPI2 can be served by the DMA1 Controller.
/2) both for master and slave

3.14.2 I²C

The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C bus­specific sequencing, protocol, arbitration and timing.
Master, slave and multi-master capability
Standard mode up to 100 kHz and fast speed modes up to 400 kHz
7-bit and 10-bit addressing modes
SMBus 2.0 and PMBus support
Hardware CRC calculation
Note: I
2
C1 can be served by the DMA1 Controller.

3.14.3 USART

The USART interfaces (USART1, USART2 and USART3) allow full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.
1 Mbit/s full duplex SCI
SPI1 emulation
High precision baud rate generator
Smartcard emulation
IrDA SIR encoder decoder
Single wire half duplex mode
Note: USART1, USART2 and USART3 can be served by the DMA1 Controller.
Doc ID 023337 Rev 1 21/109
Functional overview STM8L052R8

3.15 Infrared (IR) interface

The high density value line STM8L05xxx devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

3.16 Development support

Development tools
Development tools for the STM8 microcontrollers include:
The STice emulation system offering tracing and code profiling
The STVD high-level language debugger including C compiler, assembler and
integrated development environment
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.
Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in real­time by means of shadow registers.
Bootloader
A bootloader is available to reprogram the Flash memory using the USART1, USART2,
USART3 (USARTs in asynchronous mode), SPI1 or SPI2 interfaces. The reference document for the bootloader is UM0560: STM8 bootloader user manual.
The bootloader is used to download application software into the device memories, including RAM, program and data memory, using standard serial interfaces. It is a complementary solution to programming via the SWIM debugging interface.
22/109 Doc ID 023337 Rev 1
STM8L052R8 Pin description
12
21
1
2
3
4
5
6
7
8
9
10
11
NRST/PA1
PA2 PA3 PA4
VLCD
PE0
PE1
PD1
PD2
PD3
PE3
PD0
PE5
PE4
V
DD1
V
DDA
V
REF+
PE2
PB2
PC0
PC1
V
DD3
V
SS3
PC2
PC3
PC4
PC5
PC6
PC7
PE6
PE7
PB3
PB4
PB5
PB6
PB7
PF0
PD4
PD5
PD6
PD7
PA0
PA5
14
15
16
17
18
19
20
13
PA6 PA7
V
SSA/VREF-
V
SS1
PG1
PG0
PG2
PG3
PB1
PB0
PF1
PF4
PF5
PF6
PF7
PG4
PG5
PG6
PG7
V
SS2
V
DD2
5051525354555758596061626364 56 49
32 31 30 28 27 26 25 24 23 22 29
41
48
47
46
45
44
43
42
39
38
37
36
35
34
33
40
ai17835

4 Pin description

Figure 3. STM8L052R8 64-pin LQFP64 package pinout

Doc ID 023337 Rev 1 23/109
Pin description STM8L052R8

Table 3. Legend/abbreviation for Tabl e 4

Typ e I= input, O = output, S = power supply
FT Five-volt tolerant
Level
Port and control configuration
Reset state

Table 4. High density value line STM8L05xxx pin description

TT 3.6 V tolerant
Output HS = high sink/source (20 mA)
Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. “under reset”) and after internal reset release (i.e. at reset state).
Pin
number
LQFP64
2 NRST/PA1
PA2/OSC_IN/
3
[USART1_TX] [SPI1_MISO]
PA3/OSC_OUT/[USART1_
4
RX]
PA4/TIM2_BKIN/
5
[TIM2_ETR]
LCD_COM0/ADC1_IN2
PA5/TIM3_BKIN/
6
[TIM3_ETR]
LCD_COM1/ADC1_IN1
Pin name
(1)
(8)
/[SPI1_MOSI]
(8)
(8)
(8)
(8)
Input Output
Type
I/O level
wpu
floating
OD
PP
Default alternate function
(after reset)
Main function
Ext. interrupt
High sink/source
I/O X HS X X Reset PA 1
HSE oscillator input /
/
I/O X X X HS X X Port A2
[USART1 transmit] / [SPI1 master in- slave out]
HSE oscillator output /
(8)
I/O X X X HS X X Port A3
[USART1 receive]/ [SPI1 master out/slave in]/
Timer 2 - break input /[Timer 2 - trigger]/
/
I/O FT
(2)
XXXHSXXPort A4
LCD COM 0 / ADC1 input 2
Timer 3 - break input
/
I/O FT
(2)
XXXHSXXPort A5
/[Timer 3 - trigger]/ LCD_COM 1 / ADC1 input 1
PA 6/ [ADC1_TRIG]/
7
LCD_COM2/ADC1_IN0
PA7/LCD_SEG0
8
/TIM5_CH1
(3)
PB0
31
/TIM2_CH1/
LCD_SEG10/ADC1_IN18
PB1/TIM3_CH1/
32
LCD_SEG11/
(2)
I/O FT
I/O FT
I/O FT
I/O FT
(2)
XXXHSXXPort A6
(2)
XXXHSXXPort A7
(2)
XXXHSXXPort B0
(2)
XXXHSXXPort B1
ADC1_IN17
24/109 Doc ID 023337 Rev 1
[ADC1 - trigger] / LCD_COM2 / ADC1 input 0
LCD segment 0/ TIM5 channel 1
Timer 2 - channel 1 / LCD segment 10 / ADC1_IN18
Timer 3 - channel 1 / LCD segment 11 / ADC1_IN17
STM8L052R8 Pin description
Table 4. High density value line STM8L05xxx pin description (continued)
Pin
number
LQFP64
33
34
35
36
37
38
53 PC0
54 PC1
57
Pin name
PB2/ TIM2_CH2/ LCD_SEG12/ ADC1_IN16
PB3/TIM2_ETR/ LCD_SEG13/ ADC1_IN15
PB4
(3)
/[SPI1_NSS]
(8)
/ LCD_SEG14/ ADC1_IN14
PB5/[SPI1_SCK]
(8)
/ LCD_SEG15/ ADC1_IN13
(8)
PB6/[SPI1_MOSI]
/ LCD_SEG16/ ADC1_IN12
PB7/[SPI1_MISO]
(8)
/ LCD_SEG17/ ADC1_IN11
(2)
/I2C1_SDA I/O FT
(2)
/I2C1_SCL I/O FT
PC2/USART1_RX/ LCD_SEG22/ADC1_IN6/ VREFINT
Typ e
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
Input Output
I/O level
wpu
floating
OD
Ext. interrupt
High sink/source
(2)
XXXHSXXPort B2
(2)
XXXHSXXPort B3
(2)X(3)X(3)
(2)
XXXHSXXPort B5
(2)
XXXHSXXPort B6
(2)
XXXHSXXPort B7
(2)
XXT
(2)
XXT
(2)
XXXHSXXPort C2
XHSX XPort B4
(4)
(4)
Default alternate function
PP
(after reset)
Main function
Timer 2 - channel 2 / LCD segment 12 / ADC1_IN16
Timer 2 - trigger / LCD segment 13 /ADC1_IN15
[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14
[SPI1 clock] / LCD segment 15 / ADC1_IN13
[SPI1 master out/slave in]/ LCD segment 16 / ADC1_IN12
[SPI1 master in- slave out]
/LCD segment 17 / ADC1_IN11
Port C0 I2C1 data
Port C1 I2C1 clock
USART1 receive / LCD segment 22 / ADC1_IN6 /Internal voltage reference output
PC3/USART1_TX/
58
LCD_SEG23/
I/O FT
ADC1_IN5
PC4/USART1_CK/
59
I2C1_SMB/CCO/
I/O FT
ADC1_IN4
PC5/OSC32_IN
60
/[SPI1_NSS]
[USART1_TX]
PC6/OSC32_OUT/
61
[SPI1_SCK] [USART1_RX]
(8)
(8)
(8)
/
(8)
/
I/O FT
I/O FT
62 PC7/ADC1_IN3 I/O FT
(2)
XXXHSXXPort C3
USART1 transmit / LCD segment 23 / ADC1_IN5
USART1 synchronous
(2)
XXXHSXXPort C4
clock / I2C1_SMB / Configurable clock output / ADC1_IN4
(2)
XXXHSXXPort C5
LSE oscillator input / [SPI1
master/slave select] / [USART1 transmit]
(2)
XXXHSXXPort C6
LSE oscillator output /
[SPI1 clock] / [USART1 receive]
(2)
XXXHSXXPort C7 ADC1_IN3
Doc ID 023337 Rev 1 25/109
Pin description STM8L052R8
Table 4. High density value line STM8L05xxx pin description (continued)
Pin
number
LQFP64
25
26
27
28
45
46
47
Pin name
PD0/TIM3_CH2/
[ADC1_TRIG]
(8)
/
LCD_SEG7/ADC1_IN22/
PD1/TIM3_ETR/ LCD_COM3/ ADC1_IN21
PD2/TIM1_CH1 /LCD_SEG8/ ADC1_IN20
PD3/ TIM1_ETR/ LCD_SEG9/ADC1_IN19
PD4/TIM1_CH2 /LCD_SEG18/ ADC1_IN10
PD5/TIM1_CH3 /LCD_SEG19/ ADC1_IN9
PD6/TIM1_BKIN /LCD_SEG20/ ADC1_IN8/RTC_CALIB/ /VREFINT
Typ e
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
Input Output
I/O level
wpu
floating
OD
Ext. interrupt
High sink/source
(2)
XXXHSXXPort D0
(2)
XXXHSXXPort D1
(2)
XXXHSXXPort D2
(2)
XXXHSXXPort D3
(2)
XXXHSXXPort D4
(2)
XXXHSXXPort D5
(2)
XXXHSXXPort D6
PP
Main function
Default alternate function
(after reset)
Timer 3 - channel 2 / [ADC1_Trigger] / LCD segment 7 / ADC1_IN22
Timer 3 - trigger / LCD_COM3 / ADC1_IN21
Timer 1 - channel 1 / LCD segment 8 / ADC1_IN20
Timer 1 - trigger / LCD segment 9 / ADC1_IN19
Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10
Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9
Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration / Internal voltage reference output
PD7/TIM1_CH1N /LCD_SEG21/
48
ADC1_IN7/RTC_ALARM/V
I/O FT
(2)
XXXHSXXPort D7
REFINT
(2)
49 PG4/SPI2_NSS I/O FT
50 PG5/SPI2_SCK I/O FT
51 PG6/SPI2_MOSI I/O FT
52 PG7/SPI2_MISO I/O FT
(2)
PE0
19
20
/LCD_SEG1/TIM5_C
H2/RTC_TAMP1
PE1/TIM1_CH2N/ LCD_SEG2/RTC_TAMP2
I/O FT
I/O FT
X XXHSXXPort G4
(2)
X XXHSXXPort G5 SPI2 clock
(2)
X XXHSXXPort G6
(2)
X XXHSXXPort G7
(2)
XXXHSXXPort E0
(2)
XXXHSXXPort E1
26/109 Doc ID 023337 Rev 1
Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC alarm / Internal voltage reference output
SPI2 master/slave select
SPI2 master out- slaìve in
SPI2 master in- slave out
LCD segment 1/Timer 5 channel 2/RTC tamper 1
Timer 1 - inverted channel 2 / LCD segment 2/ RTC tamper 2
STM8L052R8 Pin description
Table 4. High density value line STM8L05xxx pin description (continued)
Pin
number
Pin name
LQFP64
PE2/TIM1_CH3N/
21
LCD_SEG3/RTC_TAMP3
PE3/LCD_SEG4
22
/USART2_RX
PE4/LCD_SEG5
23
/USART2_TX
PE5/LCD_SEG6/
24
ADC1_IN23/USART2_CK
63 PE6/PVD_IN/TIM5_BKIN I/O FT
PE7
64
/TIM5_ETR
Typ e
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
Input Output
Default alternate function
I/O level
wpu
floating
OD
PP
Main function
(after reset)
Ext. interrupt
High sink/source
(2)
XXXHSXXPort E2
Timer 1 - inverted channel 3 / LCD segment 3/ RTC tamper 3
(2)
XXXHSXXPort E3
(2)
XXXHSXXPort E4
(2)
XXXHSXXPort E5
LCD segment 4 /USART2 receive
LCD segment 5 /USART2 transmit
LCD segment 6 / ADC1_IN23/USART2 synchronous clock
(2)
XXXHSXXPort E6
(2)
XXXHSXXPort E7 TIM5 trigger
PVD_IN /TIM5 break input
PF0/ADC1_IN24
39
/[USART3_TX]
PF1/ADC1_IN25/
40
[USART3_RX]
PF4/LCD_SEG36
41
/LCD_COM4
PF5/LCD_SEG37/
42
LCD_COM5
PF6/LCD_SEG38/
43
LCD_COM6
PF7/LCD_SEG39/
44
LCD_COM7
(5)
(5)
(5)
(5)
I/O X X X HS X X Port F0
I/O X XXHSXXPort F1
(2)
I/O FT
I/O FT
I/O FT
I/O FT
X XXHSXXPort F4
(2)
X XXHSXXPort F5
(2)
X XXHSXXPort F6
(2)
X XXHSXXPort F7
ADC1_IN24/ [USART3 transmit]
ADC1_IN25/ [USART3 receive]
LCD_SEG36/ LCD COM4
LCD_SEG37/ LCD COM5
LCD_SEG38/ LCD COM6
LCD_SEG39/ LCD COM7
(5)
(5)
(5)
(5)
18 VLCD S LCD booster external capacitor
11 V
DD1
10 V
SS1
12 V
DDA
13 V
REF+
PG0/USART3_RX/
14
[TIM2_BKIN]
PG1/USART3_TX/
15
[TIM3_BKIN]
S Digital power supply
I/O ground
S Analog supply voltage
S ADC1 positive voltage reference
I/O FT
I/O FT
(2)
X XXHSXXPort G0
(2)
X XXHSXXPort G1
USART3 receive /
[Timer 2 - break input]
USART3 transmit /
[Timer 3 -break input]
Doc ID 023337 Rev 1 27/109
Pin description STM8L052R8
Table 4. High density value line STM8L05xxx pin description (continued)
Pin
number
LQFP64
Pin name
Typ e
Input Output
I/O level
wpu
floating
OD
PP
Main function
Default alternate function
(after reset)
Ext. interrupt
High sink/source
16 PG2/USART3_CK I/O FT
17 PG3[TIM3_ETR] I/O FT
9V
SSA/VREF-
55 V
DD2
56 V
SS2
(6)
PA 0
1
/[USART1_CK]
SWIM/BEEP/IR_TIM
(8)
(7)
S
S IOs supply voltage
S IOs ground voltage
/
I/O X X X
(2)
X XXHSXXPort G2
(2)
X XXHSXXPort G3 [Timer 3 - trigger]
Analog ground voltage / ADC1 negative voltage reference
HS
XXPort A0
USART 3 synchronous clock
[USART1 synchronous
(8)
clock]
/ SWIM input and
output /Beep output / Infrared Timer output
29 V
DD3
30 V
SS3
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031).
2. In the 5 V tolerant I/Os, protection diode to V
3. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
4. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V not implemented).
5. SEG/COM multiplexing available on medium+ and high density devices. SEG signals are available by default (see reference manual for details).
6. The PA0 pin is in input pull-up during the reset phase and after reset release.
7. High Sink LED driver capability available on PA0.
8. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not aduplication of the function).
S IOs supply voltage
S IOs ground voltage
is not implemented.
DD
DD
are
28/109 Doc ID 023337 Rev 1
STM8L052R8 Pin description

4.1 System configuration options

As shown in Table 4: High density value line STM8L05xxx pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the “ Routing interface (RI) and system configuration controller” section in the STM8L15x and STM8L16x reference manual (RM0031).
Doc ID 023337 Rev 1 29/109
Memory and register map STM8L052R8
GPIO and peripheral registers
0x00 0000
Reserved
High density
(64 Kbytes)
Reset and interrupt vectors
0x00 1000
0x00 10FF
0x00 07FF
RAM (4 Kbytes)
(1)
(513 bytes)
(1)
0x00 1100
Data EEPROM
0x00 4800
0x00 48FF
0x00 4900
0x00 7FFF
0x00 8000
0x00 FFFF
0x00 0800
0x00 0FFF
0x00 47FF
0x00 7EFF
0x00 8080
0x00 807F
0x00 7F00
Reserved
including
Stack
(256 bytes)
Option bytes
0x00 4FFF 0x00 5000
0x00 57FF 0x00 5800
Reserved
0x00 5FFF
Boot ROM
0x00 6000
0x00 67FF
(2 Kbytes)
0x00 6800
Reserved
CPU/SWIM/Debug/ITC
Registers
0x00 5000
GPIO Ports
0x00 5050
Flash
0x00 50C0
ITC-EXTI
0x00 50D3
RST
0x00 50E0
CLK
0x00 50F0
WWDG
0x00 5210
IWDG
0x00 5230
BEEP
0x00 5250
RTC
0x00 5280
SPI1
0x00 52E0
I2C1
0x00 52FF
USART1
TIM2
TIM3
TIM1
TIM4
IRTIM
ADC1
0x00 5070
DMA1
SYSCFG
SPI2
USART2
0x00 509D
0x00 50A0
0x00 50B0
0x00 5140
0x00 5200
0x00 5300
0x00 5340
0x00 5380
0x00 53F0
0x00 5430
0x00 5440
Flash program memory
WFE
0x00 50A6
0x00 50B2
PWR
Reserved
Reserved
0x00 53C0
Reserved
RI
LCD
USART3
0x00 53E0
0x00 5400
0x00 5444
TIM5
0x00 52B0

5 Memory and register map

5.1 Memory mapping

The memory map is shown in Figure 4.

Figure 4. Memory map

1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address.
2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware registers, and to Table 8 for information on CPU/SWIM/debug module controller registers.
30/109 Doc ID 023337 Rev 1
Loading...
+ 79 hidden pages