Datasheet STM8L052R8 Datasheet (ST)

STM8L052R8
LQFP64
Value Line, 8-bit ultralow power MCU, 64-KB Flash,
256-byte data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC
Datasheet production data
Features
– Operating power supply: 1.8 V to 3.6 V – Temperature range: -40 °C to 85 °C
Low power features
– 5 low power modes: Wait, Low power run
(5.9 µA), Low power wait (3 µA), Active-halt with full RTC (1.4 µA), Halt (400 nA)
– Dynamic power consumption:
200 µA/MHz + 330 µA – Ultra-low leakage per I/0: 50 nA – Fast wakeup from Halt: 4.7 µs
Advanced STM8 core
– Harvard architecture and 3-stage pipeline – Max freq. 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources
Reset and supply management
– Low power, ultra-safe BOR reset with 5
programmable thresholds – Ultra low power POR/PDR – Programmable voltage detector (PVD)
Clock management
– 32 kHz and 1 to 16 MHz crystal oscillators – Internal 16 MHz factory-trimmed RC – 38 kHz low consumption RC – Clock security system
Low power RTC
– BCD calendar with alarm interrupt
– Digital calibration with +/- 0.5ppm accuracy – Advanced anti-tamper detection
LCD: 8x24 or 4x28 w/ step-up converter
Memories
– 64 KB Flash program memory and
256 bytes data EEPROM with ECC, RWW – Flexible write and read protection modes – 4 KB of RAM
DMA
– 4 channels supporting ADC, SPIs, I2C,
USARTs, timers
– 1 channel for memory-to-memory
12-bit ADC up to 1 Msps/28 channels
– Internal reference voltage
Timers
– Three 16-bit timers with 2 channels (used
as IC, OC, PWM), quadrature encoder
– One 16-bit advanced control timer with 3
channels, supporting motor control – One 8-bit timer with 7-bit prescaler – 2 watchdogs: 1 Window, 1 Independent – Beeper timer with 1, 2 or 4 kHz frequencies
Communication interfaces
– Two synchronous serial interfaces (SPI) –Fast I
2
C 400 kHz SMBus and PMBus
– Three USARTs (ISO 7816 interface + IrDA)
Up to 54 I/Os, all mappable on interrupt vectors
Development support
– Fast on-chip programming and non-
intrusive debugging with SWIM – Bootloader using USART
June 2012 Doc ID 023337 Rev 1 1/109
This is information on a product in full production.
www.st.com
1
Contents STM8L052R8
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ultra low power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 System configuration controller and routing interface . . . . . . . . . . . . . . . 19
3.11 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/109 Doc ID 023337 Rev 1
STM8L052R8 Contents
3.14.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 59
8.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.9 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3.11 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Doc ID 023337 Rev 1 3/109
Contents STM8L052R8
9 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4/109 Doc ID 023337 Rev 1
STM8L052R8 List of tables
List of tables
Table 1. High density value line STM8L05xxx low power device features and
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3. Legend/abbreviation for Table 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 4. High density value line STM8L05xxx pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 5. Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 9. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 10. Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 11. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 12. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 13. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 14. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 15. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 16. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 17. Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 18. Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 19. Total current consumption and timing in Low power run mode at VDD = 1.8 V to
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 20. Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . 69
Table 21. Total current consumption and timing in Active-halt mode
at VDD = 1.8 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. . 71
Table 23. Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V . . . . . . . . . . . . 72
Table 24. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 25. Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 26. HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 27. LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 28. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 29. LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 30. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 31. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 32. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 33. Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 34. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 36. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 37. Output driving current (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 38. Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 85
Table 39. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 40. SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 41. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 42. LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 43. Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 44. ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 45. ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Doc ID 023337 Rev 1 5/109
List of tables STM8L052R8
Table 46. ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 47. ADC1 accuracy with VDDA = VREF
= 1.8 V to 2.4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
+
Table 48. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 49. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 50. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 51. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 52. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 53. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . 105
Table 54. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6/109 Doc ID 023337 Rev 1
STM8L052R8 List of figures
List of figures
Figure 1. High density value line STM8L05xxx device block diagram . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. High density value line STM8L05xxx clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. STM8L052R8 64-pin LQFP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 5. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 6. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 7. Power supply thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 8. Typical I Figure 9. Typical I Figure 10. Typical I Figure 11. Typical I Figure 12. Typical I Figure 13. Typical I
DD(RUN)
DD(RUN)
DD(Wait)
DD(Wait)
DD(LPR)
DD(LPW)
Figure 14. Typical IDD(AH) vs. V Figure 15. Typical IDD(Halt) vs. V
from RAM vs. VDD (HSI clock source), f
from Flash vs. V from RAM vs. V from Flash (HSI clock source), f vs. V
vs. V
(LSI clock source), all peripherals OFF . . . . . . . . . . . . . . . . . . . . 68
DD
(LSI clock source), all peripherals OFF
DD
(LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DD
(internal reference voltage OFF) . . . . . . . . . . . . . . . . . . . . . . . . 72
DD
(HSI clock source), f
DD
(HSI clock source), f
DD
= 16 MHz 1). . . . . . . . . . . . . . . . . . . 66
CPU
=16 MHz
CPU
= 16 MHz
CPU
= 16 MHz 1). . . . . . . . . . . . . 66
CPU
Figure 16. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 17. LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 18. Typical HSI frequency vs. V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DD
Figure 19. Typical LSI clock source frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 20. Typical VIL and VIH vs. VDD (standard I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 21. Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 22. Typical pull-up resistance R Figure 23. Typical pull-up current I
pu
vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
PU
vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 24. Typical VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 25. Typical VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 26. Typical VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 27. Typical VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 28. Typical VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 29. Typical VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 30. Typical NRST pull-up resistance R Figure 31. Typical NRST pull-up current I
vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
PU
vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
pu
Figure 32. Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 33. SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 34. SPI1 timing diagram - slave mode and CPHA=1 Figure 35. SPI1 timing diagram - master mode
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 36. Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 37. ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 38. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 39. Power supply and reference decoupling (V
not connected to V
REF+
Figure 40. Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 100
Figure 41. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 105
Figure 42. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 43. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1) . . . . . . . . . . . . . . . . . 64
1) . . . . . . . . . . . . . . . . 64
(1)
. . . . . . . . . . . . . . . . . 69
). . . . . . . . . . . . . 100
DDA
Doc ID 023337 Rev 1 7/109
Introduction STM8L052R8

1 Introduction

This document describes the features, pinout, mechanical data and ordering information of the high density value line STM8L052R8 microcontroller with a Flash memory density of 64 Kbytes.
For further details on the whole STMicroelectronics high density family please refer to
Section 2.2: Ultra low power continuum.
For detailed information on device operation and registers, refer to the reference manual (RM0031).
For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054).
For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).
High density value line devices provide the following benefits:
Integrated system
64 Kbytes of high density embedded Flash program memory – 256 bytes of data EEPROM – 4 Kbytes of RAM – Internal high speed and low-power low speed RC – Embedded reset
Ultra low power consumption
1 µA in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low power wait mode and low power run mode
Advanced features
Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access
Short development cycles
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals
Wide choice of development tools
These features make the value line STM8L05xxx ultra low power microcontroller family suitable for a wide range of consumer and mass market applications.
Refer to Table 1: High density value line STM8L05xxx low power device features and
peripheral counts and Section 3: Functional overview for an overview of the complete range
of peripherals proposed in this family.
Figure 1 shows the block diagram of the high density value line STM8L05xxx family.
8/109 Doc ID 023337 Rev 1
STM8L052R8 Description

2 Description

The high density value line STM8L05xxx devices are members of the STM8L ultra low power 8-bit family.
The value line STM8L05xxx ultra low power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-application debugging and ultra-fast Flash programming.
High density value line STM8L05xxx microcontrollers feature embedded data EEPROM and low-power, low-voltage, single-supply program Flash memory.
All devices offer 12-bit ADC, real-time clock, four 16-bit timers, one 8-bit timer as well as standard communication interface such as two SPIs, I2C, three USARTs and 8x24 or 4x28­segment LCD. The 8x24 or STM8L05xxx.
4x 28-segment LCD is available on the high density value line
The STM8L05xxx family operates from 1.8 V to 3.6 V and is available in the temperature range.
The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.
All value line STM8L ultra low power products are based on the same architecture with the same memory mapping and a coherent pinout.
-40 to +85 °C
Doc ID 023337 Rev 1 9/109
Description STM8L052R8

2.1 Device overview

Table 1. High density value line STM8L05xxx low power device features and
peripheral counts
Features STM8L052R8
Flash (Kbytes) 64
Data EEPROM (bytes) 256
RAM (Kbytes) 4
LCD 8x24 or 4x28
Basic
1
(8-bit)
Timers
General purpose
Advanced control
3
(16-bit)
1
(16-bit)
SPI 2 Communication interfaces
I2C 1
USART 3
GPIOs 54
12-bit synchronized ADC (number of channels)
(1)
1
(28)
RTC, window watchdog, independent watchdog,
Others
16-MHz and 38-kHz internal RC,
1- to 16-MHz and 32-kHz external oscillator
CPU frequency 16 MHz
Operating voltage 1.8 V to 3.6 V
Operating temperature -40 to +85 °C
Package LQFP64
1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).
10/109 Doc ID 023337 Rev 1
STM8L052R8 Description

2.2 Ultra low power continuum

The ultra low power value line STM8L05xxx and STM8L15xxx are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the STM8L family, the devices are part of STMicroelectronics microcontrollers ultra low power strategy which also includes STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features.
They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.
Note: 1 The STM8L05xxx is pin-to-pin compatible with STM8L101xx devices.
2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family.
Please refer to STM32L15x documentation for more information on these devices.
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex™-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra low power performance to range from 5 up to 33.3 DMIPs.
Shared peripherals
STM8L05x, STM8L15x and STM32L15xx share identical peripherals which ensure a very easy migration from one family to another:
Analog peripheral: ADC1
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L and STM32L devices use a common architecture:
Same power supply range from 1.8 to 3.6 V
Architecture optimized to reach ultra-low consumption both in low power modes and
Run mode
Fast startup strategy from low power modes
Flexible system clock
Ultra-safe reset: same reset strategy for both STM8L and STM32L including power-on
reset, power-down reset, brownout reset and programmable voltage detector
Features
ST ultra low power continuum also lies in feature compatibility:
More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm
Memory density ranging from 4 to 128 Kbytes
Doc ID 023337 Rev 1 11/109
Functional overview STM8L052R8
MS30323V1
Clock controller and CSS
Clocks
Address, control and data buses
64-Kbyte
4-Kbyte RAM
to core and peripherals
IWDG
(38 kHz clock)
Port A
Port B
Port C
Power
VOLT. REG.
LCD driver
WWDG
256 bytes
Port D
Port E
Beeper
RTC
Program memory
Data EEPROM
@V
DD
V
DD18
V
DD
=1.8 V
V
SS
SWIM
SCL, SDA,
SPI1_MOSI, SPI1_MISO,
SPI1_SCK, SPI1_NSS
USART1_RX, USART1_TX,
USART1_CK
ADC1_INx
V
DDA, VSSA
SMB
@V
DDA/VSSA
12-bit ADC1
V
REF+
3.6 V
NRST
PA[7:0]
PB[7:0]
PC[7:0]
PD[7:0]
PE[7:0]
PF[7:0]
BEEP
ALARM, CALIB, TAMP1/2/3
SEGx, COMx
POR/PDR
OSC_IN,
OSC_OUT
OSC32_IN,
OSC32_OUT
to
BOR
PVD
PVD_IN
RESET
DMA1 (4 channels)
3 channels
2 channels
2 channels
V
LCD
= 2.5 to 3.6 V
LCD booster
Internal reference
voltage
VREFINT out
IR_TIM
1-16 MHz oscillator
16 MHz internal RC
32 kHz oscillator
STM8 Core
16-bit Timer 1
16-bit Timer 2
38 kHz internal RC
Interrupt controller
16-bit Timer 3
Debug module
(SWIM)
8-bit Timer 4
Infrared interface
SPI1
I²C1
USART1
V
REF-
Port F
16-bit Timer 5
2 channels
SPI2
SPI2_MOSI, SPI2_MISO,
SPI2_SCK, SPI2_NSS
USART2_RX, USART2_TX,
USART2_CK
USART2
USART3_RX, USART3_TX,
USART3_CK
USART3
PG[7:0]
Port G
YPSY
up to
up to

3 Functional overview

Figure 1. High density value line STM8L05xxx device block diagram

1. Legend: ADC: Analog-to-digital converter BOR: Brownout reset DMA: Direct memory access I²C: Inter-integrated circuit multimaster interface LCD: Liquid crystal display POR/PDR: Power on reset / power down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog IWDG: independent watchdog
12/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview

3.1 Low power modes

The high density value line STM8L05xxx devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Wait mode: The CPU clock is stopped, but selected peripherals keep running. An
internal or external interrupt, event or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode).
Low power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra low power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode.
Low power wait mode: This mode is entered when executing a Wait for event in Low
power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1) and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode.
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or reset.
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs.
Doc ID 023337 Rev 1 13/109
Functional overview STM8L052R8

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.
It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus - single cycle fetching most instructions
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64-Kbyte level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The high density value line STM8L05xxx devices feature a nested vectored interrupt controller:
Nested interrupts with 3 software priority levels
32 interrupt vectors with hardware priority
Up to 40 external interrupt sources on 11 vectors
Trap and reset interrupts
14/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview

3.3 Reset and supply management

3.3.1 Power supply scheme

The device requires a 1.8 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows:
V
V
V

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry that ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently.
, V
, V
, V
, V
, V
SS1
DD1
SS2
DD2
SS3
= 1.8 to 3.6 V: external power supply for I/Os and
DD3
for the internal regulator. Provided externally through V ground pin is VSS. V
SS1/VSS2/VSS3/VSS4
and V
DD1/VDD2/VDD3
unconnected.
SSA ; VDDA
V
must be connected to VDD and VSS, respectively.
SSA
REF+
externally through V
= 1.8 to 3.6 V: external power supplies for analog peripherals. V
; V
(for ADC1): external reference voltage for ADC1. Must be provided
REF-
REF+
and V
REF-
pin.
pins, the corresponding
DD
must not be left
DDA
and
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V
DD
for any external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
power supply and compares it to the V levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V V
DD/VDDA
is higher than the V a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The high density value line STM8L05xxx embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.
This regulator has two different modes:
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event
(WFE) modes
Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low
power wait modes
When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.
is below a specified threshold, V
threshold. This PVD offers 7 different
PVD
DD/VDDA
threshold. The interrupt service routine can then generate
PVD
drops below the V
POR/PDR
PVD
or V
, without the need
BOR
threshold and/or when
Doc ID 023337 Rev 1 15/109
Functional overview STM8L052R8

3.4 Clock management

The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock sources: 4 different clock sources can be used to drive the system
clock:
1-16 MHz High speed external crystal (HSE)
16 MHz High speed internal RC oscillator (HSI)
32.768 kHz Low speed external crystal (LSE)
38 kHz Low speed internal RC (LSI)
RTC and LCD clock sources: The above four sources can be chosen to clock the
RTC and the LCD, whatever the system clock.
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If a HSE clock
failure occurs, the system clock is automatically switched to HSI.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
16/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview
HSE OSC
1-16 MHz
HSI RC 16 MHz
LSI RC 38 kH z
LSE OSC
32 768 k
H
z
HSI
LSI
RTC
prescaler
/1;2;4;8;16;32;64
PCLK
to peripherals
RTCCLK/2
to LCD
to IWDG
SYSCLK
HSE
LSI LSE
OSC_OUT
OSC32_OUT
OSC_IN
OSC32_IN
clock output
CCO
prescaler
/1;2;4;8;16;32;64
HSI LSI HSE LSE
CCO
to core and
memory
SYSCLK Presc aler
/1;2;4;8;16;32;64;128
IWDGCLK
RTCSEL[3:0]
LSE
CLKBEEPSEL[1:0]
to BEEP
BEEPCLK
MS30324V1
CSS
configurable
.
/ 2
Peripheral
Clock enable (20 bits)
to RTC
RTCCLK
clock enable (1 bit)
LCDCLK
to LCD
SYSCLK
Halt
clock enable (1 bit)
LCD peripheral
RTCCLK
LCD peripheral
CSS_LSE

Figure 2. High density value line STM8L05xxx clock tree diagram

1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE
bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE
bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x reference manual (RM0031).

3.5 Low power real-time clock

The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically.The subsecond field can also be read in binary format.
The calendar can be corrected from 1 to 32767 RTC clock pulses. This allows to make a synchronization to a master clock.
The RTC offers a digital calibration which allows an accuracy of +/-0.5ppm.
It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability.
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours.
Periodic alarms based on the calendar can also be generated from every second to
A clock security system detects a failure on LSE, and can provide an interrupt with wakeup capability. The RTC clock can automatically switch to LSI in case of LSE failure.
The RTC also provides 3 anti-tamper detection pins. This detection embeds aprogrammable filter and can wakeup the MCU.
every year.
Doc ID 023337 Rev 1 17/109
Functional overview STM8L052R8

3.6 LCD (Liquid crystal display)

The LCD is only available on STM8L052xx devices.
The liquid crystal display drives up to 8 common terminals and up to 24 segment terminals to drive up to 192 pixels. It can also be configured to drive up to 4 common and 28 segments (up to 112 pixels).
Internal step-up converter to guarantee contrast control whatever V
Static 1/2, 1/3, 1/4, 1/8 duty supported.
Static 1/2, 1/3, 1/4 bias supported.
Phase inversion to reduce power consumption and EMI.
Up to 8 pixels which can be programmed to blink.
The LCD controller can operate in Halt mode.
DD
.
Note: Unnecessary segments and common pins can be used as general I/O pins.

3.7 Memories

The high density value line STM8L05xxx devices have the following main features:
4 Kbytes of RAM
The non-volatile memory is divided into three arrays:
64 Kbytes of high density embedded Flash program memory
256 bytes of data EEPROM
–Option bytes
The EEPROM embeds the error correction code (ECC) feature. It supports the read-while­write (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix.
The option byte protects part of the Flash program memory from write and readout piracy.

3.8 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, I2C1, SPI1, SPI 2, USART1, USART2, USART3 and the five timers.
18/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview

3.9 Analog-to-digital converter

12-bit analog-to-digital converter (ADC1) with 28 channels (including 4 fast channels),
temperature sensor and internal reference voltage
Conversion time down to 1 µs with f
Programmable resolution
Programmable sampling time
Single and continuous mode of conversion
Scan capability: automatic conversion performed on a selected group of analog inputs
Analog watchdog: interrupt generation when the converted voltage is outside the
SYSCLK
= 16 MHz
programmed threshold
Triggered by timer
Note: ADC1 can be served by DMA1.

3.10 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1 and the internal reference voltage V

3.11 Timers

The high density value line STM8L05xxx devices contain one advanced control timer (TIM1), three 16-bit general purpose timers (TIM2, TIM3 and TIM5) and one 8-bit basic timer (TIM4).
All the timers can be served by DMA1.
Ta bl e 2 compares the features of the advanced control, general-purpose and basic timers.

Table 2. Timer feature comparison

Timer
TIM1
TIM2
TIM3
TIM5
TIM4 8-bit up
Counter
resolution
16-bit up/down
Counter
type
Prescaler factor
Any integer
from 1 to 65536
Any power of 2
from 1 to 128
Any power of 2
from 1 to 32768
DMA1
request
generation
Ye s
.
REFINT
Capture/compare
channels
3 + 1 3
2
0
Complementary
outputs
None
Doc ID 023337 Rev 1 19/109
Functional overview STM8L052R8

3.11.1 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.
16-bit up, down and up/down autoreload counter with 16-bit prescaler
3 independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse mode output
1 additional capture/compare channel which is not connected to an external I/O
Synchronization module to control the timer with external signals
Break input to force timer outputs into a defined state
3 complementary outputs with adjustable dead time
Encoder mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)

3.11.2 16-bit general purpose timers

16-bit autoreload (AR) up/down-counter
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
2 individually configurable capture/compare channels
PWM mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)

3.11.3 8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow.

3.12 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

3.12.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.12.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures.
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.
20/109 Doc ID 023337 Rev 1
STM8L052R8 Functional overview

3.13 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

3.14 Communication interfaces

3.14.1 SPI

The serial peripheral interfaces (SPI1 and SPI2) provide half/ full duplex synchronous serial communication with external devices.
Maximum speed: 8 Mbit/s (f
Full duplex synchronous transfers
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
Hardware CRC calculation
Slave/master selection input pin
SYSCLK
Note: SPI1 and SPI2 can be served by the DMA1 Controller.
/2) both for master and slave

3.14.2 I²C

The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C bus­specific sequencing, protocol, arbitration and timing.
Master, slave and multi-master capability
Standard mode up to 100 kHz and fast speed modes up to 400 kHz
7-bit and 10-bit addressing modes
SMBus 2.0 and PMBus support
Hardware CRC calculation
Note: I
2
C1 can be served by the DMA1 Controller.

3.14.3 USART

The USART interfaces (USART1, USART2 and USART3) allow full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.
1 Mbit/s full duplex SCI
SPI1 emulation
High precision baud rate generator
Smartcard emulation
IrDA SIR encoder decoder
Single wire half duplex mode
Note: USART1, USART2 and USART3 can be served by the DMA1 Controller.
Doc ID 023337 Rev 1 21/109
Functional overview STM8L052R8

3.15 Infrared (IR) interface

The high density value line STM8L05xxx devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

3.16 Development support

Development tools
Development tools for the STM8 microcontrollers include:
The STice emulation system offering tracing and code profiling
The STVD high-level language debugger including C compiler, assembler and
integrated development environment
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.
Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in real­time by means of shadow registers.
Bootloader
A bootloader is available to reprogram the Flash memory using the USART1, USART2,
USART3 (USARTs in asynchronous mode), SPI1 or SPI2 interfaces. The reference document for the bootloader is UM0560: STM8 bootloader user manual.
The bootloader is used to download application software into the device memories, including RAM, program and data memory, using standard serial interfaces. It is a complementary solution to programming via the SWIM debugging interface.
22/109 Doc ID 023337 Rev 1
STM8L052R8 Pin description
12
21
1
2
3
4
5
6
7
8
9
10
11
NRST/PA1
PA2 PA3 PA4
VLCD
PE0
PE1
PD1
PD2
PD3
PE3
PD0
PE5
PE4
V
DD1
V
DDA
V
REF+
PE2
PB2
PC0
PC1
V
DD3
V
SS3
PC2
PC3
PC4
PC5
PC6
PC7
PE6
PE7
PB3
PB4
PB5
PB6
PB7
PF0
PD4
PD5
PD6
PD7
PA0
PA5
14
15
16
17
18
19
20
13
PA6 PA7
V
SSA/VREF-
V
SS1
PG1
PG0
PG2
PG3
PB1
PB0
PF1
PF4
PF5
PF6
PF7
PG4
PG5
PG6
PG7
V
SS2
V
DD2
5051525354555758596061626364 56 49
32 31 30 28 27 26 25 24 23 22 29
41
48
47
46
45
44
43
42
39
38
37
36
35
34
33
40
ai17835

4 Pin description

Figure 3. STM8L052R8 64-pin LQFP64 package pinout

Doc ID 023337 Rev 1 23/109
Pin description STM8L052R8

Table 3. Legend/abbreviation for Tabl e 4

Typ e I= input, O = output, S = power supply
FT Five-volt tolerant
Level
Port and control configuration
Reset state

Table 4. High density value line STM8L05xxx pin description

TT 3.6 V tolerant
Output HS = high sink/source (20 mA)
Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. “under reset”) and after internal reset release (i.e. at reset state).
Pin
number
LQFP64
2 NRST/PA1
PA2/OSC_IN/
3
[USART1_TX] [SPI1_MISO]
PA3/OSC_OUT/[USART1_
4
RX]
PA4/TIM2_BKIN/
5
[TIM2_ETR]
LCD_COM0/ADC1_IN2
PA5/TIM3_BKIN/
6
[TIM3_ETR]
LCD_COM1/ADC1_IN1
Pin name
(1)
(8)
/[SPI1_MOSI]
(8)
(8)
(8)
(8)
Input Output
Type
I/O level
wpu
floating
OD
PP
Default alternate function
(after reset)
Main function
Ext. interrupt
High sink/source
I/O X HS X X Reset PA 1
HSE oscillator input /
/
I/O X X X HS X X Port A2
[USART1 transmit] / [SPI1 master in- slave out]
HSE oscillator output /
(8)
I/O X X X HS X X Port A3
[USART1 receive]/ [SPI1 master out/slave in]/
Timer 2 - break input /[Timer 2 - trigger]/
/
I/O FT
(2)
XXXHSXXPort A4
LCD COM 0 / ADC1 input 2
Timer 3 - break input
/
I/O FT
(2)
XXXHSXXPort A5
/[Timer 3 - trigger]/ LCD_COM 1 / ADC1 input 1
PA 6/ [ADC1_TRIG]/
7
LCD_COM2/ADC1_IN0
PA7/LCD_SEG0
8
/TIM5_CH1
(3)
PB0
31
/TIM2_CH1/
LCD_SEG10/ADC1_IN18
PB1/TIM3_CH1/
32
LCD_SEG11/
(2)
I/O FT
I/O FT
I/O FT
I/O FT
(2)
XXXHSXXPort A6
(2)
XXXHSXXPort A7
(2)
XXXHSXXPort B0
(2)
XXXHSXXPort B1
ADC1_IN17
24/109 Doc ID 023337 Rev 1
[ADC1 - trigger] / LCD_COM2 / ADC1 input 0
LCD segment 0/ TIM5 channel 1
Timer 2 - channel 1 / LCD segment 10 / ADC1_IN18
Timer 3 - channel 1 / LCD segment 11 / ADC1_IN17
STM8L052R8 Pin description
Table 4. High density value line STM8L05xxx pin description (continued)
Pin
number
LQFP64
33
34
35
36
37
38
53 PC0
54 PC1
57
Pin name
PB2/ TIM2_CH2/ LCD_SEG12/ ADC1_IN16
PB3/TIM2_ETR/ LCD_SEG13/ ADC1_IN15
PB4
(3)
/[SPI1_NSS]
(8)
/ LCD_SEG14/ ADC1_IN14
PB5/[SPI1_SCK]
(8)
/ LCD_SEG15/ ADC1_IN13
(8)
PB6/[SPI1_MOSI]
/ LCD_SEG16/ ADC1_IN12
PB7/[SPI1_MISO]
(8)
/ LCD_SEG17/ ADC1_IN11
(2)
/I2C1_SDA I/O FT
(2)
/I2C1_SCL I/O FT
PC2/USART1_RX/ LCD_SEG22/ADC1_IN6/ VREFINT
Typ e
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
Input Output
I/O level
wpu
floating
OD
Ext. interrupt
High sink/source
(2)
XXXHSXXPort B2
(2)
XXXHSXXPort B3
(2)X(3)X(3)
(2)
XXXHSXXPort B5
(2)
XXXHSXXPort B6
(2)
XXXHSXXPort B7
(2)
XXT
(2)
XXT
(2)
XXXHSXXPort C2
XHSX XPort B4
(4)
(4)
Default alternate function
PP
(after reset)
Main function
Timer 2 - channel 2 / LCD segment 12 / ADC1_IN16
Timer 2 - trigger / LCD segment 13 /ADC1_IN15
[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14
[SPI1 clock] / LCD segment 15 / ADC1_IN13
[SPI1 master out/slave in]/ LCD segment 16 / ADC1_IN12
[SPI1 master in- slave out]
/LCD segment 17 / ADC1_IN11
Port C0 I2C1 data
Port C1 I2C1 clock
USART1 receive / LCD segment 22 / ADC1_IN6 /Internal voltage reference output
PC3/USART1_TX/
58
LCD_SEG23/
I/O FT
ADC1_IN5
PC4/USART1_CK/
59
I2C1_SMB/CCO/
I/O FT
ADC1_IN4
PC5/OSC32_IN
60
/[SPI1_NSS]
[USART1_TX]
PC6/OSC32_OUT/
61
[SPI1_SCK] [USART1_RX]
(8)
(8)
(8)
/
(8)
/
I/O FT
I/O FT
62 PC7/ADC1_IN3 I/O FT
(2)
XXXHSXXPort C3
USART1 transmit / LCD segment 23 / ADC1_IN5
USART1 synchronous
(2)
XXXHSXXPort C4
clock / I2C1_SMB / Configurable clock output / ADC1_IN4
(2)
XXXHSXXPort C5
LSE oscillator input / [SPI1
master/slave select] / [USART1 transmit]
(2)
XXXHSXXPort C6
LSE oscillator output /
[SPI1 clock] / [USART1 receive]
(2)
XXXHSXXPort C7 ADC1_IN3
Doc ID 023337 Rev 1 25/109
Pin description STM8L052R8
Table 4. High density value line STM8L05xxx pin description (continued)
Pin
number
LQFP64
25
26
27
28
45
46
47
Pin name
PD0/TIM3_CH2/
[ADC1_TRIG]
(8)
/
LCD_SEG7/ADC1_IN22/
PD1/TIM3_ETR/ LCD_COM3/ ADC1_IN21
PD2/TIM1_CH1 /LCD_SEG8/ ADC1_IN20
PD3/ TIM1_ETR/ LCD_SEG9/ADC1_IN19
PD4/TIM1_CH2 /LCD_SEG18/ ADC1_IN10
PD5/TIM1_CH3 /LCD_SEG19/ ADC1_IN9
PD6/TIM1_BKIN /LCD_SEG20/ ADC1_IN8/RTC_CALIB/ /VREFINT
Typ e
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
Input Output
I/O level
wpu
floating
OD
Ext. interrupt
High sink/source
(2)
XXXHSXXPort D0
(2)
XXXHSXXPort D1
(2)
XXXHSXXPort D2
(2)
XXXHSXXPort D3
(2)
XXXHSXXPort D4
(2)
XXXHSXXPort D5
(2)
XXXHSXXPort D6
PP
Main function
Default alternate function
(after reset)
Timer 3 - channel 2 / [ADC1_Trigger] / LCD segment 7 / ADC1_IN22
Timer 3 - trigger / LCD_COM3 / ADC1_IN21
Timer 1 - channel 1 / LCD segment 8 / ADC1_IN20
Timer 1 - trigger / LCD segment 9 / ADC1_IN19
Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10
Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9
Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration / Internal voltage reference output
PD7/TIM1_CH1N /LCD_SEG21/
48
ADC1_IN7/RTC_ALARM/V
I/O FT
(2)
XXXHSXXPort D7
REFINT
(2)
49 PG4/SPI2_NSS I/O FT
50 PG5/SPI2_SCK I/O FT
51 PG6/SPI2_MOSI I/O FT
52 PG7/SPI2_MISO I/O FT
(2)
PE0
19
20
/LCD_SEG1/TIM5_C
H2/RTC_TAMP1
PE1/TIM1_CH2N/ LCD_SEG2/RTC_TAMP2
I/O FT
I/O FT
X XXHSXXPort G4
(2)
X XXHSXXPort G5 SPI2 clock
(2)
X XXHSXXPort G6
(2)
X XXHSXXPort G7
(2)
XXXHSXXPort E0
(2)
XXXHSXXPort E1
26/109 Doc ID 023337 Rev 1
Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC alarm / Internal voltage reference output
SPI2 master/slave select
SPI2 master out- slaìve in
SPI2 master in- slave out
LCD segment 1/Timer 5 channel 2/RTC tamper 1
Timer 1 - inverted channel 2 / LCD segment 2/ RTC tamper 2
STM8L052R8 Pin description
Table 4. High density value line STM8L05xxx pin description (continued)
Pin
number
Pin name
LQFP64
PE2/TIM1_CH3N/
21
LCD_SEG3/RTC_TAMP3
PE3/LCD_SEG4
22
/USART2_RX
PE4/LCD_SEG5
23
/USART2_TX
PE5/LCD_SEG6/
24
ADC1_IN23/USART2_CK
63 PE6/PVD_IN/TIM5_BKIN I/O FT
PE7
64
/TIM5_ETR
Typ e
I/O FT
I/O FT
I/O FT
I/O FT
I/O FT
Input Output
Default alternate function
I/O level
wpu
floating
OD
PP
Main function
(after reset)
Ext. interrupt
High sink/source
(2)
XXXHSXXPort E2
Timer 1 - inverted channel 3 / LCD segment 3/ RTC tamper 3
(2)
XXXHSXXPort E3
(2)
XXXHSXXPort E4
(2)
XXXHSXXPort E5
LCD segment 4 /USART2 receive
LCD segment 5 /USART2 transmit
LCD segment 6 / ADC1_IN23/USART2 synchronous clock
(2)
XXXHSXXPort E6
(2)
XXXHSXXPort E7 TIM5 trigger
PVD_IN /TIM5 break input
PF0/ADC1_IN24
39
/[USART3_TX]
PF1/ADC1_IN25/
40
[USART3_RX]
PF4/LCD_SEG36
41
/LCD_COM4
PF5/LCD_SEG37/
42
LCD_COM5
PF6/LCD_SEG38/
43
LCD_COM6
PF7/LCD_SEG39/
44
LCD_COM7
(5)
(5)
(5)
(5)
I/O X X X HS X X Port F0
I/O X XXHSXXPort F1
(2)
I/O FT
I/O FT
I/O FT
I/O FT
X XXHSXXPort F4
(2)
X XXHSXXPort F5
(2)
X XXHSXXPort F6
(2)
X XXHSXXPort F7
ADC1_IN24/ [USART3 transmit]
ADC1_IN25/ [USART3 receive]
LCD_SEG36/ LCD COM4
LCD_SEG37/ LCD COM5
LCD_SEG38/ LCD COM6
LCD_SEG39/ LCD COM7
(5)
(5)
(5)
(5)
18 VLCD S LCD booster external capacitor
11 V
DD1
10 V
SS1
12 V
DDA
13 V
REF+
PG0/USART3_RX/
14
[TIM2_BKIN]
PG1/USART3_TX/
15
[TIM3_BKIN]
S Digital power supply
I/O ground
S Analog supply voltage
S ADC1 positive voltage reference
I/O FT
I/O FT
(2)
X XXHSXXPort G0
(2)
X XXHSXXPort G1
USART3 receive /
[Timer 2 - break input]
USART3 transmit /
[Timer 3 -break input]
Doc ID 023337 Rev 1 27/109
Pin description STM8L052R8
Table 4. High density value line STM8L05xxx pin description (continued)
Pin
number
LQFP64
Pin name
Typ e
Input Output
I/O level
wpu
floating
OD
PP
Main function
Default alternate function
(after reset)
Ext. interrupt
High sink/source
16 PG2/USART3_CK I/O FT
17 PG3[TIM3_ETR] I/O FT
9V
SSA/VREF-
55 V
DD2
56 V
SS2
(6)
PA 0
1
/[USART1_CK]
SWIM/BEEP/IR_TIM
(8)
(7)
S
S IOs supply voltage
S IOs ground voltage
/
I/O X X X
(2)
X XXHSXXPort G2
(2)
X XXHSXXPort G3 [Timer 3 - trigger]
Analog ground voltage / ADC1 negative voltage reference
HS
XXPort A0
USART 3 synchronous clock
[USART1 synchronous
(8)
clock]
/ SWIM input and
output /Beep output / Infrared Timer output
29 V
DD3
30 V
SS3
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031).
2. In the 5 V tolerant I/Os, protection diode to V
3. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
4. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V not implemented).
5. SEG/COM multiplexing available on medium+ and high density devices. SEG signals are available by default (see reference manual for details).
6. The PA0 pin is in input pull-up during the reset phase and after reset release.
7. High Sink LED driver capability available on PA0.
8. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not aduplication of the function).
S IOs supply voltage
S IOs ground voltage
is not implemented.
DD
DD
are
28/109 Doc ID 023337 Rev 1
STM8L052R8 Pin description

4.1 System configuration options

As shown in Table 4: High density value line STM8L05xxx pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the “ Routing interface (RI) and system configuration controller” section in the STM8L15x and STM8L16x reference manual (RM0031).
Doc ID 023337 Rev 1 29/109
Memory and register map STM8L052R8
GPIO and peripheral registers
0x00 0000
Reserved
High density
(64 Kbytes)
Reset and interrupt vectors
0x00 1000
0x00 10FF
0x00 07FF
RAM (4 Kbytes)
(1)
(513 bytes)
(1)
0x00 1100
Data EEPROM
0x00 4800
0x00 48FF
0x00 4900
0x00 7FFF
0x00 8000
0x00 FFFF
0x00 0800
0x00 0FFF
0x00 47FF
0x00 7EFF
0x00 8080
0x00 807F
0x00 7F00
Reserved
including
Stack
(256 bytes)
Option bytes
0x00 4FFF 0x00 5000
0x00 57FF 0x00 5800
Reserved
0x00 5FFF
Boot ROM
0x00 6000
0x00 67FF
(2 Kbytes)
0x00 6800
Reserved
CPU/SWIM/Debug/ITC
Registers
0x00 5000
GPIO Ports
0x00 5050
Flash
0x00 50C0
ITC-EXTI
0x00 50D3
RST
0x00 50E0
CLK
0x00 50F0
WWDG
0x00 5210
IWDG
0x00 5230
BEEP
0x00 5250
RTC
0x00 5280
SPI1
0x00 52E0
I2C1
0x00 52FF
USART1
TIM2
TIM3
TIM1
TIM4
IRTIM
ADC1
0x00 5070
DMA1
SYSCFG
SPI2
USART2
0x00 509D
0x00 50A0
0x00 50B0
0x00 5140
0x00 5200
0x00 5300
0x00 5340
0x00 5380
0x00 53F0
0x00 5430
0x00 5440
Flash program memory
WFE
0x00 50A6
0x00 50B2
PWR
Reserved
Reserved
0x00 53C0
Reserved
RI
LCD
USART3
0x00 53E0
0x00 5400
0x00 5444
TIM5
0x00 52B0

5 Memory and register map

5.1 Memory mapping

The memory map is shown in Figure 4.

Figure 4. Memory map

1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address.
2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware registers, and to Table 8 for information on CPU/SWIM/debug module controller registers.
30/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map

Table 5. Flash and RAM boundary addresses

Memory area Size Start address End address
RAM 4 Kbytes 0x00 0000 0x00 0FFF
Flash program memory 64 Kbytes 0x00 8000 0x01 7FFF

5.2 Register map

Table 6. I/O port hardware register map

0x00 5000
0x00 5001 PA_IDR Port A input pin value register 0xXX
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x01
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
0x00 5006 PB_IDR Port B input pin value register 0xXX
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
Address Block Register label Register name
PA_ODR Port A data output latch register 0x00
Por t A
PB_ODR Port B data output latch register 0x00
Por t B
Reset
status
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
PC_ODR Port C data output latch register 0x00
0x00 500B PC_IDR Port C input pin value register 0xXX
0x00 500C PC_DDR Port C data direction register 0x00
Por t C
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX
0x00 5011 PD_DDR Port D data direction register 0x00
Por t D
0x00 5012 PD_CR1 Port D control register 1 0x00
0x00 5013 PD_CR2 Port D control register 2 0x00
0x00 5014
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX
0x00 5016 PE_DDR Port E data direction register 0x00
Por t E
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
Doc ID 023337 Rev 1 31/109
Memory and register map STM8L052R8
Table 6. I/O port hardware register map (continued)
Address Block Register label Register name
0x00 5019
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX
0x00 501B PF_DDR Port F data direction register 0x00
Por t F
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
0x00 501E
PG_ODR Port F data output latch register 0x00
0x00 501F PG_IDR Port G input pin value register 0xXX
0x00 5020 PG_DDR Port G data direction register 0x00
Por t G
0x00 5021 PG_CR1 Port G control register 1 0x00
0x00 5022 PG_CR2 Port G control register 2 0x00
0x00 5023 to
0x00 502C

Table 7. General hardware register map

Reserved area (10 bytes)
Address Block Register label Register name
Reset
status
Reset
status
0x00 502E to
0x00 5049
0x00 5050
FLASH_CR1 Flash control register 1 0x00
Reserved area (27 bytes)
0x00 5051 FLASH_CR2 Flash control register 2 0x00
0x00 5052 FLASH _PUKR
Flash
Flash program memory unprotection key
register
0x00
0x00 5053 FLASH _DUKR Data EEPROM unprotection key register 0x00
0x00 5054 FLASH _IAPSR
0x00 5055 to
0x00 506F
Flash in-application programming status
register
Reserved area (27 bytes)
0x00
32/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5070
0x00 5071 DMA1_GIR1 DMA1 global interrupt register 1 0x00
0x00 5072 to
0x00 5074
0x00 5075 DMA1_C0CR DMA1 channel 0 configuration register 0x00
0x00 5076 DMA1_C0SPR DMA1 channel 0 status & priority register 0x00
0x00 5077 DMA1_C0NDTR
0x00 5078 DMA1_C0PARH
0x00 5079 DMA1_C0PARL
0x00 507A Reserved area (1 byte)
0x00 507B DMA1_C0M0ARH
0x00 507C DMA1_C0M0ARL
0x00 507D 0x00 507E
DMA1
DMA1_GCSR
DMA1 global configuration & status
register
Reserved area (3 bytes)
DMA1 number of data to transfer register
(channel 0)
DMA1 peripheral address high register
(channel 0)
DMA1 peripheral address low register
(channel 0)
DMA1 memory 0 address high register
(channel 0)
DMA1 memory 0 address low register
(channel 0)
Reserved area (2 bytes)
Reset
status
0xFC
0x00
0x52
0x00
0x00
0x00
0x00 507F DMA1_C1CR DMA1 channel 1 configuration register 0x00
0x00 5080 DMA1_C1SPR DMA1 channel 1 status & priority register 0x00
0x00 5081 DMA1_C1NDTR
0x00 5082 DMA1_C1PARH
0x00 5083 DMA1_C1PARL
DMA1 number of data to transfer register
(channel 1)
DMA1 peripheral address high register
(channel 1)
DMA1 peripheral address low register
(channel 1)
0x00
0x52
0x00
Doc ID 023337 Rev 1 33/109
Memory and register map STM8L052R8
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5084
0x00 5085 DMA1_C1M0ARH
0x00 5086 DMA1_C1M0ARL
0x00 5087 0x00 5088
0x00 5089 DMA1_C2CR DMA1 channel 2 configuration register 0x00
0x00 508A DMA1_C2SPR DMA1 channel 2 status & priority register 0x00
0x00 508B DMA1_C2NDTR
0x00 508C DMA1_C2PARH
0x00 508D DMA1_C2PARL
0x00 508E Reserved area (1 byte)
0x00 508F DMA1_C2M0ARH
DMA1
0x00 5090 DMA1_C2M0ARL
Reserved area (1 byte)
DMA1 memory 0 address high register
(channel 1)
DMA1 memory 0 address low register
(channel 1)
Reserved area (2 bytes)
DMA1 number of data to transfer register
(channel 2)
DMA1 peripheral address high register
(channel 2)
DMA1 peripheral address low register
(channel 2)
DMA1 memory 0 address high register
(channel 2)
DMA1 memory 0 address low register
(channel 2)
Reset
status
0x00
0x00
0x00
0x52
0x00
0x00
0x00
0x00 5091 0x00 5092
0x00 5093 DMA1_C3CR DMA1 channel 3 configuration register 0x00
0x00 5094 DMA1_C3SPR DMA1 channel 3 status & priority register 0x00
0x00 5095 DMA1_C3NDTR
0x00 5096
0x00 5097
0x00 5098 Reserved area (1 byte)
0x00 5099 DMA1_C3M0ARH
0x00 509A DMA1_C3M0ARL
0x00 509B to
0x00 509C
DMA1_C3PARH_
C3M1ARH
DMA1_C3PARL_
C3M1ARL
Reserved area (2 bytes)
DMA1 number of data to transfer register
(channel 3)
DMA1 peripheral address high register
(channel 3)
DMA1 peripheral address low register
(channel 3)
DMA1 memory 0 address high register
(channel 3)
DMA1 memory 0 address low register
(channel 3)
Reserved area (2 bytes)
0x00
0x40
0x00
0x00
0x00
34/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 509D
0x00 509E SYSCFG_RMPCR1 Remapping register 1 0x00
0x00 509F SYSCFG_RMPCR2 Remapping register 2 0x00
0x00 50A0
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 EXTI_CR3 External interrupt control register 3 0x00
0x00 50A3 EXTI_SR1 External interrupt status register 1 0x00
0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00
0x00 50A5 EXTI_CONF1 External interrupt port select register 1 0x00
0x00 50A6
0x00 50A7 WFE_CR2 WFE control register 2 0x00
0x00 50A8 WFE_CR3 WFE control register 3 0x00
0x00 50A9 WFE_CR4 WFE control register 4 0x00
0x00 50AA
0x00 50AB EXTI_CONF2 External interrupt port select register 2 0x00
0x00 50A9 to
0x00 50AF
SYSCFG SYSCFG
ITC - EXTI
WFE
ITC - EXTI
SYSCFG_RMPCR3 Remapping register 3 0x00
EXTI_CR1 External interrupt control register 1 0x00
WFE_CR1 WFE control register 1 0x00
EXTI_CR4 External interrupt control register 4 0x00
Reserved area (7 bytes)
Reset
status
0x00 50B0
RST
0x00 50B1 RST_SR Reset status register 0x01
0x00 50B2
PWR
0x00 50B3 PWR_CSR2 Power control and status register 2 0x00
0x00 50B4 to
0x00 50BF
RST_CR Reset control register 0x00
PWR_CSR1 Power control and status register 1 0x00
Reserved area (12 bytes)
Doc ID 023337 Rev 1 35/109
Memory and register map STM8L052R8
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 50C0
0x00 50C1 CLK_CRTCR Clock RTC register 0x00
0x00 50C2 CLK_ICKR Internal clock control register 0x11
0x00 50C3 CLK_PCKENR1 Peripheral clock gating register 1 0x00
0x00 50C4 CLK_PCKENR2 Peripheral clock gating register 2 0x00
0x00 50C5 CLK_CCOR Configurable clock control register 0x00
0x00 50C6 CLK_ECKR External clock control register 0x00
0x00 50C7 CLK_SCSR System clock status register 0x01
0x00 50C8 CLK_SWR System clock switch register 0x01
0x00 50C9 CLK_SWCR Clock switch control register 0xX0
0x00 50CA CLK_CSSR Clock security system register 0x00
0x00 50CB CLK_CBEEPR Clock BEEP register 0x00
0x00 50CC CLK_HSICALR HSI calibration register 0xXX
0x00 50CD CLK_HSITRIMR HSI clock calibration trimming register 0x00
0x00 50CE CLK_HSIUNLCKR HSI unlock register 0x00
0x00 50CF CLK_REGCSR Main regulator control status register 0bxx11100x
0x00 50D0 CLK_PCKENR3 Peripheral clock gating register 3 0x00
CLK
CLK_CKDIVR Clock master divider register 0x03
Reset
status
(1)
0x00 50D1 to
0x00 50D2
0x00 50D3
0x00 50D4 WWDG_WR WWDR window register 0x7F
0x00 50D5 to
00 50DF
0x00 50E0
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF
0x00 50F0
0x00 50F1 0x00 50F2
0x00 50F3 BEEP_CSR2 BEEP control/status register 2 0x1F
0x00 50F4 to
0x00 513F
WWDG
IWDG
BEEP
WWDG_CR WWDG control register 0x7F
IWDG_KR IWDG key register 0xXX
BEEP_CSR1 BEEP control/status register 1 0x00
Reserved area (2 bytes)
Reserved area (11 bytes)
Reserved area (13 bytes)
Reserved area (2 bytes)
Reserved area (76 bytes)
36/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5140
RTC_TR1 Time register 1 0x00
Reset
status
0x00 5141 RTC_TR2 Time register 2 0x00
0x00 5142 RTC_TR3 Time register 3 0x00
0x00 5143 Reserved area (1 byte)
0x00 5144 RTC_DR1 Date register 1 0x01
0x00 5145 RTC_DR2 Date register 2 0x21
0x00 5146 RTC_DR3 Date register 3 0x00
0x00 5147 Reserved area (1 byte)
0x00 5148 RTC_CR1 Control register 1 0x00
0x00 5149 RTC_CR2 Control register 2 0x00
0x00 514A RTC_CR3 Control register 3 0x00
0x00 514B Reserved area (1 byte)
0x00 514C RTC_ISR1 Initialization and status register 1 0x01
0x00 514D RTC_ISR2 Initialization and Status register 2 0x00
0x00 514E 0x00 514F
0x00 5150 RTC_SPRERH
RTC
0x00 5151 RTC_SPRERL
0x00 5152 RTC_APRER
(1)
(1)
(1)
Reserved area (2 bytes)
Synchronous prescaler register high 0x00
Synchronous prescaler register low 0xFF
Asynchronous prescaler register 0x7F
0x00 5153 Reserved area (1 byte)
(1)
(1)
Wakeup timer register high 0xFF
Wakeup timer register low 0xFF
0x00 5154 RTC_WUTRH
0x00 5155 RTC_WUTRL
0x00 5156 Reserved area (1 bytes)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
0x00 5157 RTC_SSRL Subsecond register low 0x00
0x00 5158 RTC_SSRH Subsecond register high 0x00
0x00 5159 RTC_WPR Write protection register 0x00
0x00 515A RTC_SHIFTRH Shift register high 0x00
0x00 515B RTC_SHIFTRL Shift register low 0x00
0x00 515C RTC_ALRMAR1 Alarm A register 1 0x00
0x00 515D RTC_ALRMAR2 Alarm A register 2 0x00
0x00 515E RTC_ALRMAR3 Alarm A register 3 0x00
0x00 515F RTC_ALRMAR4 Alarm A register 4 0x00
0x00 5160 to
0x00 5163
Reserved area (4 bytes)
Doc ID 023337 Rev 1 37/109
(1)
(1)
(1)
(1)
Memory and register map STM8L052R8
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5164
0x00 5165 RTC_ALRMASSRL Alarm A subsecond register low 0x00
RTC
0x00 5166
0x00 5167 to
0x00 5169
0x00 516A
RTC_ALRMASSRH Alarm A subsecond register high 0x00
RTC_ALRMASSMS
KR
Alarm A masking register 0x00
Reserved area (3 bytes)
RTC_CALRH Calibration register high 0x00
Reset
status
0x00 516B RTC_CALRL Calibration register low 0x00
RTC
0x00 516C RTC_TCR1 Tamper control register 1 0x00
0x00 516D RTC_TCR2 Tamper control register 2 0x00
0x00 516E to
0x00 518A
Reserved area
0x00 5190 CSSLSE CSSLSE_CSR CSS on LSE control and status register 0x00
0x00 519A to
0x00 51FF
0x00 5200
SPI1_CR1 SPI1 control register 1 0x00
Reserved area
0x00 5201 SPI1_CR2 SPI1 control register 2 0x00
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
0x00 5202 SPI1_ICR SPI1 interrupt control register 0x00
0x00 5203 SPI1_SR SPI1 status register 0x02
SPI1
0x00 5204 SPI1_DR SPI1 data register 0x00
0x00 5205 SPI1_CRCPR SPI1 CRC polynomial register 0x07
0x00 5206 SPI1_RXCRCR SPI1 Rx CRC register 0x00
0x00 5207 SPI1_TXCRCR SPI1 Tx CRC register 0x00
0x00 5208 to
0x00 520F
Reserved area (8 bytes)
38/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5210
0x00 5211 I2C1_CR2 I2C1 control register 2 0x00
0x00 5212 I2C1_FREQR I2C1 frequency register 0x00
0x00 5213 I2C1_OARL I2C1 own address register low 0x00
0x00 5214 I2C1_OARH I2C1 own address register high 0x00
0x00 5215 I2C1_OARH I2C1 own address register for dual mode 0x00
0x00 5216 I2C1_DR I2C1 data register 0x00
0x00 5217 I2C1_SR1 I2C1 status register 1 0x00
I2C1
0x00 5218 I2C1_SR2 I2C1 status register 2 0x00
0x00 5219 I2C1_SR3 I2C1 status register 3 0x0x
0x00 521A I2C1_ITR I2C1 interrupt control register 0x00
0x00 521B I2C1_CCRL I2C1 clock control register low 0x00
0x00 521C I2C1_CCRH I2C1 clock control register high 0x00
0x00 521D I2C1_TRISER I2C1 TRISE register 0x02
0x00 521E I2C1_PECR I2C1 packet error checking register 0x00
0x00 521F to
0x00 522F
I2C1_CR1 I2C1 control register 1 0x00
Reserved area (17 bytes)
Reset
status
0x00 5230
0x00 5231 USART1_DR USART1 data register 0xXX
0x00 5232 USART1_BRR1 USART1 baud rate register 1 0x00
0x00 5233 USART1_BRR2 USART1 baud rate register 2 0x00
0x00 5234 USART1_CR1 USART1 control register 1 0x00
0x00 5235 USART1_CR2 USART1 control register 2 0x00
0x00 5236 USART1_CR3 USART1 control register 3 0x00
0x00 5237 USART1_CR4 USART1 control register 4 0x00
0x00 5238 USART1_CR5 USART1 control register 5 0x00
0x00 5239 USART1_GTR USART1 guard time register 0x00
0x00 523A USART1_PSCR USART1 prescaler register 0x00
0x00 523B to
0x00 524F
USART1
USART1_SR USART1 status register 0xC0
Reserved area (21 bytes)
Doc ID 023337 Rev 1 39/109
Memory and register map STM8L052R8
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5250
0x00 5251 TIM2_CR2 TIM2 control register 2 0x00
0x00 5252 TIM2_SMCR TIM2 Slave mode control register 0x00
0x00 5253 TIM2_ETR TIM2 external trigger register 0x00
0x00 5254 TIM2_DER TIM2 DMA1 request enable register 0x00
0x00 5255 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5256 TIM2_SR1 TIM2 status register 1 0x00
0x00 5257 TIM2_SR2 TIM2 status register 2 0x00
0x00 5258 TIM2_EGR TIM2 event generation register 0x00
0x00 5259 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 525A TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 525B TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 525C TIM2_CNTRH TIM2 counter high 0x00
0x00 525D TIM2_CNTRL TIM2 counter low 0x00
0x00 525E TIM2_PSCR TIM2 prescaler register 0x00
0x00 525F TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 5260 TIM2_ARRL TIM2 auto-reload register low 0xFF
TIM2
TIM2_CR1 TIM2 control register 1 0x00
Reset
status
0x00 5261 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5262 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5263 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00
0x00 5264 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5265 TIM2_BKR TIM2 break register 0x00
0x00 5266 TIM2_OISR TIM2 output idle state register 0x00
0x00 5267 to
0x00 527F
Reserved area (25 bytes)
40/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5280
0x00 5281 TIM3_CR2 TIM3 control register 2 0x00
0x00 5282 TIM3_SMCR TIM3 Slave mode control register 0x00
0x00 5283 TIM3_ETR TIM3 external trigger register 0x00
0x00 5284 TIM3_DER TIM3 DMA1 request enable register 0x00
0x00 5285 TIM3_IER TIM3 interrupt enable register 0x00
0x00 5286 TIM3_SR1 TIM3 status register 1 0x00
0x00 5287 TIM3_SR2 TIM3 status register 2 0x00
0x00 5288 TIM3_EGR TIM3 event generation register 0x00
0x00 5289 TIM3_CCMR1 TIM3 Capture/Compare mode register 1 0x00
0x00 528A TIM3_CCMR2 TIM3 Capture/Compare mode register 2 0x00
0x00 528B TIM3_CCER1 TIM3 Capture/Compare enable register 1 0x00
0x00 528C TIM3_CNTRH TIM3 counter high 0x00
0x00 528D TIM3_CNTRL TIM3 counter low 0x00
0x00 528E TIM3_PSCR TIM3 prescaler register 0x00
0x00 528F TIM3_ARRH TIM3 Auto-reload register high 0xFF
0x00 5290 TIM3_ARRL TIM3 Auto-reload register low 0xFF
TIM3
TIM3_CR1 TIM3 control register 1 0x00
Reset
status
0x00 5291 TIM3_CCR1H TIM3 Capture/Compare register 1 high 0x00
0x00 5292 TIM3_CCR1L TIM3 Capture/Compare register 1 low 0x00
0x00 5293 TIM3_CCR2H TIM3 Capture/Compare register 2 high 0x00
0x00 5294 TIM3_CCR2L TIM3 Capture/Compare register 2 low 0x00
0x00 5295 TIM3_BKR TIM3 break register 0x00
0x00 5296 TIM3_OISR TIM3 output idle state register 0x00
0x00 5297 to
0x00 52AF
Reserved area (25 bytes)
Doc ID 023337 Rev 1 41/109
Memory and register map STM8L052R8
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 52B0
0x00 52B1 TIM1_CR2 TIM1 control register 2 0x00
0x00 52B2 TIM1_SMCR TIM1 Slave mode control register 0x00
0x00 52B3 TIM1_ETR TIM1 external trigger register 0x00
0x00 52B4 TIM1_DER TIM1 DMA1 request enable register 0x00
0x00 52B5 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 52B6 TIM1_SR1 TIM1 status register 1 0x00
0x00 52B7 TIM1_SR2 TIM1 status register 2 0x00
0x00 52B8 TIM1_EGR TIM1 event generation register 0x00
0x00 52B9 TIM1_CCMR1 TIM1 Capture/Compare mode register 1 0x00
0x00 52BA TIM1_CCMR2 TIM1 Capture/Compare mode register 2 0x00
0x00 52BB TIM1_CCMR3 TIM1 Capture/Compare mode register 3 0x00
0x00 52BC TIM1_CCMR4 TIM1 Capture/Compare mode register 4 0x00
0x00 52BD TIM1_CCER1 TIM1 Capture/Compare enable register 1 0x00
0x00 52BE TIM1_CCER2 TIM1 Capture/Compare enable register 2 0x00
0x00 52BF TIM1_CNTRH TIM1 counter high 0x00
0x00 52C0 TIM1_CNTRL TIM1 counter low 0x00
TIM1
0x00 52C1 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 52C2 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 52C3 TIM1_ARRH TIM1 Auto-reload register high 0xFF
TIM1_CR1 TIM1 control register 1 0x00
Reset
status
0x00 52C4 TIM1_ARRL TIM1 Auto-reload register low 0xFF
0x00 52C5 TIM1_RCR TIM1 Repetition counter register 0x00
0x00 52C6 TIM1_CCR1H TIM1 Capture/Compare register 1 high 0x00
0x00 52C7 TIM1_CCR1L TIM1 Capture/Compare register 1 low 0x00
0x00 52C8 TIM1_CCR2H TIM1 Capture/Compare register 2 high 0x00
0x00 52C9 TIM1_CCR2L TIM1 Capture/Compare register 2 low 0x00
0x00 52CA TIM1_CCR3H TIM1 Capture/Compare register 3 high 0x00
0x00 52CB TIM1_CCR3L TIM1 Capture/Compare register 3 low 0x00
0x00 52CC TIM1_CCR4H TIM1 Capture/Compare register 4 high 0x00
0x00 52CD TIM1_CCR4L TIM1 Capture/Compare register 4 low 0x00
0x00 52CE TIM1_BKR TIM1 break register 0x00
0x00 52CF TIM1_DTR TIM1 dead-time register 0x00
0x00 52D0 TIM1_OISR TIM1 output idle state register 0x00
0x00 52D1 TIM1_DCR1 DMA1 control register 1 0x00
42/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 52D2
TIM1
0x00 52D3 TIM1_DMA1R TIM1 DMA1 address for burst mode 0x00
0x00 52D4 to
0x00 52DF
0x00 52E0
0x00 52E1 TIM4_CR2 TIM4 control register 2 0x00
0x00 52E2 TIM4_SMCR TIM4 Slave mode control register 0x00
0x00 52E3 TIM4_DER TIM4 DMA1 request enable register 0x00
0x00 52E4 TIM4_IER TIM4 Interrupt enable register 0x00
TIM4
0x00 52E5 TIM4_SR1 TIM4 status register 1 0x00
0x00 52E6 TIM4_EGR TIM4 Event generation register 0x00
0x00 52E7 TIM4_CNTR TIM4 counter 0x00
0x00 52E8 TIM4_PSCR TIM4 prescaler register 0x00
0x00 52E9 TIM4_ARR TIM4 Auto-reload register 0x00
0x00 52EA to
0x00 52FE
0x00 52FF IRTIM IR_CR Infrared control register 0x00
TIM1_DCR2 TIM1 DMA1 control register 2 0x00
Reserved area (12 bytes)
TIM4_CR1 TIM4 control register 1 0x00
Reserved area (21 bytes)
Reset
status
0x00 5300
0x00 5301 TIM5_CR2 TIM5 control register 2 0x00
0x00 5302 TIM5_SMCR TIM5 Slave mode control register 0x00
0x00 5303 TIM5_ETR TIM5 external trigger register 0x00
0x00 5304 TIM5_DER TIM5 DMA1 request enable register 0x00
0x00 5305 TIM5_IER TIM5 interrupt enable register 0x00
0x00 5306 TIM5_SR1 TIM5 status register 1 0x00
0x00 5307 TIM5_SR2 TIM5 status register 2 0x00
0x00 5308 TIM5_EGR TIM5 event generation register 0x00
0x00 5309 TIM5_CCMR1 TIM5 Capture/Compare mode register 1 0x00
0x00 530A TIM5_CCMR2 TIM5 Capture/Compare mode register 2 0x00
0x00 530B TIM5_CCER1 TIM5 Capture/Compare enable register 1 0x00
0x00 530C TIM5_CNTRH TIM5 counter high 0x00
0x00 530D TIM5_CNTRL TIM5 counter low 0x00
0x00 530E TIM5_PSCR TIM5 prescaler register 0x00
0x00 530F TIM5_ARRH TIM5 Auto-reload register high 0xFF
0x00 5310 TIM5_ARRL TIM5 Auto-reload register low 0xFF
TIM5
TIM5_CR1 TIM5 control register 1 0x00
Doc ID 023337 Rev 1 43/109
Memory and register map STM8L052R8
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5311
0x00 5312 TIM5_CCR1L TIM5 Capture/Compare register 1 low 0x00
0x00 5313 TIM5_CCR2H TIM5 Capture/Compare register 2 high 0x00
TIM5
0x00 5314 TIM5_CCR2L TIM5 Capture/Compare register 2 low 0x00
0x00 5315 TIM5_BKR TIM5 break register 0x00
0x00 5316 TIM5_OISR TIM5 output idle state register 0x00
0x00 5317
to
0x00 533F
0x00 5340
0x00 5341 ADC1_CR2 ADC1 configuration register 2 0x00
0x00 5342 ADC1_CR3 ADC1 configuration register 3 0x1F
0x00 5343 ADC1_SR ADC1 status register 0x00
0x00 5344 ADC1_DRH ADC1 data register high 0x00
0x00 5345 ADC1_DRL ADC1 data register low 0x00
0x00 5346 ADC1_HTRH ADC1 high threshold register high 0x0F
0x00 5347 ADC1_HTRL ADC1 high threshold register low 0xFF
TIM5_CCR1H TIM5 Capture/Compare register 1 high 0x00
Reserved area
ADC1_CR1 ADC1 configuration register 1 0x00
Reset
status
0x00 5348 ADC1_LTRH ADC1 low threshold register high 0x00
0x00 5349 ADC1_LTRL ADC1 low threshold register low 0x00
0x00 534A ADC1_SQR1 ADC1 channel sequence 1 register 0x00
0x00 534B ADC1_SQR2 ADC1 channel sequence 2 register 0x00
0x00 534C ADC1_SQR3 ADC1 channel sequence 3 register 0x00
0x00 534D ADC1_SQR4 ADC1 channel sequence 4 register 0x00
0x00 534E ADC1_TRIGR1 ADC1 trigger disable 1 0x00
0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00
0x00 5350 ADC1_TRIGR3 ADC1 trigger disable 3 0x00
0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00
0x00 5352 to
0x00 53BF
ADC1
Reserved area (110 bytes)
44/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 53C0
0x00 53C1 SPI2_CR2 SPI2 control register 2 0x00
0x00 53C2 SPI2_ICR SPI2 interrupt control register 0x00
0x00 53C3 SPI2_SR SPI2 status register 0x02
0x00 53C4 SPI2_DR SPI2 data register 0x00
0x00 53C5 SPI2_CRCPR SPI2 CRC polynomial register 0x07
0x00 53C6 SPI2_RXCRCR SPI2 Rx CRC register 0x00
0x00 53C7 SPI2_TXCRCR SPI2 Tx CRC register 0x00
0x00 53C8 to
0x00 53DF
0x00 53E0
0x00 53E1 USART2_DR USART2 data register 0xXX
0x00 53E2 USART2_BRR1 USART2 baud rate register 1 0x00
0x00 53E3 USART2_BRR2 USART2 baud rate register 2 0x00
0x00 53E4 USART2_CR1 USART2 control register 1 0x00
0x00 53E5 USART2_CR2 USART2 control register 2 0x00
0x00 53E6 USART2_CR3 USART2 control register 3 0x00
SPI2
USART2
SPI2_CR1 SPI2 control register 1 0x00
Reserved area
USART2_SR USART2 status register 0xC0
Reset
status
0x00 53E7 USART2_CR4 USART2 control register 4 0x00
0x00 53E8 USART2_CR5 USART2 control register 5 0x00
0x00 53E9 USART2_GTR USART2 guard time register 0x00
0x00 53EA USART2_PSCR USART2 prescaler register 0x00
0x00 53EB to
0x00 53EF
0x00 53F0
0x00 53F1 USART3_DR USART3 data register 0xXX
0x00 53F2 USART3_BRR1 USART3 baud rate register 1 0x00
0x00 53F3 USART3_BRR2 USART3 baud rate register 2 0x00
0x00 53F4 USART3_CR1 USART3 control register 1 0x00
0x00 53F5 USART3_CR2 USART3 control register 2 0x00
0x00 53F6 USART3_CR3 USART3 control register 3 0x00
0x00 53F7 USART3_CR4 USART3 control register 4 0x00
0x00 53F8 USART3_CR5 USART3 control register 5 0x00
0x00 53F9 USART3_GTR USART3 guard time register 0x00
0x00 53FA USART3_PSCR USART3 prescaler register 0x00
USART3
USART3_SR USART3 status register 0xC0
Reserved area
Doc ID 023337 Rev 1 45/109
Memory and register map STM8L052R8
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 53FB to
0x00 53FF
0x00 5400
0x00 5401 LCD_CR2 LCD control register 2 0x00
0x00 5402 LCD_CR3 LCD control register 3 0x00
0x00 5403 LCD_FRQ LCD frequency selection register 0x00
LCD
0x00 5404 LCD_PM0 LCD Port mask register 0 0x00
0x00 5405 LCD_PM1 LCD Port mask register 1 0x00
0x00 5406 LCD_PM2 LCD Port mask register 2 0x00
0x00 5407 Reserved area
0x00 5408 LCD_PM4 LCD Port mask register 4 0x00
0x00 5409 to
0x00 540B
0x00 540C LCD_RAM0 LCD display memory 0 0x00
0x00 540D LCD_RAM1 LCD display memory 1 0x00
0x00 540E LCD_RAM2 LCD display memory 2 0x00
0x00 540F LCD_RAM3 LCD display memory 3 0x00
LCD_CR1 LCD control register 1 0x00
Reserved area
Reserved area (3 bytes)
Reset
status
0x00 5410 LCD_RAM4 LCD display memory 4 0x00
0x00 5411 LCD_RAM5 LCD display memory 5 0x00
0x00 5412 LCD_RAM6 LCD display memory 6 0x00
0x00 5413 LCD_RAM7 LCD display memory 7 0x00
0x00 5414 LCD_RAM8 LCD display memory 8 0x00
0x00 5415 LCD_RAM9 LCD display memory 9 0x00
0x00 5416 LCD_RAM10 LCD display memory 10 0x00
0x00 5417 LCD_RAM11 LCD display memory 11 0x00
0x00 5418 LCD_RAM12 LCD display memory 12 0x00
0x00 5419 LCD_RAM13 LCD display memory 13 0x00
0x00 541A Reserved area
0x00 541B LCD_RAM15 LCD display memory 15 0x00
0x00 541C Reserved area
0x00 541D LCD_RAM17 LCD display memory 17 0x00
0x00 541E Reserved area
0x00 541F LCD_RAM19 LCD display memory 19 0x00
0x00 5420 Reserved area
0x00 5421 LCD_RAM21 LCD display memory 21 0x00
LCD
46/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5422 to
0x00 542E
Reserved area
Reset
status
0x00 542F LCD LCD_CR4 LCD control register 4 0x00
0x00 5430
Reserved area (1 byte) 0x00
0x00 5431 RI_ICR1 Timer input capture routing register 1 0x00
0x00 5432 RI_ICR2 Timer input capture routing register 2 0x00
0x00 5433 RI_IOIR1 I/O input register 1 0xXX
0x00 5434 RI_IOIR2 I/O input register 2 0xXX
0x00 5435 RI_IOIR3 I/O input register 3 0xXX
0x00 5436 RI_IOCMR1 I/O control mode register 1 0x00
0x00 5437 RI_IOCMR2 I/O control mode register 2 0x00
RI
0x00 5438 RI_IOCMR3 I/O control mode register 3 0x00
0x00 5439 RI_IOSR1 I/O switch register 1 0x00
0x00 543A RI_IOSR2 I/O switch register 2 0x00
0x00 543B RI_IOSR3 I/O switch register 3 0x00
0x00 543C RI_IOGCR I/O group control register 0x3F
0x00 543D RI_ASCR1 Analog switch register 1 0x00
0x00 543E RI_ASCR2 Analog switch register 2 0x00
0x00 543F RI_RCR Resistor control register 1 0x00
0x00 5440 to
0x00 5444
1. These registers are not impacted by a system reset. They are reset at power-on.
Reserved area (5 bytes)
Doc ID 023337 Rev 1 47/109
Memory and register map STM8L052R8

Table 8. CPU/SWIM/debug module/interrupt controller registers

Address Block Register Label Register Name
0x00 7F00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
(1)
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x03
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
0x00 7F0B to
0x00 7F5F
0x00 7F60 CFG_GCR Global configuration register 0x00
0x00 7F70
0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF
CPU
CPU
A Accumulator 0x00
Reserved area (85 bytes)
ITC_SPR1 Interrupt Software priority register 1 0xFF
Reset
Status
0x00 7F73 ITC_SPR4 Interrupt Software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt Software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF
0x00 7F78 to
0x00 7F79
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81 to
0x00 7F8F
ITC-SPR
Reserved area (2 bytes)
Reserved area (15 bytes)
48/109 Doc ID 023337 Rev 1
STM8L052R8 Memory and register map
Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register Label Register Name
0x00 7F90
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
0x00 7F96 DM_CR1 DM Debug module control register 1 0x00
0x00 7F97 DM_CR2 DM Debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM Debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM Debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to
0x00 7F9F
1. Accessible by debug module only
DM
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
Reserved area (5 bytes)
Reset
Status
Doc ID 023337 Rev 1 49/109
Interrupt vector mapping STM8L052R8

6 Interrupt vector mapping

Table 9. Interrupt mapping

IRQ
No.
Source
block
Description
Wakeup
from Halt
mode
Wakeup
from
Active-
halt mode
Wakeup
from Wait
(WFI
mode)
from Wait
RESET Reset Yes Yes Yes Yes 0x00 8000
TRAP Software interrupt - - - - 0x00 8004
0TLI
(2)
External Top level Interrupt - - - - 0x00 8008
1 FLASH EOP/WR_PG_DIS - - Yes Yes
2 DMA1 0/1 DMA1 channels 0/1 - - Yes Yes
3 DMA1 2/3 DMA1 channels 2/3 - - Yes Yes
4
5
RTC/LSE_
CSS
EXTI E/F/
(3)
PVD
RTC alarminterrupt/LSE CSS interrupt
PortE/F interrupt/PVD interrupt
Yes Yes Yes Yes 0x00 8018
Ye s Ye s Ye s Ye s
6 EXTIB/G External interrupt port B/G Yes Yes Yes Yes
7 EXTID/H External interrupt port D Yes Yes Yes Yes
8 EXTI0 External interrupt 0 Yes Yes Yes Yes
9 EXTI1 External interrupt 1 Yes Yes Yes Yes
10 EXTI2 External interrupt 2 Yes Yes Yes Yes
11 EXTI3 External interrupt 3 Yes Yes Yes Yes
12 EXTI4 External interrupt 4 Yes Yes Yes Yes
13 EXTI5 External interrupt 5 Yes Yes Yes Yes
14 EXTI6 External interrupt 6 Yes Yes Yes Yes
15 EXTI7 External interrupt 7 Yes Yes Yes Yes
Wakeup
(WFE
(1)
mode)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
Vector
address
0x00 800C
0x00 8010
0x00 8014
0x00 801C
0x00 8020
0x00 8024
0x00 8028
0x00 802C
0x00 8030
0x00 8034
0x00 8038
0x00 803C
0x00 8040
0x00 8044
16 LCD LCD interrupt - - Yes Yes 0x00 8048
17 CLK/TIM1
system clock switch/ CSS interrupt/
--YesYes
(5)
0x00 804C
TIM 1 break
18 ADC1 ACD1 Yes Yes Yes Yes
(5)
0x00 8050
TIM2 update/overflow/ trigger/break
19 TIM2/USART2
USART2 transmission complete/transmit data
--YesYes
(5)
0x00 8054
register empty interrupt
20 TIM2/USART2
capture/ compare/USART2 interrupt
--YesYes
(5)
0x00 8058
50/109 Doc ID 023337 Rev 1
STM8L052R8 Interrupt vector mapping
Table 9. Interrupt mapping (continued)
IRQ
No.
Source
block
Description
Wakeup
from Halt
mode
Wakeup
from
Active-
halt mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
mode)
TIM3 update/overflow/ trigger/break USART3 transmission
21 TIM3/USART3
complete/transmit data
--YesYes
register empty interrupt
TIM3 capture/compareUSART3 Receive register
22 TIM3/USART3
data full/overrun/idle line
--YesYes
detected/parity error/ interrupt
23 TIM1
Update /overflow/trigger/ COM
---Yes
24 TIM1 Capture/compare - - - Yes
25 TIM4
TIM4 update/overflow/ trigger
--YesYes
26 SPI1 End of Transfer Yes Yes Yes Yes
(WFE
(5)
(5)
(5)
(5)
(5)
(5)
(1)
Vector
address
0x00 805C
0x00 8060
0x00 8064
0x00 8068
0x00 806C
0x00 8070
USART1 transmission complete/transmit data
27 USART1/TIM5
register empty/
--YesYes
(5)
0x00 8074
TIM5 update/overflow/ trigger/break
USART1 received data
28 USART1/TIM5
ready/overrun error/ idle line detected/parity
--YesYes
(5)
0x00 8078 error/TIM5 capture/compare
29 I
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode.
2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.
3. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port
4. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
5. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes
2
C1/SPI2 I2C1 interrupt
E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).
back to WFE mode. When this interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
(4)
/ S P I 2 Ye s Yes Ye s Ye s
(5)
0x00 807C
Doc ID 023337 Rev 1 51/109
Option bytes STM8L052R8

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See Tabl e 1 0 for details on option byte addresses.
The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for the ROP, UBC and PCODESIZE values which can only be taken into account when they are modified in ICP mode (with the SWIM).
Refer to the STM8Lxx Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0320) for information on SWIM programming procedures.

Table 10. Option byte addresses

Option
Address Option name
Read-out
00 4800
00 4802
00 4807 PCODESIZE OPT2 PCODE[7:0] 0x00
00 4808
00 4809
00 480A
00 480B Bootloader
00 480C 0x00
protection
(ROP)
UBC (User
Boot code size)
Independent
watchdog
option
Number of
stabilization
clock cycles for
HSE and LSE
oscillators
Brownout reset
(BOR)
option bytes
(OPTBL)
byte
No.
OPT0 ROP[7:0] 0x00
OPT1 UBC[7:0] 0x00
OPT3
[3:0]
OPT4 Reserved LSECNT[1:0] HSECNT[1:0] 0x00
OPT5
[3:0]
OPTBL
[15:0]
7654 3 2 1 0
Reserved
Reserved BOR_TH
Option bits Factory
default setting
WWDG
_HALT
OPTBL[15:0]
WWDG
_HW
IWDG
_HALT
IWDG
_HW
BOR_
ON
0x00
0x01
0x00
52/ Doc ID 023337 Rev 1
STM8L052R8 Option bytes

Table 11. Option byte description

Option
byte no.
OPT0
OPT1
OPT2
OPT3
OPT4
Option description
ROP[7:0] Memory readout protection (ROP)
0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L reference manual (RM0031).
UBC[7:0] Size of the user boot code area
UBC[7:0] Size of the user boot code area 0x00: No UBC 0x01: Page 0 reserved for the UBC and write protected.
... 0xFF: Page 0 to 254 reserved for the UBC and write-protected. Refer to User boot code section in the STM8L reference manual (RM0031).
PCODESIZE[7:0] Size of the proprietary code area
0x00: No proprietary code area 0x01: Page 0 reserved for the proprietary code and read/write protected. ... 0xFF: Page 0 to 254 reserved for the proprietary code and read/write protected. Refer to Proprietary code area (PCODE) section in the STM8L reference manual
(RM0031) for more details.
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software 1: Independent watchdog activated by hardware
IWDG_HALT: Independent watchdog off in Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode
WWDG_HW: Window watchdog
0: Window watchdog activated by software 1: Window watchdog activated by hardware
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode
HSECNT: Number of HSE oscillator stabilization clock cycles
0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
Doc ID 023337 Rev 1 53/
Option bytes STM8L052R8
Table 11. Option byte description (continued)
Option
byte no.
OPT5
OPTBL
Option description
BOR_ON:
0: Brownout reset off 1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Ta bl e 1 6 for details on the thresholds according to the value of BOR_TH bits.
OPTBL[15:0]: This option is checked by the boot ROM code after reset. Depending on the content of
addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector.
Refer to the UM0560 bootloader user manual for more details.
54/ Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
50 pF
STM8L PIN

8 Electrical parameters

8.1 Parameter conditions

Unless otherwise specified, all voltages are referred to VSS.

8.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).

8.1.2 Typical values

= 25 °C and TA = TA max (given by
A
Unless otherwise specified, typical data are based on TA = 25 °C, V only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

8.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

8.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 5.
Figure 5. Pin loading conditions
(mean±2Σ).
= 3 V. They are given
DD
Doc ID 023337 Rev 1 55/103
Electrical parameters STM8L052R8
V
IN
STM8L PIN

8.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 6.
Figure 6. Pin input voltage

8.2 Absolute maximum ratings

Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 12. Voltage characteristics

Symbol Ratings Min Max Unit
- V
V
DD
SS
(2)
V
IN
External supply voltage (including V
DDA
(1)
)
Input voltage on true open-drain pins (PC0 and PC1)
Input voltage on five-volt tolerant (FT) pins
Input voltage on any other pin
- 0.3 4.0
V
- 0.3 VDD + 4.0
SS
- 0.3 V
V
SS
- 0.3 4.0
V
SS
DD
+ 4.0
see Absolute maximum
V
ESD
Electrostatic discharge voltage
ratings (electrical sensitivity)
on page 102
1. All power (V be connected to the external power supply.
2. VIN maximum must always be respected. Refer to Table 13. for maximum allowed injected current values.
DD1
, V
DD2
, V
DD3
, V
DD4
, V
) and ground (V
DDA
SS1
, V
SS2
, V
SS3
, V
SS4
, V
) pins must always
SSA
V
56/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters

Table 13. Current characteristics

Symbol Ratings Max. Unit
I
VDD
I
VSS
I
IO
Total current into V
Total current out of V
Output current sunk by IR_TIM pin (with high sink LED driver capability)
power line (source) 80
DD
ground line (sink) 80
SS
80
Output current sunk by any other I/O and control pin 25
Output current sourced by any I/Os and control pin - 25
Injected current on true open-drain pins (PC0 and PC1)
INJ(PIN)
INJ(PIN)
Injected current on five-volt tolerant (FT) pins
Injected current on any other pin
Total injected current (sum of all I/O and control pins)
(2)
I
ΣI
1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. I never be exceeded. Refer to Table 12. for maximum allowed input voltage values.
2. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. I never be exceeded. Refer to Table 12. for maximum allowed input voltage values.
3. When several inputs are submitted to a current injection, the maximum ΣI positive and negative injected currents (instantaneous values).

Table 14. Thermal characteristics

(1)
(1)
(3)
is the absolute sum of the
INJ(PIN)
- 5 / +0
- 5 / +0
- 5 / +5
± 25
INJ(PIN)
INJ(PIN)
must
Symbol Ratings Value Unit
mA
must
T
STG
T
J
Storage temperature range -65 to +150
° C
Maximum junction temperature 150
Doc ID 023337 Rev 1 57/103
Electrical parameters STM8L052R8

8.3 Operating conditions

Subject to general operating conditions for VDD and TA.

8.3.1 General operating conditions

Table 15. General operating conditions
Symbol Parameter Conditions Min. Max. Unit
System clock
f
SYSCLK
1. f
2. To calculate P
3. T
(1)
frequency
V
DD
V
DDA
(2)
P
D
T
A
T
J
SYSCLK
characteristics” table.
Jmax
Standard operating voltage
Analog operating voltage
Power dissipation at
= 85 °C
T
A
Temperature range 1.8 V ≤ V
Junction temperature range
= f
CPU
), use the formula P
Dmax(TA
is given by the test limit. Above this value the product behavior is not guaranteed.
Dmax
1.8 V ≤ V
Must be at the same
potential as V
-40 °C T
=(T
-TA)/ΘJA with T
Jmax
< 3.6 V 0 16 MHz
DD
DD
LQFP64 288 mW
< 3.6 V -40 85
DD
< 85 °C -40 105
A
Jmax
1.8 3.6 V
1.8 3.6 V
in this table and Θ
in “Thermal
JA
(3)
°C
58/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters

8.3.2 Embedded reset and power control block characteristics

Table 16. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min.
t
VDD
VDD rise time rate
V
fall time rate
DD
BOR detector enabled
BOR detector disabled
BOR detector enabled
BOR detector disabled
rising
V
DD
(1)
0
(1)
0
(1)
20
Reset below voltage functional range
BOR detector enabled
t
TEMP
Reset release delay
V
DD
rising
BOR detector disabled
V
V
V
V
V
V
V
POR
PDR
BOR0
BOR1
BOR2
BOR3
BOR4
Power-on reset threshold Rising edge 1.3
Power-down reset threshold Falling edge 1.3
Brown-out reset threshold 0 (BOR_TH[2:0]=000)
Brown-out reset threshold 1 (BOR_TH[2:0]=001)
Brown-out reset threshold 2 (BOR_TH[2:0]=010)
Brown-out reset threshold 3 (BOR_TH[2:0]=011)
Brown-out reset threshold 4 (BOR_TH[2:0]=100)
Falling edge 1.67 1.7 1.74
Rising edge 1.69 1.75 1.80
Falling edge 1.87 1.93 1.97
Rising edge 1.96 2.04 2.07
Falling edge 2.22 2.3 2.35
Rising edge 2.31 2.41 2.44
Falling edge 2.45 2.55 2.60
Rising edge 2.54 2.66 2.7
Falling edge 2.68 2.80 2.85
Rising edge 2.78 2.90 2.95
(2)
(2)
Typ.
Max. Unit
(1)
1
3
1
1.5 1.65
1.5 1.65
(1)
(1)
µs/V
ms/V
µs/V
ms
V
Doc ID 023337 Rev 1 59/103
Electrical parameters STM8L052R8
Table 16. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min.
Typ.
Max. Unit
V
V
V
V
V
V
V
PVD0
PVD1
PVD2
PVD3
PVD4
PVD5
PVD6
PVD threshold 0
PVD threshold 1
PVD threshold 2
PVD threshold 3
PVD threshold 4
PVD threshold 5
PVD threshold 6
Vhyst Hysteresis voltage
Falling edge 1.80 1.84 1.88
Rising edge 1.88 1.94 1.99
Falling edge 1.98 2.04 2.09
Rising edge 2.08 2.14 2.18
Falling edge 2.2 2.24 2.28
Rising edge 2.28 2.34 2.38
Falling edge 2.39 2.44 2.48
Rising edge 2.47 2.54 2.58
Falling edge 2.57 2.64 2.69
Rising edge 2.68 2.74 2.79
Falling edge 2.77 2.83 2.88
Rising edge 2.87 2.94 2.99
Falling edge 2.97 3.05 3.09
Rising edge 3.08 3.15 3.20
BOR0 threshold 40
All BOR and PVD thresholds
100
excepting BOR0
V
mV
1. Data guaranteed by design, not tested in production.
2. Data based on characterization results, not tested in production.
60/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
VDD/V
DDA
PVD output
100 mV
hysteresis
V
PVD
V
BOR
hyster esi s
100 mV
IT enabled
BOR reset
(NRST)
POR/PDR reset
(NR ST)
PVD BOR always active
POR/PDR (BOR not available)
ai17211b
POR
V
/
PDR
V
BOR/PDR reset (NRST)
BOR disabled by option byte
(Note 1)
(Note 2)
(Note 3)
(Note 4)
Figure 7. Power supply thresholds
Doc ID 023337 Rev 1 61/103
Electrical parameters STM8L052R8

8.3.3 Supply current characteristics

Total current consumption
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at V
All peripherals are disabled except if explicitly mentioned.
In the following table, data are based on characterization results, unless otherwise specified.
or VSS (no load)
DD
Subject to general operating conditions for V
Table 17. Total current consumption in Run mode
Symbol Parameter
I
DD(RUN)
Supply current in
run mode
All peripherals OFF, code executed from RAM,
(2)
V
DD
to
3.6 V
from 1.8 V
Conditions
HSI RC osc.
(16 MHz)
(3)
HSE external clock
(f
CPU=fHSE
(5)
)
LSI RC osc. (typ. 38 kHz)
(1)
f
f
f
f
f
f
f
f
f
f
f
DD
= 125 kHz
CPU
= 1 MHz
CPU
= 4 MHz
CPU
= 8 MHz
CPU
= 16 MHz
CPU
= 125 kHz
CPU
= 1 MHz
CPU
= 4 MHz
CPU
= 8 MHz
CPU
= 16 MHz
CPU
= f
CPU
and TA.
LSI
Max.
Typ.
55°C 85 °C
0.22 0.28 0.39
0.32 0.38 0.49
0.59 0.65 0.76
0.93 0.99 1.1
1.62 1.68 1.79
0.21 0.25 0.35
0.3 0.34 0.44
0.57 0.61 0.71
0.95 0.99 1.09
1.73 1.77 1.87
0.029 0.035 0.039
Unit
(4)
mA
(4)
LSE external
= f
clock
f
CPU
(32.768 kHz)
62/103 Doc ID 023337 Rev 1
LSE
0.028 0.034 0.038
STM8L052R8 Electrical parameters
Table 17. Total current consumption in Run mode (continued)
Symbol Parameter
Conditions
(1)
Typ.
55°C 85 °C
Max.
f
I
DD(RUN)
Supply current in Run mode
All peripherals OFF, code executed from Flash,
from 1.8 V
V
DD
to 3.6 V
HSI RC
(6)
osc.
HSE external clock
(f
CPU=fHSE
)
LSI RC osc.
(5)
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
= 125 kHz
= 1 MHz
= 4 MHz
= 8 MHz
= 16 MHz
= 125 kHz
= 1 MHz
= 4 MHz
= 8 MHz
= 16 MHz
= f
LSI
0.35 0.46 0.48
0.54 0.65 0.67
1.16 1.27 1.29
1.97 2.08 2.1
3.54 3.65 3.67
0.35 0.44 0.46
0.53 0.62 0.64
1.13 1.22 1.24
22.092.11
3.69 3.78 3.8
0.110 0.123 0.130
LSE external clock
(32.768 kHz)
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC osc., f
2. CPU executing typical data processing
3. The run from RAM consumption can be approximated with the linear formula: (run_from_RAM) = Freq. * 95 µA/MHz + 250 µA
I
DD
4. Tested in production.
5. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption
6. The run from Flash consumption can be approximated with the linear formula:
7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
) must be added. Refer to Table 28.
(I
DD HSE
(run_from_Flash) = Freq. * 200 µA/MHz + 330 µA
I
DD
) must be added. Refer to Table 29
(I
DD LSE
(7)
f
= f
CPU
CPU=fSYSCLK
LSE
0.100 0.101 0.104
Unit
mA
Doc ID 023337 Rev 1 63/103
Electrical parameters STM8L052R8
Figure 8. Typical I
2
1.8
1.6
1.4
1.2
1
0.8
0.6
IDD Run HSI 16MHz (mA)
0.4
0.2
0
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
DD(RUN)
from RAM vs. VDD (HSI clock source), f
VDD (V)
1. Typical current consumption measured with code executed from RAM.
Figure 9. Typical I
DD(RUN)
from Flash vs. V
(HSI clock source), f
DD
=16 MHz
CPU
25°C
85 °C
-40°C
= 16 MHz
CPU
1)
MS19109V2
1)
4
3.5
3
2.5
IDD Run HSI EEP 16MHz (m A)
2
1.5
1.8 2 2.2 2.4 2.6 2.8 3 3. 2 3.4 3.6
VDD (V)
1. Typical current consumption measured with code executed from Flash.
25°C
85°C
-
40°C
MS19112V2
64/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
In the following table, data are based on characterization results, unless otherwise specified.
Table 18. Total current consumption in Wait mode
Symbol Parameter
Conditions
(1)
Typ
55°C
= 125 kHz
Max
f
CPU
f
= 1 MHz
CPU
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= f
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
SYSCLK
= 4 MHz
= 8 MHz
= 16 MHz
= 125 kHz
= 1 MHz
= 4 MHz
= 8 MHz
= 16 MHz
= f
LSI
= f
LSE
= 125 kHz
= 1 MHz
= 4 MHz
= 8 MHz
= 16 MHz
= 125 kHz
= 1 MHz
= 4 MHz
= 8 MHz
= 16 MHz
= f
LSI
= f
LSE
HSI
CPU not clocked, all peripherals OFF, code executed from RAM with Flash in I
(2)
mode,
HSE external clock
DDQ
(f
CPU=fHSE
(4)
)
VDD from
1.8 V to 3.6 V
LSI
(5)
external clock
LSE (32.768 kHz)
I
DD(Wait)
Supply current in Wait mode
HSI
CPU not clocked, all peripherals OFF, code executed from Flash,
from
V
DD
1.8 V to 3.6 V
HSE (f
CPU
HSE)
(4)
=
external clock
LSI
(5)
external clock
LSE (32.768 kHz)
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC osc., f
2. Flash is configured in I
3. Tested in production.
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption
) must be added. Refer to Table 28.
(I
DD HSE
mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.
DDQ
CPU
0.21 0.29 0.33
0.25 0.33 0.37
0.32 0.4 0.44
0.42 0.496 0.54
0.66 0.736 0.78
0.19 0.21 0.3
0.2 0.23 0.32
0.27 0.3 0.39
0.37 0.4 0.49
0.63 0.66 0.75
0.028 0.037 0.039
0.027 0.035 0.038
0.27 0.36 0.42
0.29 0.38 0.44
0.37 0.46 0.52
0.45 0.55 0.61
0.69 0.79 0.85
0.23 0.29 0.32
0.24 0.31 0.34
0.32 0.39 0.42
0.42 0.49 0.51
0.7 0.77 0.79
0.037 0.085 0.105
0.036 0.082 0.095
Unit
85 °C
(3)
mA
(3)
mA
Doc ID 023337 Rev 1 65/103
Electrical parameters STM8L052R8
0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.8 2 2.2 2.4 2. 6 2. 8 3 3.2 3. 4 3.6
DD
MS19108V2
5. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
) must be added. Refer to Table 29
(I
DD HSE
Figure 10. Typical I
DD(Wait)
0.8
0.7
0.6
0.5
0.4
IDD Wait HSI 16MHz (mA)
0.3
0.2
1.8 2 2.2 2.4 2. 6 2.8 3 3.2 3.4 3.6
from RAM vs. V
VDD (V)
(HSI clock source), f
DD
25°C
85°C
-
40°C
= 16 MHz
CPU
MS19113V2
1. Typical current consumption measured with code executed from RAM.
1)
Figure 11. Typical I
IDD Wfi HSI 16MHz EEON (mA)
1. Typical current consumption measured with code executed from Flash.
DD(Wait)
from Flash (HSI clock source), f
V
(V)
= 16 MHz
CPU
1)
25°C
85°C
-40°C
66/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
In the following table, data are based on characterization results, unless otherwise specified.
Table 19. Total current consumption and timing in Low power run mode at V
= 1.8 V to
DD
3.6 V
Symbol
Parameter
Conditions
all peripherals OFF
LSI RC osc. (at 38 kHz)
with TIM2 active
I
DD(LPR)
Supply current in Low power run mode
all peripherals OFF
(3)
LSE
external clock (32.768 kHz)
with TIM2 active
1. No floating I/Os
2. Timer 2 clock enabled and counter running
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption ) must be added. Refer to Table 29
(I
DD LSE
(1)
(2)
(2)
Typ. Max. Unit
= -40 °C
T
A
to 25 °C
T
= 55 °C 6.52 7.06
A
= 85 °C 7.68 8.7
T
A
T
= -40 °C
A
to 25 °C
T
= 55 °C 6.86 7.41
A
= 85 °C 9.71 10.81
T
A
TA = -40 °C to 25 °C
T
= 55 °C 5.9 6.52
A
= 85 °C 6.14 6.8
T
A
TA = -40 °C to 25 °C
T
= 55 °C 6.44 6.95
A
= 85 °C 6.7 7.65
T
A
5.86 6.38
6.2 6.73
5.42 5.94
5.87 6.48
μA
Doc ID 023337 Rev 1 67/103
Electrical parameters STM8L052R8
Figure 12. Typical I
0.02
0.015
0.01
IDD LpRun L SI all off (m A)
0.005
0
1.8 2 2. 2 2.4 2.6 2.8 3 3.2 3.4 3. 6
DD(LPR)
vs. V
(LSI clock source), all peripherals OFF
DD
VDD (V)
25°C
85°C
- 40°C
MS19110V2
68/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
0
0.005
0.01
0.015
0.02
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
LpWfi ram LSI all o ff (m
VDD(V)
°C
0°C
.47
°C
In the following table, data are based on characterization results, unless otherwise specified.
Table 20. Total current consumption in Low power wait mode at V
Symbol
I
DD(LPW)
1. No floating I/Os.
2. Timer 2 clock enabled and counter is running.
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(I
DD LSE
Parameter
LSI RC osc. (at 38 kHz)
Supply current in Low power wait mode
LSE external
(3)
clock (32.768 kHz)
) must be added. Refer to Table 29.
Conditions
all peripherals OFF
with TIM2 active
(2)
all peripherals OFF
with TIM2 active
(2)
= 1.8 V to 3.6 V
DD
(1)
= -40 °C to 25 °C
T
A
T
= 55 °C 3.38 3.78
A
= 85 °C 4.6 5.34
T
A
TA = -40 °C to 25 °C
T
= 55 °C 4.13 4.57
A
T
= 85 °C 5.29 6.08
A
TA = -40 °C to 25 °C
T
= 55 °C 2.58 3.07
A
= 85 °C 3.32 4.05
T
A
TA = -40 °C to 25 °C
= 55 °C 2.97 3.42
T
A
T
= 85 °C 3.69 4.55
A
Typ. Max. Unit
3.03 3.41
3.78 4.21
μA
2.46 2.89
2.88 3.29
Figure 13. Typical I
A)
IDD
DD(LPW)
vs. V
(LSI clock source), all peripherals OFF
DD
1. Typical current consumption measured with code executed from RAM.
(1)
25
85
-4
Doc ID 023337 Rev 1 69/103
Electrical parameters STM8L052R8
In the following table, data are based on characterization results, unless otherwise specified.
Table 21. Total current consumption and timing in Active-halt mode
Symbol
at V
= 1.8 V to 3.6 V
DD
Parameter
Conditions
(1)
Typ. Max. Unit
I
DD(AH)
I
DD(AH)
I
DD(WUFAH)
Supply current in Active-halt mode
Supply current in Active-halt mode
Supply current during wakeup time from Active-halt mode (using HSI)
LSI RC (at 38 kHz)
LSE external clock (32.768 kHz)
(6)
LCD OFF
(2)
LCD ON (static duty/ external
(3)
)
V
LCD
LCD ON (1/4 duty/ external
(4)
)
V
LCD
LCD ON (1/4 duty/ internal
(5)
)
V
LCD
LCD OFF
(7)
LCD ON (static duty/ external
(3)
V
)
LCD
LCD ON (1/4 duty/ external
(4)
V
)
LCD
LCD ON (1/4 duty/ internal
(5)
)
V
LCD
TA = -40 °C to 25 °C
T
= 55 °C 1.32 3.44
A
= 85 °C 1.63 3.87
T
A
TA = -40 °C to 25 °C
T
= 55 °C 1.64 3.8
A
= 85 °C 2.12 5.03
T
A
TA = -40 °C to 25 °C
T
= 55 °C 2.1 4.97
A
= 85 °C 2.6 6.14
T
A
TA = -40 °C to 25 °C
T
= 55 °C 4.39 10.32
A
= 85 °C 4.84 11.5
T
A
TA = -40 °C to 25 °C
T
= 55 °C 0.61 1.44
A
= 85 °C 0.91 2.27
T
A
TA = -40 °C to 25 °C
= 55 °C 1.05 2.55
T
A
= 85 °C 1.42 3.65
T
A
TA = -40 °C to 25 °C
= 55 °C 1.76 4.37
T
A
= 85 °C 2.14 5.23
T
A
TA = -40 °C to 25 °C
T
= 55 °C 3.89 9.15
A
= 85 °C 4.25 10.49
T
A
0.92 2.25
1.56 3.6
1.92 4.56
4.2 9.88
0.54 1.35
0.91 2.13
1.6 2.84
3.89 9.15
2.4 mA
μA
μA
Wakeup time from
(8)(9)
t
WU_HSI(AH)
Active-halt mode to Run mode (using HSI)
Wakeup time from
(8)(9)
t
WU_LSI(AH)
Active-halt mode to Run mode (using LSI)
70/103 Doc ID 023337 Rev 1
4.7 7 μs
150 μs
STM8L052R8 Electrical parameters
0
0.005
0.01
0.015
0.02
1.8 2 2.2 2.4 2. 6 2.8 3 3. 2 3.4 3. 6
AHalt (m
25°C
85°C
-40°C
MS19117V2
1. No floating I/O, unless otherwise specified.
2. RTC enabled. Clock source = LSI
3. RTC enabled, LCD enabled with external V
4. RTC enabled, LCD enabled with external V
5. LCD enabled with internal LCD booster V
connected.
6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(I
) must be added. Refer to Table 29
DD LSE
7. RTC enabled. Clock source = LSE
8. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after t
9. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
= 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.
LCD
, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
LCD
= 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD
LCD
.
WU
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal
Symbol Parameter Condition
(1)
Typ . Unit
LSE 1.2
= 1.8 V
V
I
DD(AH)
(2)
Supply current in Active-halt mode
DD
V
DD
= 3 V
(3)
LSE/32
LSE 1.4
(3)
LSE/32
0.9
µA
1.1
LSE 1.6
V
= 3.6 V
DD
1. No floating I/O, unless otherwise specified.
2. Based on measurements on bench with 32.768 kHz external crystal oscillator.
3. RTC clock is LSE divided by 32.
Figure 14. Typical I
A)
DD(AH)
vs. V
(LSI clock source)
DD
LSE/32
(3)
1.3
IDD
Doc ID 023337 Rev 1 71/103
VDD(V)
Electrical parameters STM8L052R8
In the following table, data are based on characterization results, unless otherwise specified.
Table 23. Total current consumption and timing in Halt mode at V
Symbol
Parameter
Condition
(1)
= 1.8 to 3.6 V
DD
Typ. Max. Unit
Supply current in Halt mode
I
DD(Halt)
(Ultra low power ULP bit =1 in the PWR_CSR2
register)
Supply current during wakeup
I
DD(WUHalt)
time from Halt mode (using HSI)
t
WU_HSI(Halt)
t
WU_LSI(Halt)
(3)(4)
(3)(4)
1. TA = -40 to 85 °C, no floating I/O, unless otherwise specified
2. Tested in production
3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register
4. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after t
Figure 15. Typical I
Wakeup time from Halt to Run mode (using HSI)
Wakeup time from Halt mode to Run mode (using LSI)
vs. V
0.02
0.02
0.018
0.018
0.016
0.016
DD(Halt)
DD
T
= -40 °C to 25 °C 400
A
= 55 °C 810 2400
T
A
TA = 85 °C 1600
2.4 mA
4.7 7 µs
150 µs
WU
(internal reference voltage OFF)
1600
4500
25°C
25°C
85°C
85°C
-40°C
(2)
nA
(2)
0.014
0.014
0.012
0.012
0.01
0.01
0.008
0.008
IDD Halt bgo ff (mA)
IDD Halt bgo ff (mA)
0.006
0.004
0.002
0
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
DD (V)
V
MS19119V2
72/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
Current consumption of on-chip peripherals
Table 24. Peripheral current consumption
Symbol Parameter
I
DD(ALL)
I
DD(TIM1)
I
DD(TIM2)
I
DD(TIM3)
I
DD(TIM5)
I
DD(TIM4)
I
DD(USART1)
I
DD(USART2)
I
DD(USART3)
I
DD(SPI1)
I
DD(SPI2)
I
DD(I2C1)
I
DD(DMA1)
I
DD(WWDG)
I
DD(ADC1)
I
DD(PVD/BOR)
Peripherals ON
TIM1 supply current
TIM2 supply current
TIM3 supply current
TIM5 supply current
TIM4 timer supply current
USART1 supply current
USART2 supply current
USART3 supply current
SPI1 supply current
SPI2 supply current
I2C1 supply current
DMA1 supply current 3
WWDG supply current 1
ADC1 supply current
Power voltage detector and brownout Reset unit supply current
(5)
(1)
(2)
(2)
(2)
(2)
(2)
(3)
(3)
(3)
(3)
(3)
(3)
(4)
V
DD
Typ.
= 3.0 V
63
10
7
7
7
3
5
5
5
3
3
4
1500
2.6
Unit
µA/MHz
I
DD(BOR)
I
DD(IDWDG)
1. Peripherals listed above the I
SPI2, I2C1, DMA1, WWDG.
2. Data based on a differential I
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.
3. Data based on a differential I
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production.
4. Data based on a differential I
5. Including supply current of internal reference voltage.
Brownout Reset unit supply current
Independent watchdog supply current
parameter ON: TIM1, TIM2, TIM3, TIM4, TIM5, USART1, USART2, USART3, SPI1,
DD(ALL)
measurement between all peripherals OFF and a timer counter running at 16 MHz. The
DD
measurement between the on-chip peripheral in reset configuration and not clocked and
DD
measurement between ADC in reset configuration and continuous ADC conversion.
DD
(5)
including LSI supply current
excluding LSI supply current
2.4
0.45
0.05
Doc ID 023337 Rev 1 73/103
µA
Electrical parameters STM8L052R8
Table 25. Current consumption under external reset
Symbol Parameter Conditions Typ. Unit
V
= 1.8 V 48
I
DD(RST)
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.
PB1, PB3 and PA5 must be tied externally under reset to avoid the consumption due to their schmitt trigger.
Supply current under
external reset
(1)
PB1/PB3/PA5 pins are externally tied to V
DD
DD
= 3 V 80
DD
= 3.6 V 95
V
DD

8.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 26. HSE external clock characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
External clock source
f
HSE_ext
V
HSEH
V
HSEL
C
in(HSE)
I
LEAK_HSE
(1)
frequency
OSC_IN input pin high level voltage
OSC_IN input pin low level voltage
(1)
OSC_IN input capacitance 2.6 pF
OSC_IN input leakage current
V
< V
IN
< V
DD
SS
116MHz
0.7 x V
V
SS
DD
V
DD
0.3 x V
DD
±1 µA
µAV
V
1. Guaranteed by design, not tested in production.
74/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
LSE external clock (LSEBYP=1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
(2)
(2)
(1)
External clock source frequency 32.768 kHz
OSC32_IN input pin high level voltage 0.7 x V
OSC32_IN input pin low level voltage V
(1)
OSC32_IN input capacitance 0.6 pF
SS
DD
0.3 x V
OSC32_IN input leakage current ±1 µA
V
DD
V
DD
Table 27. LSE external clock characteristics
Symbol Parameter Min. Typ. Max. Unit
f
LSE_ext
V
LSEH
V
LSEL
C
in(LSE)
I
LEAK_LSE
1. Guaranteed by design, not tested in production.
2. Data based on characterization results, not tested in production.
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
Table 28. HSE oscillator characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
f
HSE
R
(1)(2)
C
I
DD(HSE)
g
t
SU(HSE)
1. C=
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R
Refer to crystal manufacturer for more details
3. Guaranteed by design. Not tested in production.
4. t
SU(HSE)
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
High speed external oscillator frequency
Feedback resistor 200 kΩ
F
Recommended load capacitance
C = 20 pF,
f
= 16 MHz
HSE oscillator power consumption
OSC
C = 10 pF,
=16 MHz
f
OSC
Oscillator transconductance 3.5
m
(4)
Startup time VDD is stabilized 1 ms
C
=
C
is approximately equivalent to 2 x crystal C
L1
L2
is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This
LOAD
.
116MHz
20 pF
2.5 (startup)
0.7 (stabilized)
2.5 (startup)
0.46 (stabilized)
(3)
value.
m
(3)
(3)
mA
mA/V
Doc ID 023337 Rev 1 75/103
Electrical parameters STM8L052R8
OSC_OUT
OSC_IN
f
HSE
to core
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
g
mcrit
2 Π× f
HSE
×()
2
Rm× 2Co C+()
2
=
Figure 16. HSE oscillator circuit diagram
HSE oscillator critical g
Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification),
: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),
C
m
=C: Grounded external capacitance
C
L1=CL2
g
>> g
m
mcrit
formula
m
LSE crystal/ceramic resonator oscillator
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
Table 29. LSE oscillator characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
f
LSE
R
F
(1)(2)
C
I
DD(LSE)
g
m
t
SU(LSE)
1. C=
C
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R
Refer to crystal manufacturer for more details.
3. Guaranteed by design. Not tested in production.
4. t
SU(LSE)
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Low speed external oscillator frequency
32.768 kHz
Feedback resistor ΔV = 200 mV 1.2 MΩ
Recommended load capacitance
V
= 1.8 V 450
DD
LSE oscillator power consumption
Oscillator transconductance 3
(4)
Startup time VDD is stabilized 1 s
=
C
is approximately equivalent to 2 x crystal C
L1
L2
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.
= 3 V 600
DD
= 3.6 V 750
V
DD
.
LOAD
(3)
8pF
value.
m
nAV
µA/V
76/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
OSC_OUT
OSC_IN
f
LSE
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
Figure 17. LSE oscillator circuit diagram
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
In the following table, data are based on characterization results, not tested in production, unless otherwise specified.
Table 30. HSI oscillator characteristics
Symbol
Parameter
Conditions
(1)
Min. Typ. Max. Unit
f
HSI
ACC
TRIM
t
su(HSI)
I
DD(HSI)
Frequency VDD = 3.0 V 16 MHz
Accuracy of HSI oscillator (factory
HSI
calibrated)
HSI user trimming
(3)
step
HSI oscillator setup time (wakeup time)
HSI oscillator power consumption
= 3.0 V, TA = 25 °C -1
V
DD
1.8 V ≤ V
-40 °C ≤ T
3.6 V,
DD
85 °C
A
Trimming code multiple of 16 0.4 0.7 %
Trimming code = multiple of 16 ± 1.5 %
(2)
-5 5 %
3.7 6
100 140
1
(2)
(4)
(4)
µA
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Tested in production.
3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16
(0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for more details.
4. Guaranteed by design, not tested in production
%
µs
Doc ID 023337 Rev 1 77/103
Electrical parameters STM8L052R8
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6
V
DD
[V]
HSI
frequency
[MHz]
-40°C 25°C 85°C
ai18218V3
Figure 18. Typical HSI frequency vs. V
DD
Low speed internal RC oscillator (LSI)
In the following table, data are based on characterization results, not tested in production.
Table 31. LSI oscillator characteristics
Symbol
Parameter
Conditions
(1)
Min. Typ. Max. Unit
f
t
su(LSI)
D
1. VDD = 1.8 V to 3.6 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by Design, not tested in production.
3. This is a deviation for an individual part, once the initial frequency has been measured.
78/103 Doc ID 023337 Rev 1
Frequency 26 38 56 kHz
LSI
LSI oscillator wakeup time 200
LSI oscillator frequency drift
(3)
(LSI)
(2)
µs
0 °C ≤ TA ≤ 85 °C -12 11 %
STM8L052R8 Electrical parameters
Figure 19. Typical LSI clock source frequency vs. V
0.04
0.038
0.036
0.034
RC32K Check (MHz)
0.032
0.03
1.8 2 2.2 2.4 2. 6 2.8 3 3. 2 3.4 3. 6

8.3.5 Memory characteristics

TA = -40 to 85 °C unless otherwise specified.
Table 32. RAM and hardware registers
DD
25°C
85°C
-40°C
VDD(V)
MS19116V2
Symbol Parameter Conditions Min. Typ. Max. Unit
V
RM
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production.
Data retention mode
(1)
Halt mode (or Reset) 1.8 V
Doc ID 023337 Rev 1 79/103
Electrical parameters STM8L052R8
Flash memory
Table 33. Flash program and data EEPROM memory
Symbol Parameter Conditions Min. Typ.
V
Operating voltage
DD
(all modes, read/write/erase)
f
SYSCLK
= 16 MHz 1.8 3.6 V
Programming time for 1 or 128 bytes (block) erase/write cycles (on programmed byte)
t
prog
Programming time for 1 to 128 bytes (block) write cycles (on erased byte)
T
=+25 °C, VDD = 3.0 V
I
Programming/ erasing consumption
prog
Data retention (program memory) after 100 erase/write cycles at TA=−40 to +85 °C
(2)
t
RET
Data retention (data memory) after 100000 erase/write cycles at T
=−40 to +85 °C
A
Erase/write cycles (program memory)
(3)
N
RW
1. Data based on characterization results, not tested in production.
2. Conforming to JEDEC JESD22a117
3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation
4. Data based on characterization performed on the whole data memory.
Erase/write cycles (data memory)
addresses a single byte.
A
=+25 °C, VDD = 1.8 V
T
A
T
=+85 °C 30
RET
T
=+85 °C 30
RET
T
=−40 to +85 °C
A
100
100
(1)
(1)
(1)
(1)
(4)
Max.
(1)
6ms
3ms
0.7 mA
years
cycles
kcycles
Unit
80/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters

8.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).
The test results are given in the following table.
Table 34.
Symbol Description
(for standard pins) should be avoided during normal product operation. However,
DD
I/O current injection susceptibility
Functional susceptibility
Negative injection
Positive
injection
Unit
Injected current on true open-drain pins -5 +0
I
INJ
Injected current on any other pin -5 +5

8.3.7 I/O port pin characteristics

General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.
mAInjected current on all 5 V tolerant (FT) pins -5 +0
Doc ID 023337 Rev 1 81/103
Electrical parameters STM8L052R8
Table 35. I/O static characteristics
Symbol
V
IL
V
IH
V
hys
Parameter
Input low level voltage
Input high level voltage
(2)
(2)
Schmitt trigger voltage hysteresis
Conditions
(1)
Min.
Input voltage on true open-drain pins (PC0
Vss-0.3
and PC1)
volt tolerant (FT) pins
Input voltage on any other pin
Vss-0.3
Vss-0.3
Input voltage on true open-drain pins (PC0 and PC1)
DD
< 2 V
0.70 x V
DD
with V
Input voltage on true open-drain pins (PC0 and PC1)
DD
2 V
with V
Input voltage on five­volt tolerant (FT) pins with V
Input voltage on five-
DD
< 2 V
0.70 x V
DD
volt tolerant (FT) pins
DD
2 V
0.70 x V
DD
with V
Input voltage on any other pin
Standard I/Os 200
(3)
True open drain I/Os 200
Typ .
0.3 x V
0.3 x V
0.3 x V
VDD+0.3
Max. Unit
DD
VInput voltage on five-
DD
DD
5.2
5.5
V
5.2
5.5
mV
V
VIN≤ V
SS
Standard I/Os
VIN≤ V
V
I
Input leakage current
lkg
(4)
SS
True open drain I/Os
V
VIN≤ V
SS
PA0 with high sink LED
DD
DD
DD
--50
- - 200
- - 200
driver capability
R
C
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Data based on characterization results, not tested in production.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Not tested in production.
6. R
Figure 23).
Weak pull-up equivalent resistor
PU
I/O pin capacitance 5 pF
IO
pull-up equivalent resistor based on a resistive transistor (corresponding I
PU
(2)(6)
V
IN=VSS
30 45 60 kΩ
current characteristics described in
PU
82/103 Doc ID 023337 Rev 1
(5)
(5)
nA
(5)
STM8L052R8 Electrical parameters
0
0.5
1
1.5
2
2.5
3
1.8 2.1 2.6 3.1 3.6
V
DD
[V]
V
IL
and V
IH
[V]
-40°C 25°C 85°C
ai18220V3
0
0.5
1
1.5
2
2.5
3
1.8 2.1 2.6 3.1 3.6
V
DD
[V]
V
IL
and V
IH
[V]
-40°C 25°C 85°C
ai18221V2
30
35
40
45
50
55
60
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
V
DD
[V]
Pull-Up resistance [k
Ω
]
-40°C 25°C 85°C
ai18222V2
Figure 20. Typical VIL and V
Figure 21. Typical V
and V
IL
vs. VDD (standard I/Os)
IH
vs. VDD (true open drain I/Os)
IH
Figure 22. Typical pull-up resistance R
vs. VDD with VIN=V
PU
SS
Doc ID 023337 Rev 1 83/103
Electrical parameters STM8L052R8
0
20
40
60
80
100
120
1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 V
DD
[V]
Pull-Up current [μA]
-40°C 25°C 85°C
ai18223V2
Figure 23. Typical pull-up current Ipu vs. VDD with VIN=V
Output driving current
Subject to general operating conditions for V
Table 36. Output driving current (high sink ports)
and TA unless otherwise specified.
DD
SS
I/O
Symbol Parameter Conditions Min. Max. Unit
Type
= +2 mA,
I
IO
V
= 3.0 V
DD
I
= +2 mA,
(1)
V
OL
Output low level voltage for an I/O pin
Standard
(2)
V
OH
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed I
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed I
Output high level voltage for an I/O pin
.
VSS
VDD
IO
= 1.8 V
V
DD
I
= +10 mA,
IO
= 3.0 V
V
DD
= -2 mA,
I
IO
= 3.0 V
V
DD
I
= -1 mA,
IO
= 1.8 V
V
DD
I
= -10 mA,
IO
= 3.0 V
V
DD
.
V
-0.45
DD
-0.45
V
DD
V
DD
0.45 V
0.45 V
0.7 V
-0.7 V
V
V
84/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
0
0.25
0.5
0.75
1
02468101214161820
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
ai18226V2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0123 45678
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
ai18227V2
ai18228V2
0
0.1
0.2
0.3
0.4
0.5
01234567
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
0
0.1
0.2
0.3
0.4
0.5
01234567
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
BJ7
Table 37. Output driving current (true open drain ports)
I/O
Symbol Parameter Conditions Min. Max. Unit
Type
= +3 mA,
I
IO
= 3.0 V
V
(1)
V
OL
Output low level voltage for an I/O pin
Open drain
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed I
VSS
.
DD
= +1 mA,
I
IO
V
DD
= 1.8 V
0.45
V
0.45
Table 38. Output driving current (PA0 with high sink LED driver capability)
I/O
Symbol Parameter Conditions Min. Max. Unit
Type
= +20 mA,
I
(1)
V
IR
OL
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed I
Output low level voltage for an I/O pin
.
VSS
V
IO
DD
= 2.0 V
0.45 V
Figure 24. Typical VOL @ VDD = 3.0 V (high
sink ports)
Figure 26. Typical VOL @ VDD = 3.0 V (true
open drain ports)
Figure 25. Typical VOL @ VDD = 1.8 V (high
sink ports)
Figure 27. Typical VOL @ VDD = 1.8 V (true
open drain ports)
Doc ID 023337 Rev 1 85/103
Electrical parameters STM8L052R8
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0 2 4 6 8 101214161820
I
OH
[mA]
V
DD
- V
OH
[V]
-40°C
25°C
85°C
ai12830V2
0
0.1
0.2
0.3
0.4
0.5
012345 67
I
OH
[mA]
V
DD
- V
OH
[V]
-40°C
25°C
85°C
BJ7
Figure 28. Typical V
DD - VOH
(high sink ports)
@ VDD = 3.0 V
Figure 29. Typical V
(high sink ports)
NRST pin
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 39. NRST pin characteristics
Symbol Parameter Conditions Min.
V
IL(NRST)
V
IH(NRST)
V
OL(NRST)
V
HYST
NRST input low level voltage
NRST input high level voltage
NRST output low level voltage
NRST input hysteresis
(3)
(1)
(1)
(1)
IOL = 2 mA for 2.7 V ≤ V V
I
= 1.5 mA
OL
DD
< 2.7 V
for V
DD
3.6
V
SS
1.4
10%V
(2)
DD - VOH
Typ .
DD
@ VDD = 1.8 V
Max. Unit
0.8
V
DD
0.4
V
mV
R
PU(NRST)
V
F(NRST)
V
NF(NRST)
NRST pull-up equivalent
(1)
resistor
NRST input filtered pulse
NRST input not filtered pulse
1. Data based on characterization results, not tested in production.
2. 200 mV min.
3. Data guaranteed by design, not tested in production.
86/103 Doc ID 023337 Rev 1
(3)
(3)
30 45 60 kΩ
50
ns
300
STM8L052R8 Electrical parameters
30
35
40
45
50
55
60
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 V
DD
[V]
Pull-up
resistance
[k
Ω
]
-40°C 25°C 85°C
ai18224V2
ai18225V2
0
20
40
60
80
100
120
1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6
V
DD
[V]
Pull-U
p current [ μA]
-40°C
25°C
85
°C
Figure 30. Typical NRST pull-up resistance RPU vs. VDD
Figure 31. Typical NRST pull-up current I
vs. VDD
pu
The reset network shown in Figure 32 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V
max. level specified in
IL
Ta bl e 3 9 . Otherwise the reset is not taken into account internally. For power consumption-
sensitive applications, the capacity of the external reset capacitor can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, the user must pay attention to the charge/discharge time of the external capacitor to meet the reset timing conditions of the external devices. The minimum recommended capacity is 10 nF.
Doc ID 023337 Rev 1 87/103
Electrical parameters STM8L052R8
EXTERNAL
RESET
CIRCUIT
STM8L
Filter
R
PU
V
DD
INTERNAL RESET
RSTIN
0.1 µF
Figure 32. Recommended NRST pin configuration
88/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters

8.3.8 Communication interfaces

SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Ta b le 4 0 are derived from tests performed under ambient temperature, f conditions summarized in Section 8.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 40. SPI1 characteristics
Symbol Parameter Conditions
SYSCLK
frequency and VDD supply voltage
(1)
Min. Max. Unit
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
SPI1 clock frequency
Master mode 0 8
Slave mode 0 8
SPI1 clock rise and fall time
(2)
NSS setup time Slave mode 4 x 1/f
(2)
NSS hold time Slave mode 80 -
(2)
SCK high and low time
(2)
(2)
Data input setup time
(2)
(2)
Data input hold time
(2)
(2)(3)
Data output access time Slave mode - 3x 1/f
(2)(4)
Data output disable time Slave mode 30 -
(2)
Data output valid time Slave mode (after enable edge) - 60
(2)
Data output valid time
(2)
Data output hold time
(2)
Capacitive load: C = 30 pF - 30 ns
Master mode,
MASTER
= 8 MHz, f
f
SCK
= 4 MHz
105 145
Master mode 30 -
Slave mode 3 -
Master mode 15 -
Slave mode 0 -
Master mode (after enable edge)
Slave mode (after enable edge) 15 -
Master mode (after enable edge)
MHz
SYSCLK
-
SYSCLK
-20
1-
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min. time is for the minimum time to drive the output and max. time is for the maximum time to validate the data.
4. Min. time is for the minimum time to invalidate the output and max. time is for the maximum time to put the data in Hi-Z.
Doc ID 023337 Rev 1 89/103
Electrical parameters STM8L052R8
ai14134
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Figure 33. SPI1 timing diagram - slave mode and CPHA=0
Figure 34. SPI1 timing diagram - slave mode and CPHA=1
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.
(1)
90/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
ai14136
SCK Input
CPHA=0
MOSI
OUTUT
MISO
INP UT
CPHA=0
MSBIN
M SB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
Figure 35. SPI1 timing diagram - master mode
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
(1)
DD
.
Doc ID 023337 Rev 1 91/103
Electrical parameters STM8L052R8
I2C - Inter IC control interface
Subject to general operating conditions for V
The STM8L I
2
C interface (I2C1) meets the requirements of the Standard I2C communication
DD
, f
SYSCLK
, and TA unless otherwise specified.
protocol described in the following table with the restriction mentioned below:
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).
Table 41. I2C characteristics
Max.
(1)
(2)
Symbol Parameter
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
1. f
SYSCLK
Data based on standard I
2.
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100
SDA data hold time 0 0 900
SDA and SCL rise time 1000 300
SDA and SCL fall time 300 300
START condition hold time 4.0 0.6
Repeated START condition setup time
STOP condition setup time 4.0 0.6 μs
STOP to START condition time (bus free)
Capacitive load for each bus line 400 400 pF
b
must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
2
C protocol requirement, not tested in production.
Standard mode I2CFast mode I2C
Min.
(2)
Max.
(2)
Min.
(2)
4.7 0.6
4.7 1.3 μs
Unit
μs
ns
μs
Note: For speeds around 200 kHz, the achieved speed can have a ± 5% tolerance.
For other speed ranges, the achieved speed can have a
±
2% tolerance.
The above variations depend on the accuracy of the external components used.
92/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
REPEATED START
START
STOP
START
t
f(SDA)
t
r(SDA)
t
su(SDA)th(SDA)
t
f(SCL)
t
r(SCL)
t
w(SCLL)
t
w(SCLH)
t
h(STA)
t
su(STO)
t
su(STA)tw(STO:STA)
SDA
SCL
4.7kΩ SDA
STM8L
SCL
V
DD
100Ω
100Ω
V
DD
4.7kΩ
I2CBUS
2
Figure 36.
Typical application with I
C bus and timing diagram
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x V
1)
DD
Doc ID 023337 Rev 1 93/103
Electrical parameters STM8L052R8

8.3.9 LCD controller

In the following table, data are guaranteed by Design, not tested in production.
Table 42. LCD characteristics
Symbol Parameter Min. Typ. Max. Unit
V
LCD
V
LCD0
V
LCD1
V
LCD2
V
LCD3
V
LCD4
V
LCD5
V
LCD6
V
LCD7
C
EXT
I
DD
(2)
R
HN
(3)
R
LN
V
33
V
34
V
23
V
12
V
13
V
14
V
0
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected.
2. RHN is the total high value resistive network.
3. RLN is the total low value resistive network.
High value resistive network (low drive) 6.6 MΩ
Low value resistive network (high drive) 240 kΩ
Segment/Common higher level voltage V
Segment/Common 3/4 level voltage 3/4V
Segment/Common 2/3 level voltage 2/3V
Segment/Common 1/2 level voltage 1/2V
Segment/Common lowest level voltage 0
LCD external voltage 3.6
LCD internal reference voltage 0 2.6
LCD internal reference voltage 1 2.7
LCD internal reference voltage 2 2.8
LCD internal reference voltage 3 3.0
LCD internal reference voltage 4 3.1
LCD internal reference voltage 5 3.2
LCD internal reference voltage 6 3.4
LCD internal reference voltage 7 3.5
V
external capacitance 0.1 1 2 µF
LCD
Supply current
Supply current
(1)
at VDD = 1.8 V
(1)
at VDD = 3 V 3
Segment/Common 1/3 level voltage 1/3V
Segment/Common 1/4 level voltage 1/4V
3
LCDx
LCDx
LCDx
LCDx
LCDx
LCDx
V
µA
V
VLCD external capacitor
The application can achieve a stabilized LCD reference voltage by connecting an external capacitor C
94/103 Doc ID 023337 Rev 1
EXT
to the V
LCD
pin. C
is specified in Ta bl e 4 2.
EXT
STM8L052R8 Electrical parameters

8.3.10 Embedded reference voltage

In the following table, data are based on characterization results, not tested in production, unless otherwise specified.
Table 43. Reference voltage characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
I
REFINT
T
S_VREFINT
I
BUF
V
REFINT out
I
LPBUF
(1)(2)
(1)
(1)
Internal reference voltage
consumption
ADC sampling time when reading the
internal reference voltage
Internal reference voltage buffer
consumption (used for ADC)
Reference voltage output
Internal reference voltage low power
buffer consumption (used for
comparators or output)
REFOUT
C
REFOUT
t
VREFINT
t
BUFEN
(1)(4)
(1)
(1)(2)
I
Stability of V
STAB
VREFINT
STAB
VREFINT
1. Guaranteed by design, not tested in production
2. Defined when ADC output reaches its final value ±1/2LSB
3. Tested in production at V
4. To guarantee less than 1%
Stability of V
Stability of V
Buffer output current 1 µA
Reference voltage output load 50 pF
Internal reference voltage startup
time
Internal reference voltage buffer
startup time once enabled
over temperature -40 °C ≤ TA ≤ 85 °C 20 50 ppm/°C
REFINT
over temperature 0 °C ≤ TA ≤ 50 °C 20 ppm/°C
REFINT
after 1000 hours TBD ppm
REFINT
= 3 V ±10 mV.
DD
V
REFOUT
deviation
1.202
(3)
1.4 µA
510 µs
13.5 25 µA
1.242
1.224
(3)
V
730 1200 nA
23 ms
10 µs
Doc ID 023337 Rev 1 95/103
Electrical parameters STM8L052R8

8.3.11 12-bit ADC1 characteristics

In the following table, data are guaranteed by design, not tested in production.
Table 44. ADC1 characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
V
DDA
V
REF+
V
REF-
I
VDDA
I
VREF+
V
AIN
T
R
AIN
C
ADC
Analog supply voltage 1.8 3.6 V
Reference supply voltage
Lower reference voltage
Current on the VDDA input pin
2.4 V V
1.8 VV
3.6 V
DDA
2.4 V V
DDA
2.4
V
DDA
DDA
V
SSA
1000 1450 µA
700
Current on the VREF+ input pin
400
(peak)
450
(average)
Conversion voltage range
Temperature range -40 85 °C
A
(2)
0
V
REF+
on PF0/1/2/3 fast
External resistance on V
AIN
channels
on all other channels
50
on PF0/1/2/3 fast
Internal sample and hold capacitor
channels
16 pF
on all other channels
(3)
(1)
(1)
V
V
V
µA
µA
kΩ
3.6 V
DDA
2.4 V
DDA
channels
on all other
0.320 16 MHz
0.320 8 MHz
f
ADC
f
CONV
ADC sampling clock frequency
12-bit conversion rate
2.4 V≤ V without zooming
1.8 VV
with zooming
V
on PF0/1/2/3 fast
AIN
V
AIN
channels
f
TRIG
t
LAT
External trigger frequency
External trigger latency 3.5 1/f
96/103 Doc ID 023337 Rev 1
1
760
(3)(4)
(3)(4)
t
conv
MHz
kHz
1/f
ADC
SYSCLK
STM8L052R8 Electrical parameters
Table 44. ADC1 characteristics (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
V
PF0/1/2/3 fast
t
S
t
conv
t
WKUP
t
IDLE
t
VREFINT
Sampling time
12-bit conversion time
Wakeup time from OFF state
Time before a new
(5)
conversion
Internal reference voltage startup time
AIN
channels
< 2.4 V
V
DDA
PF0/1/2/3 fast
V
AIN
channels
DDA
3.6 V
DDA
< 2.4 V
3.6 V
DDA
2.4 V V
on slow channels
V
AIN
V
V
on slow channels
AIN
2.4 V V
16 MHz 1
0.43
0.22
0.86
0.41
(3)(4)
(3)(4)
(3)(4)
(3)(4)
12 + t
(3)
S
µs
µs
µs
µs
1/f
ADC
µs
s
s
refer to
Ta bl e 4 3
ms
1. The current consumption through V
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps
2. V
3. Minimum sampling and conversion time is reached for maximum R
4. Value obtained for continuous conversion on fast channel.
5. The time between 2 conversions, or between ADC ON and the first conversion must be lower than t
must be tied to ground.
REF-
is composed of two parameters:
REF
= 0.5 kΩ..
AIN
IDLE.
Doc ID 023337 Rev 1 97/103
Electrical parameters STM8L052R8
In the following three tables, data are guaranteed by characterization result, not tested in production.
Table 45. ADC1 accuracy with V
Symbol Parameter Conditions Typ. Max. Unit
DNL Differential non linearity
INL Integral non linearity
TUE Total unadjusted error
Offset Offset error
Gain Gain error
= 3.3 V to 2.5 V
DDA
= 16 MHz 1 1.6
f
ADC
f
= 8 MHz 1 1.6
ADC
= 4 MHz 1 1.5
f
ADC
= 16 MHz 1.2 2
f
ADC
f
= 8 MHz 1.2 1.8
ADC
= 4 MHz 1.2 1.7
f
ADC
= 16 MHz 2.2 3.0
f
ADC
f
= 8 MHz 1.8 2.5
ADC
= 4 MHz 1.8 2.3
f
ADC
f
= 16 MHz 1.5 2
ADC
= 8 MHz 1 1.5
f
ADC
= 4 MHz 0.7 1.2
f
ADC
f
= 16 MHz
ADC
= 8 MHz
ADC
= 4 MHz
f
ADC
LSB
LSB
11.5f
Table 46. ADC1 accuracy with V
Symbol Parameter Typ. Max. Unit
DNL Differential non linearity 1 2 LSB
INL Integral non linearity 1.7 3 LSB
TUE Total unadjusted error 2 4 LSB
Offset Offset error 1 2 LSB
Gain Gain error 1.5 3 LSB
Table 47. ADC1 accuracy with V
Symbol Parameter Typ. Max. Unit
DNL Differential non linearity 1 2 LSB
INL Integral non linearity 2 3 LSB
TUE Total unadjusted error 3 5 LSB
Offset Offset error 2 3 LSB
Gain Gain error 2 3 LSB
= 2.4 V to 3.6 V
DDA
= V
DDA
REF+
= 1.8 V to 2.4 V
98/103 Doc ID 023337 Rev 1
STM8L052R8 Electrical parameters
E
O
E
G
1LSB
IDEAL
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
E
T
=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
E
O
=Offset Error: deviation between the first actual
transition and the first ideal one.
E
G
=Gain Error: deviation between the last ideal
transition and the last actual one.
E
D
=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
E
L
=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567
4093 4094 4095 4096
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
ai14395b
V
REF+
4096
(or depending on package)]
V
DDA
4096
[1LSB
IDEAL =
ai17090e
STM8L05xxx
V
DD
AINx
IL±50 nA
0.6 V
V
T
R
AIN
(1)
C
parasitic
V
AIN
0.6 V
V
T
R
ADC
C
ADC
(1)
12-bit
converter
Sample and hold ADC converter
Figure 37. ADC1 accuracy characteristics
Figure 38. Typical connection diagram using the ADC
1. Refer to Ta b le 4 4 for the values of R
2. C
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
pad capacitance (roughly 7 pF). A high C this, f
should be reduced.
ADC
AIN
and C
parasitic
.
ADC
value will downgrade conversion accuracy. To remedy
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 39 or Figure 40, depending on whether V
is connected to V
REF+
or not. Good quality ceramic 10 nF
DDA
capacitors should be used. They should be placed as close as possible to the chip.
Doc ID 023337 Rev 1 99/103
Electrical parameters STM8L052R8
V
REF+
S
STM8L
V
DDA
V
SSA/VREF-
1 μF // 10 nF
F
1 μF // 10 nF
Supply
External
reference
ai17031b
V
REF+/VDDA
STM8L
1 μF // 10 nF
V
REF–/VSSA
ai17032b
Supply
Figure 39. Power supply and reference decoupling (V
// 10 n
Figure 40. Power supply and reference decoupling (V
not connected to V
REF+
TM8L
connected to V
REF+
DDA
DDA
)
)
100/103 Doc ID 023337 Rev 1
Loading...