ST STM32L073Z-EVAL User Manual

Page 1
Introduction
UM1878
User manual
Evaluation board with STM32L073VZ MCU
The STM32L073Z-EVAL evaluation board is designed as a complete demonstration and development platform for the STMicroelectronics Arm STM32L073VZT6 microcontroller with three I interfaces, one UART interface, 12-bit ADC and DAC, LCD driver, up to 192-Kbyte Flash memory, 20-Kbyte RAM, 6-Kbyte EEPROM, touch sensing, USB OTG FS, LCD controller, SWD debugging support. This evaluation board can be used as reference design for user application development but is not considered as a final application.
The full range of hardware features on the board help the user to evaluate all peripherals (USB OTG FS, USART, 12-bit ADC and DAC, color TFT LCD, LCD glass, low-power UART, IrDA, microSD™ card, touch sensing slider, pressure measurement, temperature measurement, LC sensor metering) and develop his applications. The extension headers offer the possibility to connect a daughterboard or a wrapping board for a specific application.
An embedded ST-LINK/V2-1 debugger facilitates the software development and the programming of the STM32L073VZT6 microcontroller.

Figure 1. STM32L073Z-EVAL evaluation board

2
C buses, two SPI interfaces, four USART
Cortex®-M0+ core-based
Picture is not contractual.
May 2018 UM1878 Rev 2 1/64
www.st.com
1
Page 2
Contents UM1878
Contents
1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Product marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Development toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Demonstration software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Hardware layout and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.1 Embedded ST-LINK/V2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
7.1.1 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.1.2 ST-LINK/V2-1 firmware upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.2 SWD connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3.1 Adjustable power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.4 Clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.5 Reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.6 Boot option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.7 USB FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.7.1 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.8 SMBus temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.8.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.8.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.9 RS-232 USART2 and IrDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.9.1 RS-232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.9.2 IrDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.9.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.9.4 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.10 RS-232 LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.10.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/64 UM1878 Rev 2
Page 3
UM1878 Contents
7.10.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.11 Virtual Com Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.11.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.11.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.12 MicroSD card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.12.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.12.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.13 Analog input ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.13.1 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.14 Analog output DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.14.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.14.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.15 TFT LCD display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.15.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.15.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.16 User LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.17 Input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.18 RF-EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.19 LCD glass display module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.19.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.20 LC sensor metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.20.1 LC sensor metering principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.20.2 LC sensor metering description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.20.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.21 Pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.21.1 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.21.2 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.21.3 Pressure computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.21.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.21.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.21.6 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.22 Touch sensing slider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.22.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.23 Extension connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.24 IDD auto-measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
UM1878 Rev 2 3/64
4
Page 4
Contents UM1878
7.24.1 Analog section description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.24.2 Difference amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.24.3 Digital section description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.1 RS-232 connector CN6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Power connector CN18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.3 LCD glass daughterboard connectors CN10 and CN14 . . . . . . . . . . . . . 45
8.4 ST-LINK/V2-1 programming connector CN15 . . . . . . . . . . . . . . . . . . . . . 46
8.5 ST-LINK/V2-1 USB Type B connector CN17 . . . . . . . . . . . . . . . . . . . . . . 46
8.6 SWD connector CN12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.7 Trace debugging connector CN11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.8 MicroSD connector CN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.9 RF-EEPROM daughterboard connector CN3 . . . . . . . . . . . . . . . . . . . . . 49
Appendix A Electrical schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Appendix B Mechanical dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4/64 UM1878 Rev 2
Page 5
UM1878 List of tables
List of tables
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Power related jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. 32.768 KHz crystal X2 solder bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. 8 MHz crystal X1 solder bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Boot related switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 6. Boot related jumper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Temperature sensor related solder bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 8. RS-232 and IrDA jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9. MicroSD connector CN13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. Analog input related jumper JP2 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. TFT LCD connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. User LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. Input devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14. LCD glass segments 21 to 28 mapping table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 15. LCD glass segments 0 and 29 to 39 mapping table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 16. LCD glass segments 1 to 8, 15, 18 to 20 mapping table . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 17. LCD glass segments 9 to 14, 16, 17 mapping table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 18. LCD glass related jumpers and solder bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 19. Solder bridges and jumpers for LC sensor metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 20. Sensor differential voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 21. Differential voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 22. Single output voltage to the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 23. Touch sensing related solder bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 24. Extension connectors pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 25. IDD auto-measurement related jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 26. RS-232 connector CN6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 27. LCD glass daughterboard connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 28. USB type B connector CN17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 29. SWD debugging connector CN12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 30. Trace debugging connector CN11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 31. MicroSD connector CN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 32. RF-EEPROM daughterboard connector CN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 33. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
UM1878 Rev 2 5/64
5
Page 6
List of figures UM1878
List of figures
Figure 1. STM32L073Z-EVAL evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Hardware block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. STM32L073Z-EVAL evaluation board (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. USB Composite device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. Pin-out of 5 V DC adapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 6. Location of ADC input connector CN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7. Provision for filter implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 8. Location of DAC output CN3 and JP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9. Provision for filter implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 10. LCD glass board in LCD position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 11. LCD glass board in IO position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12. LCD segment names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13. Functional block diagram of LC sensor metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 14. LC sensor metering schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 15. Differential amplifier with offset correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 16. Solder bridges settings to enable the touch slider (red = closed, green = opened) . . . . . . 39
Figure 17. Figure: analog section schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 18. Difference amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 19. Digital section schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 20. RS-232 connector CN6 (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 21. Power supply connector CN18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 22. USB type B connector CN17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 23. Trace debugging connector CN12 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 24. Trace debugging connector CN11 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 25. MicroSD connector CN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 26. RF-EEPROM daughterboard connector CN3 (front view) . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 27. STM32L073Z-EVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 28. MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 29. LCD glass external connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 30. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 31. Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 32. TFT microSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 33. USART_LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 34. Pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 35. LC sensor metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 36. IDD measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 37. SWD, Touch, USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 38. ST-LINK/V2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 39. Mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6/64 UM1878 Rev 2
Page 7
UM1878 Features

1 Features

STM32L073VZT6 ultra-low-power Arm
®(a)
Cortex® core-based microcontroller
featuring 192 Kbytes of Flash memory and 20 Kbytes of RAM in LQFP100 package
Four 5 V power supply options: power jack, ST-LINK USB connector, user USB FS connector, or daughterboard
Selectable MCU voltage: 3.3 V or adjustable from 1.7 V to 3.6 V
2.8-inch color TFT LCD with resistive touchscreen
LCD glass 40 x 8 segments
On-board current measurement
IrDA transceiver
Pressure sensor
LC sensor metering
Touch-sensing linear sensor
User and reset push-buttons
4-direction joystick with selection button
Board connectors:
2 RS-232 with DB9
USB with Micro-B
microSD™ card interface
Board expansion connectors:
RF-EEPROM daughterboard
Extension connector for daughterboard or wrapping board
On-board ST-LINK/V2-1 debugger/programmer with USB re-enumeration capability: mass storage, virtual COM port and debug port
Comprehensive free software libraries and examples available with the STM32Cube package
Support of a wide choice of integrated development environments (IDEs), including IAR™, Keil
and GCC-based IDEs
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
UM1878 Rev 2 7/64
63
Page 8
Product marking UM1878

2 Product marking

Evaluation tools marked as “ES” or “E” are not yet qualified and are therefore not ready to be used as reference design or in production. Any consequences arising from such usage will not be at STMicroelectronics’ charge. In no event will STMicroelectronics be liable for any customer usage of these engineering sample tools as reference designs or in production.
‘E’ or ‘ES’ marking examples of location:
on the targeted STM32 that is soldered on the board (for illustration of STM32 marking, refer to the section Package information in the STM32 datasheet at www.st.com).
next to the evaluation tool ordering part number, that is stuck or silkscreen printed on the board
This board features a specific STM32 device version, which allows the operation of any bundled commercial stack/library available. This STM32 device shows a "U" marking option at the end of the standard part number and is not available for sales.
In order to use the same commercial stack in his application, a developer may need to purchase a part number specific to this stack/library. The price of those part numbers includes the stack/library royalties.

3 System requirements

Windows® OS (7, 8 and 10), Linux® 64-bit or macOS
USB Type-A to Micro-B cable

4 Development toolchains

Keil® MDK-ARM
IAR™ EWARM
GCC-based IDEs including free SW4STM32 from AC6
(b)
(b)
®(a)
a. macOS® is a trademark of Apple Inc., registered in the U.S. and other countries.
b. On Windows only
8/64 UM1878 Rev 2
Page 9
UM1878 Demonstration software

5 Demonstration software

The demonstration software, included in the STM32Cube MCU Package corresponding to the on-board MCU, is preloaded in the STM32 Flash memory for easy demonstration of the device peripherals in standalone mode. The latest versions of the demonstration source code and associated documentation can be downloaded from www.st.com.

6 Ordering information

To order the STM32L073Z-EVAL Evaluation board, refer to Tab le 1.
Order code Target STM32
STM32L073Z-EVAL STM32L073VZT6

Table 1. Ordering information

UM1878 Rev 2 9/64
63
Page 10
Hardware layout and configuration UM1878
06Y9
*3,2
,&
86$57
6:'
-R\VWLFN
[/('V
:DNH8S7DPSHU
EXWWRQ%
(PEHGGHG
67/,1.9
6:'FRQQHFWRUV
670/=
&RPSDUDWRU
63,
*3,2
86%
86%0LFUR%
FRQQHFWRU
FRORU
/&'
7HPSHUDWXUHVHQVRU
$'&
/&'*ODVV
[
/38$57
76&7RXFK VHQVLQJ VOLGHU
9UHJXODWRU
'$&
$'&LQSXW
60%
$'&ELWV
86$57
*3,2
/37LPHU
/&VHQVRU
'$&
RXWSXW
9LUWXDO
&RP3RUW
86%
7\SH%
FRQQHFWRU
0LFUR6'
FDUG
¶¶
/&'7)7
3UHVVXUH
VHQVRU
56 &RQQHFWRU
56 &RQQHFWRU
56
WUDQVFHLYHU
,U'$
WUDQVFHLYHU
56
WUDQVFHLYHU
'LIIHUHQWLDO
DPSOLILHU
5)((3520 FRQQHFWRU
([WHQVLRQ
&RQQHFWRU
,2
([SDQGRU
9''B86%
 9
UHJXODWRU
WR9
DGMXVWDEOH
UHJXODWRU
0&8
FRQVXPSWLRQ
DXWRPHDVXUHPHQW
([WHQVLRQ
FRQQHFWRUVIRU
*3,2V

7 Hardware layout and configuration

STM32L073Z-EVAL evaluation board is designed around the STM32L073VZT6 (LQFP 100 package). The hardware block between the STM32L073VZT6 and peripherals while Figure 3: STM32L073Z-EVAL
evaluation board (top view) helps the user to locate these features on the actual evaluation
board.

Figure 2. Hardware block diagram

Figure 2: Hardware block diagram illustrates the connections
10/64 UM1878 Rev 2
Page 11
06Y9
/&VHQVRU
&1DQG&1 ([WHQVLRQ
FRQQHFWRUV
&1
8 SUHVVXUH VHQVRU
/6
7RXFK
VOLGHU
&1
5)((3520
8 ,U'$
&1 /38$57
&1DQG
&1
/&'JODVV
FRQQHFWRUV
&1 6:'
&1
6:'
% MR\VWLFN
%
7DPSHUNH\
EXWWRQ
% UHVHW
EXWWRQ
59
9''
DGMXVWPHQW
9ROWDJH
UDQJH /('V
&1 3RZHUMDFN
&1 PLFUR6' FDUG
8
670/=*
&1
86$57
&1
86%27*)6
&1 /&'7)7
-3 9VRXUFH VHOHFWLRQ
6: %RRWPRGH
67/,1.9
FRORU
/('V
UM1878 Hardware layout and configuration

Figure 3. STM32L073Z-EVAL evaluation board (top view)

7.1 Embedded ST-LINK/V2-1

The ST-LINK/V2-1 programming and debugging tool is integrated on the STM32L073Z-EVAL evaluation board. Compared to ST-LINK/V2 the changes are listed below.
UM1878 Rev 2 11/64
63
Page 12
Hardware layout and configuration UM1878
The new features supported on ST-LINK/V2-1 are:
USB software re-enumeration
Virtual com port interface on USB
Mass storage interface on USB
USB power management request for more than 100 mA power on USB
This feature is no more supported on ST-LINK/V2-1:
SWIM interface
For all general information concerning debugging and programming features common between V2 and V2-1 refer to ST-LINK/V2 User Manual UM1075.
Known limitation:
Activating the readout protection on ST-LINK/V2-1 target, prevents the target application from running afterwards. The target readout protection must be kept disabled on ST­LINK/V2-1 boards.
Note: It is possible to power the board via CN17 (Embedded ST-LINK/V2-1 USB connector) even
if an external tool is connected to connectors CN11 or CN12.

7.1.1 Drivers

The ST-LINK/V2-1 requires a dedicated USB driver, which can be found on www.st.com for Windows
In case the STM32L073Z-EVAL evaluation board is connected to the PC before the driver is installed, some STM32L073Z-EVAL interfaces may be declared as “Unknown” in the PC device manager. In this case the user must install the driver files, and update the driver of the connected device from the device manager.
Note: Prefer using the “USB Composite Device” handle for a full recovery.
XP, 7, 8.
Figure 4. USB Composite device

7.1.2 ST-LINK/V2-1 firmware upgrade

The ST-LINK/V2-1 embeds a firmware upgrade mechanism for in-situ upgrade through the USB port. As the firmware may evolve during the life time of the ST-LINK/V2-1 product (for example new functionality, bug fixes, support for new microcontroller families), it is
12/64 UM1878 Rev 2
Page 13
UM1878 Hardware layout and configuration
recommended to visit www.st.com before starting to use the STM32L073Z-EVAL evaluation board and periodically, in order to stay up-to-date with the latest firmware version.

7.2 SWD connectors

Only Serial Wire Debug interface can be used on trace connectors CN11 and CN12. SWDIO, SWCLK and RESET of the microcontroller STM32L073VZT6 are available. The parallel trace and JTAG are not available on the STM32L073VZT6 microcontroller.

7.3 Power supply

STM32L073Z-EVAL evaluation board is designed to be powered by a 5 V DC power supply and to be protected from wrong power plug-in event by PolyZen. It is possible to configure the evaluation board to use any of the following four power supply sources:
a 5 V DC power adapter connected on the board to the power jack CN18, called PSU_E5V on silkscreen. It is selected by a jumper placed in E5V location of JP11. The external power supply does not come with the board but can be ordered separately.
a 5 V DC power with 300 mA limitation from the USB type B connector of ST-LINK/V2-1 CN17 (silkscreen marking (ST-LINK/V2)).Note that only the ST-LINK part is power supplied before the USB enumeration, as the host PC only provides 100 mA to the board at that time. During the USB enumeration, the STM32L073Z-EVAL evaluation board requires 300 mA of current to the host PC. If the host is able to provide the required power, the enumeration ends by a “SetConfiguration” command and then, the power switch ST890 U29 is switched ON, the red LED LD5 is turned ON, thus the evaluation board can consume a maximum of 300 mA current, not more. If the host is not able to provide the required current, the enumeration fails, therefore the power switch U29 remains OFF and the STM32 including its peripherals will not be powered. As a consequence the red LED LD5 remains turned OFF. In such case it is mandatory to use one external power supply connected to power jack CN18. This power switch features also a current limitation to protect the PC in case of short-circuit on board. If overcurrent (more than 600 mA) happens on board, the LED LD10 is lighted on.
5 V DC power with 500 mA limitation from the USB FS connector CN9. This connector is a micro B receptacle with a silkscreen marking on the PCB: USB. This 5 V input is called U5V.
5 V DC power from a customer daughterboard plugged in pin 24 of extension connector CN4. This 5 V input is called D5V.
Note: The 5 V DC power adapter should have the positive polarity at center pin, as shown in
Figure 5: Pin-out of 5 V DC adapter.
UM1878 Rev 2 13/64
63
Page 14
Hardware layout and configuration UM1878
06Y9
hϱs
^d><
ϱs
ϱs
06Y9
hϱs
^d><
ϱs
ϱs
06Y9
hϱs
^d><
ϱs
ϱs

Figure 5. Pin-out of 5 V DC adapter

The power supply selection is done by the jumpers JP11, JP12, JP7, JP4, JP5 and JP13 as described in
Jumper Description
Tabl e 2: Power related jumpers.

Table 2. Power related jumpers

JP11 is used to select one of the four possible power supply sources. To supply STM32L073Z-EVAL only from a 5 V power adapter connected to CN18
(PSU_E5V), set the jumper to E5V location, as following (Default setting):
JP11
To supply STM32L073Z-EVAL only from the USB connector CN9 set the jumper to U5V location, as following:
To supply STM32L073Z-EVAL only from the USB connector CN17 of ST-LINK/V2, set the jumper JP11 to STlk location, as showed in the below figure. In this case, the jumper of ST-LINK JP13 should be opened.
14/64 UM1878 Rev 2
Page 15
UM1878 Hardware layout and configuration
06Y9
hϱs
^d><
ϱs
ϱs
06Y9
06Y9
06Y9

06Y9

Table 2. Power related jumpers (continued)
Jumper Description
To supply both STM32L073Z-EVAL and a daughterboard connected to extension connectors CN4 and CN5, (daughterboard should have its own power supply not connected), set jumpers to E5V and D5V locations, as following:
JP11
JP12
V
DD_MCU
(pins VDD of STM32L073Z) is connected to fixed +3.3 V DC power when
JP12 is set as shown (Default setting):
V
DD_MCU
is connected to the adjustable DC power from 1.65 V to 3.6 V when JP12
is set as shown:
V
DD_MCU
power pin of STM32L073Z is connected to VDD_MCU when JP7 is set as
shown (Default setting):
JP7
V
DD_MCU
power pin of STM32L073Z is powered by the USB connector CN9 when
JP7 is set as shown here:
UM1878 Rev 2 15/64
63
Page 16
Hardware layout and configuration UM1878
06Y9

([WHUQDOSRZHU
VXSSO\
06Y9
06Y9
06Y9
06Y9
Table 2. Power related jumpers (continued)
Jumper Description
JP7
JP4
V
DD_MCU
power pin of STM32L073Z can be powered externally by an external power supply, providing no jumper is connected to JP7. The external supply can be connected to pin2 of JP7, as shown here:
power pin of STM32L073Z is connected to V
V
DDA
DD_MCU
when JP4 is closed as
shown (default setting):
To measure the current drawn by V
pin of STM32L073Z, remove the jumper of
DDA
JP4 and connect an ampere-meter to JP4, positive terminal to pin 1, negative to pin
2.
V
pin of STM32L073Z is connected to V
REF+
DD_MCU
when JP5 is closed as shown
(default setting):
JP5
To measure the current drawn by V JP5 and connect an ampere-meter to JP5, positive terminal to pin 1, negative to pin
2.
By default JP13 is not connected to let ST-LINK detect automatically if it should
JP13
provide the supply of the board from ST-LINK USB V If JP13 is connected, ST-LINK will never supply the evaluation board from ST-LINK
USB.
The red LED LD5 is on when the board STM32L073Z-EVAL is powered correctly by the 5 V.

7.3.1 Adjustable power supply

As detailed above the STM32L073VZT6 microcontroller can be supplied by a variable voltage when pins 2 and 3 of JP12 are connected by a jumper. Use the potentiometer RV1
16/64 UM1878 Rev 2
pin of STM32L073Z, remove the jumper of
REF+
(default setting).
BUS
Page 17
UM1878 Hardware layout and configuration
to adjust the voltage from 1.65 V to 3.6 V. The three LEDs LD7, LD8, LD9 warn the user that voltage is below 1.7
V or above 1.8 V.

7.4 Clock source

Two clock sources are available for the microcontroller STM32L073VZT6 on the evaluation board STM32L073Z-EVAL:
The 32.768 KHz crystal X2 for embedded RTC
The 8 MHz crystal X1 8 MHz with a socket. It can be removed when the internal RC
clock is used.
Solder bridge Description
Open (default setting) PC14 is connected to the crystal X2.
SB27
closed
Open (default setting) PC15 is connected to 32 KHz crystal.

Table 3. 32.768 KHz crystal X2 solder bridges

PC14 is connected to pin11 of extension connector CN5. In such case R49 must be removed to avoid disturbance due to the 32Khz quartz X2.
SB26
closed
Solder bridge Description
Open (default setting) PH0 is connected to 8 MHz crystal X1.
SB25
closed
Open (default setting) PH1 is connected to 8 MHz crystal X1.
SB23
closed

7.5 Reset sources

The RESET signal of STM32L073Z-EVAL evaluation board is active low.
PC15 is connected to pin 12 of extension connector CN5. In such case R48 must be removed to avoid disturbance due to the 32Khz quartz X2.

Table 4. 8 MHz crystal X1 solder bridges

PH0 is connected to pin 8 of extension connector CN5. In such case X1 and C27 must be removed to avoid disturbance due to the crystal.
PH1 is connected to pin 7 of extension connector CN5. In such case R342 must be removed to avoid disturbance due to the crystal.
UM1878 Rev 2 17/64
63
Page 18
Hardware layout and configuration UM1878
Sources of reset are:
Reset button B1
Debugging tools from SWD connectors CN12 and CN11.
From a daughterboard connected to extension connectors, RESET is pin 24 of
connector CN5.
Embedded ST-LINK/V2-1
RS-232 connector CN6 for ISP. Jumper JP6 should be closed for RESET to be handled
by pin 8 of RS-232 connector CN6 (CTS signal).

7.6 Boot option

After reset, the STM32L073VZT6 MCU can boot from the following embedded memory locations:
User Flash memory
System Flash memory
Embedded RAM (for debugging)
The microcontroller is configured to one of the listed boot options by setting the STM32L073VZT6 port BOOT0 level by the switch SW1 and by setting nBOOT1 bit of FLASH_OPTR option bytes register, as shown in can be forced to high and, SW1 action overruled, by DSR line of RS-232 connector CN6, as shown in
Tabl e 6: Boot related jumper. This can be used to force the execution of the
bootloader and start user Flash memory flashing process (ISP) from RS-232 interface. The option bytes of STM32L073VZT6 and their modification procedure are described in the reference manual RM0367. STM32 microcontroller system memory boot mode Application Note (AN2606) details the bootloader mechanism and configurations.

Table 5. Boot related switch

Tab le 5. Depending on JP3, BOOT0 level
Switch Description
STM32L073Z-EVAL evaluation board boots from User Flash. BOOT0 pin is tied to “Low”.
(default setting)
SW1
STM32L073VZT6 boots from system Flash memory (nBOOT1 bit of FLASH_OPTR register is set high) or from RAM (nBOOT1 is set low). BOOT0 pin is tied to "high".
18/64 UM1878 Rev 2
Page 19
UM1878 Hardware layout and configuration
Jumper Description
jumper not fitted (default
JP3
setting)
Jumper fitted

7.7 USB FS

STM32L073Z-EVAL evaluation board supports USB2.0 FS communication. The USB connector is the micro-B type connector CN9.
The USB functionality is independent of LCD glass connectors.
STM32L073VZT6 ports PA11 and PA12 are used for the USB DM and DP signals respectively. In case PA11 and PA12 are not used for USB, it can be accessed for another usage by the extension connector CN4, providing resistors R69 and R70 are removed.

Table 6. Boot related jumper

By default, BOOT0 is only controlled by switch SW1.
BOOT0 can be forced high with terminal 6 of CN6 connector (RS-232 DSR line). This configuration is used to allow the device connected via RS-232 to initiate STM32L073VZT6 flashing process.
USB section of the micro-controller STM32L073VZT6 V
3.6
V internally or externally through jumper JP7. Refer to Section 7.3: Power supply for
more details regarding JP7 use.

7.7.1 Operating voltage

If V
DD_USB
and 2 should be connected, please refer to Section 7.3: Power supply for more details.
If V
DD_USB
the voltage range: 1.65 V to 3.6 V.
is supplied from VDD: USB is working typically with V
is supplied from USB (U5V voltage), STM32L073Z-EVAL is functional in all

7.8 SMBus temperature sensor

A temperature sensor STLM75M2F is connected to I2C1 bus and to the SMBus of the microcontroller STM32L073VZT6.
The I2C address of temperature sensor is by default 0x92 with address pin A0 set to 1 by the closed solder bridge SB4.
By opening SB4 it is possible to change the temperature sensor address into 0x90.
DD_USB
must be supplied with 3.0 to
> 3.0 V. JP7 pins 1
DD
UM1878 Rev 2 19/64
63
Page 20
Hardware layout and configuration UM1878
Solder bridge Description
Closed
(default setting)
SB4
Open Temperature sensor

Table 7. Temperature sensor related solder bridge

To enable SMBus functionality, the LCD glass module has to be mounted on “IO” position.
However, if the LCD glass is used and then mounted on “LCD” position, it is still possible to use the temperature sensor through the I used for SMBus is used for LCD glass.
Refer to Section 7.19: LCD glass display module for more details.

7.8.1 Limitations

The temperature sensor INT signal of SMBus is exclusive with LCD glass.

7.8.2 Operating voltage

The operating voltage of temperature sensor STLM75M2F is 2.7 to 3.6 V.
Temperature sensor
I2C address set to 0x92.
I2C address set to 0x90.
2
C bus without SMBus because PB5 previously

7.9 RS-232 USART2 and IrDA

7.9.1 RS-232

The evaluation board STM32L073Z-EVAL offers an RS-232 communication port at the DB9 male connector CN6. The signals RX, TX, RTS and CTS from USART2 of STM32L073VZT6 are available.
Signals Bootloader_RESET and Bootloader_BOOT0 can be added on RS-232 connector CN6 for ISP support. To use Bootloader_RESET, resistor R63 must be removed and jumper JP6 must be closed. If Bootloader_BOOT0 is used, the jumper JP3 must be closed.
For jumpers settings refer to the Table 8: RS-232 and IrDA jumper settings.

7.9.2 IrDA

The evaluation board STM32L073Z-EVAL is offering an IrDA communication thanks to the IrDA transceiver U14 located in the middle of left side of the board. Jumpers settings are described inside the below table.
20/64 UM1878 Rev 2
Page 21
UM1878 Hardware layout and configuration
06Y9

06Y9

Jumpers and resistors Description
2 and 3 connected
JP9
(default setting)
1 and 2 connected
Table 8. RS-232 and IrDA jumper settings
RS-232 use: DB9 connector CN9 RXD signal is connected to PD6 of STM32L073VZT6
used as USART2 RX.
IrDA use: RxD pin of IrDA transceiver U14 is connected to PD6 of STM32L073VZT6
used as IrDA Rx.

7.9.3 Limitations

RS-232 from USART2 and IrDA are exclusive.

7.9.4 Operating voltage

RS-232 from USART2 and IrDA are operating on the whole VDD voltage range: 1.65 V to
3.6
V.

7.10 RS-232 LPUART

LPUART signals RX, TX, RTS, CTS are available at DB9 connector CN7 located on the right side of the board. The LPUART can be used on the whole voltage range of V because level shifters are used.

7.10.1 Limitations

LPUART is exclusive with LCD glass. LCD glass module should be mounted in I/O position.

7.10.2 Operating voltage

LPUART is operating over the whole VDD range (1.65 V to 3.6 V).

7.11 Virtual Com Port

RX and TX of USART4 are available in a USB Virtual Com Port managed by the ST­LINK/V2-1. The USB connector of ST-LINK/V2-1 is CN17. Virtual Com Port can be used over the whole operating voltage range of the microcontroller because level shifters are used.
DD
UM1878 Rev 2 21/64
63
Page 22
Hardware layout and configuration UM1878
By default, the serial communication settings are: 115200b/s, 8bits, no parity, 1 stop bit, no flow control.

7.11.1 Limitations

No limitation.

7.11.2 Operating voltage

The Virtual Com Port is operating over the whole VDD range: 1.65 V to 3.6 V.

7.12 MicroSD card

A 4-Gbyte microSD card can be plugged into the connector CN13, located at the left side of the board. It communicates with the microcontroller STM32L073VZT6 using the SPI1 port. The card detection switch is connected to the GPIO expander MFX, part U25.
Level shifters insure functionality of microSD card over the whole voltage range.

Table 9. MicroSD connector CN13

Pin
number
1NC 6 GND
2 MicroSD_CS (PD0) 7 SPI_MISO (PE14)
3 SPI_MOSI (PE15) 8 NC
4+3V3 9 GND
5 SPI_CLK (PE13) 10
Description

7.12.1 Limitations

With V
If V
> 2.7 V the SPI clock can be at maximum speed: 16 MHz.
DD
< 2.7 V the SPI clock should be 8 MHz maximum.
DD

7.12.2 Operating voltage

STM32L073Z-EVAL evaluation board Micro SD card is operating over whole range of VDD:
1.65
V to 3.6 V.

7.13 Analog input ADC

Pin
number
Description
MicroSDcard_detect (to expander MFX)
The analog input ADC_IN5 (port PA5) of the microcontroller STM32L073VZT6 is available at connector CN2. It is located below right to the touch sensing slider LS1. The 2-pin connector CN2 allows connection of a GND reference to the left pin of CN2, and the voltage to be converted is connected to the right pin of CN2.
22/64 UM1878 Rev 2
Page 23
UM1878 Hardware layout and configuration
06Y9
*1'
$'&B,1

Figure 6. Location of ADC input connector CN2

A low pass filter can be implemented for the ADC input by replacing R7 and C2 by appropriate values depending on the application.

Figure 7. Provision for filter implementation

As the port PA5 can be used also a DAC output, the STM32L073Z-EVAL evaluation board gives also provision to build an output filter structure by replacing R8 and C2 by appropriate values.
Note that V by the ADC. In general case, V
pin must be connected to a reference voltage to allow a proper conversion
REF+
is connected to V
REF
DD_MCU
, then jumper JP5 should be
closed.
UM1878 Rev 2 23/64
63
Page 24
Hardware layout and configuration UM1878
06Y9
*1'
'$&B287
-3

7.13.1 Operating voltage

ADC input is operational with VDD >1.8 V.

7.14 Analog output DAC

The analog output DAC_OUT1 (port PA4) of microcontroller STM32L073VZT6 is available at connector CN3 located below the touch sensing slider as shown below. The left pin of CN3 is the connection of GND reference, and right pin is DAC output voltage. As PA4 is also used by LC sensor metering, pins 1 and 2 of the selection jumper JP2 should be closed.

Figure 8. Location of DAC output CN3 and JP2

24/64 UM1878 Rev 2
Page 25
UM1878 Hardware layout and configuration
06Y9

06Y9

Jumpers and resistors Description
2 and 3 connected
JP2
(default setting)
1 and 2 connected

Table 10. Analog input related jumper JP2 settings

LC sensor metering use:
PA4 is connected to the capacitor C59 to filter the DAC_OUT1 voltage for LC sensor metering. DAC_OUT1 is connected internally to the inverting input of the internal comparator Comp2 (refer to Section 7.20.1: LC sensor
metering principle for more details).
DAC output DAC_OUT1 use:
PA4 is connected to CN3 connector to be used as a DAC Output.
A low pass filter can be implemented for the DAC output by replacing R29 and C15 by appropriate values depending on the application.

Figure 9. Provision for filter implementation

As the port PA4 can be used also as ADC input IN4, the STM32L073Z-EVAL evaluation board gives also provision to build an input filter structure by replacing R28 and C15 by appropriate values.
Please note that V conversion by the ADC and the DAC. In general case, V
pin must be connected to a reference voltage to allow a proper
REF+
is connected to V
REF+
DD_MCU
, then
jumper JP5 should be closed.

7.14.1 Limitations

DAC Output is exclusive with LC sensor metering.

7.14.2 Operating voltage

DAC output is operational with VDD >1.8 V.
UM1878 Rev 2 25/64
63
Page 26
Hardware layout and configuration UM1878

7.15 TFT LCD display

The 2.4” color TFT LCD is connected to SPI1 port of STM32L073VZT6. The LCD TFT module is the MB895/S.
Pin Description Pin connection Pin Description Pin connection

Table 11. TFT LCD connector

2.4” TFT LCD connector CN16
1 CS PE10 9
2 SCL PE13 10 VCI 3.3V
3 SDI PE15 11 GND GND
4RS - 12GND GND
5 WR - 13 BL_VDD 5V
6 RD - 14 BL_Control 5V
7 SDO PE14 15 BL_GND GND
8 RESET RESET# 16 BL_GND GND
Voltage translators are implemented on SPI bus between the microcontroller STM32L073VZT6 and LCD module to allow the LCD to be functional over the whole voltage range of the microcontroller. A bidirectional voltage translator is used on SPI_MOSI PE15 because the LCD module has a specific mode in which it may send back information on this line. The direction of this voltage translator is controlled by SPI_MOSI_DIR PH9. PE15 is working as MOSI when PH9 is high or as MISO when PH9 is LOW.

7.15.1 Limitations

No exclusivity.

7.15.2 Operating voltage

V
DD
3.3V
The whole operating range of STM32L073VZT6 is: 1.65 V to 3.6 V.

7.16 User LEDs

Four general purpose color LEDs (LD 1, 2, 3, 4) are available as display devices.
User LEDs Pin used comment
LED LD1 (Green) PE4 “low” = LED lighted
LED LD2 (Orange) PE5 “low” = LED lighted
LED LD3 (Red) PD1 “low” = LED lighted
LED LD4 (Blue) PE7 “low” = LED lighted
26/64 UM1878 Rev 2

Table 12. User LEDs

Page 27
UM1878 Hardware layout and configuration

7.17 Input devices

The 4-direction joystick B3 with selection, Wake-up/ Tamper button B2, Reset button B1 are available as input devices.
Input devices Pin used Circuit
Joystick SEL GPIO0 MFX U25
Joystick DOWN GPIO1 MFX U25
Joystick LEFT GPIO2 MFX U25
Joystick RIGHT GPIO3 MFX U25
Joystick UP GPIO4 MFX U25
Wake-up/ Tamper button B2 PC13 STM32L073VZT6 U5
RESET B1 NRST STM32L073VZT6 U5

Table 13. Input devices

7.18 RF-EEPROM

An RF-EEPROM daughterboard MB1020 A02 can be plugged into connector CN1 of the STM32L073Z-EVAL evaluation board. The connector CN1 is located at the top left corner of the board. The RF-EEPROM can be accessed by the microcontroller via the I2C1 bus.
The I2C address of the RF-EEPROM module MB1020 A02 is 0xA6.
CN1 can be used also as an I2C extension connector offering SDA and SCL from I2C1 bus, GND at pins 1, 3, 7 respectively.

7.19 LCD glass display module

A LCD glass module daughterboard (MB979) is mounted in the connectors CN10 and CN14 of the STM32L073Z-EVAL evaluation board. It can be connected to the LCD driver pins of the STM32L073VZT6 or work as a set of jumpers to route the microcontroller pins for another usage, depending on the position:
When LCD glass module is mounted in LCD position, the LCD glass display is connected to the LCD driver pins of the STM32L073VZT6 and all peripherals shared with LCD glass are disconnected. See Figure 10: LCD glass board in LCD position
When LCD glass module is mounted in IO position, all peripherals shared with the LCD glass are connected to the STM32L073VZT6 and the LCD glass is disconnected. See
Figure 11: LCD glass board in IO position.
When LCD glass module is not plugged in, the connectors CN10 and CN14 give access to ports of the microcontroller. Refer to Figure 3: STM32L073Z-EVAL
evaluation board (top view) for more details.
UM1878 Rev 2 27/64
63
Page 28
Hardware layout and configuration UM1878

Figure 10. LCD glass board in LCD position

Figure 11. LCD glass board in IO position

The custom LCD glass module used on MB979 daughterboard is XHO5002B. The signal mapping of each LCD segment is detailed in following table (rows are LCD_COMx, columns LCD_SEGy, with x comprised between 0 and 7, y from 0 to 39):
SEG 21 22 23 24 25 26 27 28
COM7 1g 2g 3g 4g 5g 6g 7g 8g
COM6 1h 2h 3h 4h 5h 6h 7h 8h
COM5 1i 2i 3i 4i 5i 6i 7i 8i
COM4 1j 2j 3j 4j 5j 6j 7j 8j
COM3 1d 2d 3d 4d 5d 6d 7d 8d
COM2 1c 2c 3c 4c 5c 6c 7c 8c
COM0 1e 2e 3e 4e 5e 6e 7e 8e
COM1 1f 2f 3f 4f 5f 6f 7f 8f
28/64 UM1878 Rev 2

Table 14. LCD glass segments 21 to 28 mapping table

Page 29
UM1878 Hardware layout and configuration

Table 15. LCD glass segments 0 and 29 to 39 mapping table

SEG 29 30 31 32 33 34 35 36 37 38 39 0
COM7 9g 10g 11g 12g 13g 14g 15g 16g 17g 18g 19g 5J
COM6 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 5C
COM5 9i 10i 11i 12i 13i 14i 15i 16i 17i 18i 19i 5B
COM4 9j 10j 11j 12j 13j 14j 15j 16j 17j 18j 19j 5I
COM3 9d 10d 11d 12d 13d 14d 15d 16d 17d 18d 19d 13a
COM2 9c 10c 11c 12c 13c 14c 15c 16c 17c 18c 19c 13b
COM0 9e 10e 11e 12e 13e 14e 15e 16e 17e 18e 19e O1
COM1 9f 10f 11f 12f 13f 14f 15f 16f 17f 18f 19f O2

Table 16. LCD glass segments 1 to 8, 15, 18 to 20 mapping table

SEG67834512 18 19 20 15
COM7 7J 7N 7E 6J 6N 6E 5N 5E 4J 4N 4E 3J
COM6 7C 7M P6 6C 6M P5 5M P4 4C 4M P3 3C
COM5 7B 7H 7F 6B 6H 6F 5H 5F 4B 4H 4F 3B
COM4 7I 7A 7G 6I 6A 6G 5A 5G 4I 4A 4G 3I
COM3 19a 18a 17a 16a 15a 14a 12a 11a 10a 9a 8a 7a
COM2 19b 18b 17b 16b 15b 14b 12b 11b 10b 9b 8b 7b
COM0S 7DQ6O46DQ55DQA 4D Q3C4
COM1 nA 7K 7L O3 6K 6L 5K 5L mA 4K 4L C3

Table 17. LCD glass segments 9 to 14, 16, 17 mapping table

SEG 16 17 12 13 14 9 10 11
COM7 3N 3E 2J 2N 2E 1J 1N 1E
COM6 3M P2 2C 2M P1 1C 1M +
COM5 3H 3F 2B 2H 2F 1B 1H 1F
COM4 3A 3G 2I 2A 2G 1I 1A 1G
COM3 6a 5a 4a 3a 2a 1a S3 S1
COM2 6b 5b 4b 3b 2b 1b S4 S2
COM0 3D Q2 C1 2D Q1 S5 1D -
COM1 3K 3L C2 2K 2L S6 1K 1L
UM1878 Rev 2 29/64
63
Page 30
Hardware layout and configuration UM1878
06Y9
06Y9

Figure 12. LCD segment names

Jumpers, solder
bridges, resistors
JP8 closed
SB29, SB30
JP8, SB29, SB30
closed
(default setting)
JP8 closed
SB29, SB30 opened
SB31 closed, R67 soldered, SB32 opened,
SB31, R67,
SB33 opened
(default setting)
SB32, SB33
SB31 opened, R67 removed, SB32 closed, SB33 closed

Table 18. LCD glass related jumpers and solder bridges

Description
The LC network (L2 or L3, and C40) on STM32L073Z-EVAL is used for LC sensor metering. Nothing is connected to connector CN8.
An external LC network on STM32L073Z-EVAL can be connected to connector CN8 for LC sensor metering.
V
The operational amplifier U9 TSV611ILT is used to generate the
The operational amplifier U9 TSV611ILT is used to generate the
DD
V
DD
/2 voltage.
/2 voltage.
30/64 UM1878 Rev 2
Page 31
UM1878 Hardware layout and configuration

06Y9

06Y9
Table 18. LCD glass related jumpers and solder bridges (continued)
Jumpers, solder
bridges, resistors
JP1, JP15, JP17, JP2: 2,3 closed
JP14, JP16, JP18: opened
JP1, JP2, JP14, JP15, JP16, JP17, JP18
JP1, JP15, JP17, JP2: 1,2 closed
JP14, JP16, JP18: opened
Description
LC sensor metering is used, exclusive with LCD glass and DAC output. JP1, JP15, JP17 with pins 2 and 3 closed: ports PA7, PB4, PC0 are used for LC sensor
metering signals: DET_COMP2_OUT, DET_COMP2_INP, DET_LPTIM_CH1 respectively.
JP2 with pins 2 and 3 closed: port PA4 is used for LC sensor metering signal DET_DAC_OUT1
JP14, JP16, JP18 opened: reserved use.
LCD glass is used, DAC output on CN3 is used, both are exclusive with LCD glass JP1, JP15, JP17 with pins 1 and 2 closed: ports PA7, PB4, PC0 are used for LCD
glass: LCDSEG4, LCDSEG8 and LCDSEG18 respectively. JP2 with pins 1 and 2 closed: port PA4 is used for DAC output connector CN3, signal
DAC_OUT1.
JP14, JP16, JP18 opened: reserved use.

7.19.1 Limitations

LCD glass is exclusive with LPUART, LC sensor metering, temperature sensor INT, EXT RESET.

7.20 LC sensor metering

The LC sensor metering is a metal detector based on a resonating LC network connected to the microcontroller STM32L073VZT6. The STM32L073VZT6 trigs periodically the LC network to initiate self-oscillations. If a non-ferrous metal plate is placed in the magnetic field of the inductor L, the higher loss reduces the number of self-oscillations. Using the comparator and the low-power timer LPTIM embedded inside the microcontroller, it is possible for the software to detect the presence of non-ferrous metal by a lower count of the timer LPTIM.
A small board called Detection Accessory MB1199 is proposed with the evaluation board STM32L073Z-EVAL, to test the LC sensor metering quickly. The copper area to detect is 12
mm by 12 mm wide.
UM1878 Rev 2 31/64
63
Page 32
Hardware layout and configuration UM1878
06Y9
/&VHQVRU
$&YROWDJH *5281'
DQG
'&YROWDJH 9''
)ROORZHU $PSOLILHU
3RZHU&RQWURO
5H
5D
5E
&RPS
*3,2
2XWSXW
IURP'$&B287
/37,0
0LFURFRQWUROOHU670/
3%
3'
*3,2
2XWSXW
'DPSHGRVFLOODWLRQV
FHQWHUHGRQ9''

7.20.1 LC sensor metering principle

Figure 13. Functional block diagram of LC sensor metering
The port PD7 of the microcontroller STM32L073VZT6 is configured in GPIO output to deliver a high state. PD7 is in fact the signal called POWER_CONTROL. It is in charge to provide power supply to the resistor divider Ra, Rb and the follower amplifier based on an operational amplifier. The DC voltage at the output the operational amplifier is approximately VDD/2 as Ra = Rb.
In a second phase, the port PB4 is used in GPIO output to cause a DC current flowing inside the inductor of the LC sensor.
In steady state, the DC current is VDD/2 Re. The inductor stores the electrical energy in his magnetic core.
PB4 is internally disconnected from the GPIO and connected to the positive input of the comparator Comp2 of the microcontroller STM32L073VZT6. The current disruption causes high frequency voltage self-oscillations of the LC resonator circuit. The lower connection of the LC resonator is considered grounded from an AC point of view thanks to the capacitor and the low output impedance of the follower amplifier. Then, the voltage oscillations are
32/64 UM1878 Rev 2
Page 33
UM1878 Hardware layout and configuration
C40 1nF
DET_COMP2_INP
1 2
External LC network
CN8
DET_COMP2_OUT
-
Comp2
STM32L
PB4
PA7
+
R67
0
C57
[N/A]
R59
120
VDD/2 generation
AC ground
LC sensor
Internal comparator 2
CompOut
TP18
VDD/2
TP14
JP8
C46
100pF
C63
1nF
R73 330K
R76 330K
POWER_CONTROL
3
1
2
4
5
Vcc-
Vcc+
U9
TSV631ILT
4
3
2
1
5
Vcc-
Vcc+
U11 TSV911ILT
SB29
Closed by default
SB30
Closed by default
LC_H
LC_L
L3 [N/A)
LC_H
LC_L
L
1
NC
2
NC
3
L
4
NC
8
NC
7
NC
6
NC
5
N
C
N
C
N
C
N
C
N
C
N
C
L2
100uH
Parts placed close to STM32L073
SB33
Open by default
SB32
Open by default
DET_DAC_OUT1
C59 1nF
C47
[N/A]
R64 330K
R54 330K
PA4
PD7
SB31
Closed by defa ult
close to MCU
TP18 located close to MCU pin PA7
DET_LPTIM_CH1
LPTIM input
PC0
C58
100nF
Note *: Sensor inductors L2 or L3 are exclusive.
Using a double PCB footprint.
see note *
see note *
available at port PB4 with a superimposition of a DC voltage of VDD/2 respectively to the ground. After the comparator threshold controlled by the DAC_OUT1 voltage is set properly by a calibration, the comparator will deliver pulses to the Low Power timer LPTIM. LPTIM is in charge to count the number of oscillations.
The value in the counter LPTIM depends directly on the decay time of the oscillations, and therefore to the quality factor of the inductor L.
Finally if a piece of non-ferrous metal is placed in the magnetic field of the inductor, losses increase, reducing the decay time and then it reduces the number of counts in LPTIM. The software can thus detect the presence of a piece of non-ferrous metal by comparing the value of LPTIM timer that is lower with metal presence than without.

7.20.2 LC sensor metering description

The LC sensor metering of STM32L073Z-EVAL evaluation board follows closely the principle described above (see
Figure 14. LC sensor metering schematic
Figure 14).
Comp2 INM inp ut ca n be connected to DAC OUT1 using an intern al switch of the MCU
The LC network used for LC sensor metering is based on the inductor L2 or L3 and the capacitor C40. A double footprint allows to solder inductor L2 or L3 exclusively, the location is called detection on the PCB. The inductor L2 or L3 is called L for sake of simplicity in this description. The POWER_CONTROL PD7 supplies the voltage divider R73, R76 and the low-power operational amplifier TSV631ILT U9 to generate a V of the LC network (refer to
Figure 14: LC sensor metering schematic). From AC voltage
/2 voltage at the LC_L net
DD
point of view, LC_L net is grounded, thanks to the capacitor C46 and the low-output impedance of the operational amplifier.
Another operational amplifier TSV911ILT U11 is available in back-up of U9 with improved output impedance performances over frequency but with a higher operating current.
To store magnetic energy inside the inductor L, the ports PB7 and PB4 should be set in GPIO output mode, with PD7 high, PB4 low. The DC current flowing inside L is V
/2*R59.
DD
After the energy is stored in the inductor L, the port PB4 called DET_COMP2_INP is switched from GPIO output into a positive input of the comparator Comp2. This current disruption inside the inductor L, trigs the self-oscillations of the LC network. The oscillation frequency is typically in the range of 500
UM1878 Rev 2 33/64
KHz to 700 KHz.
63
Page 34
Hardware layout and configuration UM1878
06Y9
06Y9
The threshold of the comparator is the voltage on the negative input of Comp2. It is generated by the DAC_OUT1 connected internally inside the microcontroller. The DAC_OUT1 voltage should be set to a voltage a bit higher to V over V
/2. The port PA4 called DET_DAC_OUT1 connected to internal voltage
DD
/2, typically a few 10 mV
DD
DAC_OUT1 allows the connection to the external capacitor C59 for a more stable threshold voltage.
The port PA7 DET_COMP2_OUT delivers calibrated pulses to the low-power timer input DET_LPTIM_CH1, port PC0.
An external LC network can be used by removing the solder bridges SB29, SB30 and by connecting an external parallel LC network to the connector CN8.
Some solder bridges and jumpers should be set properly to enable the LC sensor metering, refer to
Tab le 19: Solder bridges and jumpers for LC sensor metering:
Table 19. Solder bridges and jumpers for LC sensor metering
Jumpers, solder bridges,
resistors
JP8 closed
JP8, SB29, SB30
SB29, SB30 closed
(default setting)
JP8 closed
SB29, SB30 opened
SB31 closed, R67 soldered, SB32
SB31, R67, SB32, SB33
opened, SB33 opened
(default setting)
SB31 opened, R67 removed, SB32 closed, SB33 closed
Description
The LC network (L2 or L3, and C40) on STM32L073Z-EVAL is used for LC sensor metering. Nothing is connected to connector CN8.
An external LC network on STM32L073Z-EVAL can be connected to connector CN8 for LC sensor metering.
V
The operational amplifier U9 TSV611ILT is used to generate the
The operational amplifier U9 TSV611ILT is used to generate the
DD
V
DD
/2 voltage.
/2 voltage.
34/64 UM1878 Rev 2
Page 35
UM1878 Hardware layout and configuration

06Y9

06Y9
Table 19. Solder bridges and jumpers for LC sensor metering (continued)
Jumpers, solder bridges,
resistors
JP1, JP15, JP17, JP2: 2,3 closed
JP14, JP16, JP18: opened
JP1, JP2, JP14, JP15, JP16, JP17, JP18
(default setting)
JP1, JP15, JP17, JP2: 1,2 closed
JP14, JP16, JP18: opened
Description
LC sensor metering is used, and is exclusive with LCD glass and DAC output. JP1, JP15, JP17 with pins 2 and 3 closed: ports PA7, PB4, PC0 are used for LC
sensor metering signals: DET_COMP2_OUT, DET_COMP2_INP, DET_LPTIM_CH1 respectively.
JP2 with pins 2 and 3 closed: port PA4 is used for LC sensor metering signal DET_DAC_OUT1
JP14, JP16, JP18 opened: reserved use.
LCD glass (without LCDSEG4, LCDSEG8, LCDSEG18) is used, DAC output on CN3 is used, both are exclusive with LCD glass.
JP1, JP15, JP17 with pins 1 and 2 closed: ports PA7, PB4, PC0 are used for LCD glass: LCDSEG4, LCDSEG8, LCDSEG18 respectively.
JP2 with pins 1 and 2 closed: port PA4 is used for DAC output connector CN3, signal DAC_OUT1.
JP14, JP16, JP18 opened: reserved use.

7.20.3 Limitations

LC sensor metering is exclusive with LCD glass and DAC output.
But it is possible to use LCD glass without segments SEG4, SEG8, SEG18 with LC sensor metering with JP1, JP15, JP17, JP2: 1,2 closed.
However, if LCD segments SEG4, SEG8, SEG18 are not used, the LCD glass can be used in such limited manner with LC sensor metering. In that case jumpers JP1, JP15, JP17 and JP2 should have pins 1 and 2 closed.

7.21 Pressure sensor

An absolute pressure sensor with 0 to 1000 HPa measurement range is used.

7.21.1 Calculations

The equivalent schematic of the sensor is a Wheastone bridge with a following differential voltage output considering it is supplied with +3.3
V:
UM1878 Rev 2 35/64
63
Page 36
Hardware layout and configuration UM1878
Pressure Sensor differential voltage
0 HPa 0 mV
800 HPa 10.56 mV
1000 HPa 13.2mV
1200 HPa 15.84 mV
Table 20. Sensor differential voltage
As the proposed pressure measurement targets only barometric use, the sensor is used only in the range from 800 range. Then it leads to use a differential amplifier with offset voltage (see
HPa to 1000 HPa, then the amplification is centered on this
Tabl e 15):
Figure 15. Differential amplifier with offset correction
Following the formula, the differential output voltage (Vo+ - Vo-) versus differential input voltage (V
- Vi-) is:
i+
Vo+- Vo- = [(R1R3 + R1R2 + 2R2R3) / R1R3]* (Vi+ - Vi-) – VDD*R2/R3.
Using R1 = 220, R2 = 47Kohm, R3=27.4Kohm the output differential voltage is:
(V
- V
o+
) = 430* (Vi+ - Vi-) - 1.71*V
o-
DD
It gives the following differential voltages referring to a virtual ground equal to VDD/2 (see
Tab le 21: Differential voltage):
36/64 UM1878 Rev 2
Page 37
UM1878 Hardware layout and configuration
2880 1650()200
6.15mV HPa
---------------------=
Pressure
0 HPa 0 mV Saturated at -V
800 HPa 10.56 mV -1.3V
1000 HPa 13.2mV 0V
1200 HPa 15.84 mV +1.23V
Table 21. Differential voltage
Sensor differential voltage
- Vi-)
(V
i+
Differential V
(Vo+ - Vo-)
out
DD
Finally, in STM32L073Z-EVAL evaluation board, the differential voltage is shifted by a VDD/2 offset and changed in a single voltage by the last unity gain operational amplifier. The output of this amplifier, delivers the single output voltage to the ADC input PA0:
Pressure
0 HPa 0 mV 0V
800 HPa 10.56 mV 0.163V
1000 HPa 13.2mV 1.65V
1200 HPa 15.84 mV +
Table 22. Single output voltage to the ADC
Sensor differential voltage
- Vi-)
(V
i+
Single output voltage
2.88V
ADC input PA0

7.21.2 Errors

Offset error: with 0.1% tolerance resistors, the error is 22.6 mV, then equivalent to 0.4 HPa. Gain error: with 0.1% tolerance resistors, the gain error is roughly 0.2%, at 1000 HPa is
quivalent to 2 HPa. So, errors due to electronic circuitry is around 2.4 HPa at 1000 HPa
e
nd error due to the sensor himself is 6 HPa. Finally the total absolute error is 0.4+2+6 =
a
4 HPa.
8.

7.21.3 Pressure computation

The relation between the atmospheric pressure and the measured voltage is linear. To overcome gain and offset errors, the software of the user may use a calibration. It allows to determine the linear equation between the measured voltage and the atmospheric pressure. The slope of the linear equation is typically:

7.21.4 Filtering

Low pass filtering is mandatory to reduce unwanted noise and also to avoid aliasing, because the ADC will oversample the value to simulate a 16-bit ADC.
UM1878 Rev 2 37/64
63
Page 38
Hardware layout and configuration UM1878
A 1st order low pass with 3 Hz cut-off frequency, is composed of 47 K resistors combined with 1
uF capacitors to feedback the first amplifiers U3A and U3B.

7.21.5 Limitations

No exclusivity.

7.21.6 Operating voltage

Operating voltage is fixed at: +3.3 V

7.22 Touch sensing slider

The STM32L073Z-EVAL evaluation board supports a touch sensing slider based on either RC charging or charge transfer technology. The charge transfer technology is enabled by the default assembly.
The touch sensing slider is connected to PB12, PB0, PA1 and the related charge capacitors are respectively connected to PB13, PB1 and PA2. PC6 and PC7 manage an active shield reducing sensitivity to other signals. The active shield is placed on the internal layer 2, immediately under the slider to eliminate influence from other circuits.
Some rework on solder bridges and resistors is necessary to use touch sensing and it is described in the below
Settings to
Solder
bridges
SB6 Close PB12 Connects the 1st touch sensing zone to PB12.
SB5 Open PB12 Disconnects PB12 from track to LCD glass to avoid disturbances.
SB8 Close PB0 Connects the 2nd touch sensing zone to PB0.
SB14 Open PB0 Disconnects PB0 from track to LCD glass to avoid disturbances.
SB11 Close PA1 Connects the 3rd touch sensing zone to PA1.
SB12 Open PA1 Disconnects PA1 from track to LCD glass to avoid disturbances.
SB17 Close PC6 Connects the shield to PC6.
SB18 Open PC6 Disconnects PC6 from track to LCD glass to avoid disturbances.
SB24 Close PC7 Connects the charge capacitor of shield to PC7.
SB22 Open PC7 Disconnects PC7 from track to LCD glass to avoid disturbances.
SB15 Close PB13 Connects the charge capacitor to PB13.
SB16 Open PB13 Disconnects PB13 from track to LCD glass to avoid disturbances.
enable
touch
sensing
Tabl e 23:

Table 23. Touch sensing related solder bridges

STM32
port
Description
SB7 Close PB1 Connects the charge capacitor to PB1.
SB13 Open PB1 Disconnects PB1 from track to LCD glass to avoid disturbances.
38/64 UM1878 Rev 2
Page 39
UM1878 Hardware layout and configuration
06Y9
Table 23. Touch sensing related solder bridges (continued)
Settings to
Solder
bridges
SB10 Close PA2 Connects the charge capacitor to PA2.
SB9 Open PA2 Disconnects PA2 from track to LCD glass to avoid disturbances.
enable
touch
sensing
STM32
port
Description

Figure 16. Solder bridges settings to enable the touch slider (red = closed, green = opened)

7.22.1 Limitations

Touch sensing slider is exclusive with LCD glass.

7.23 Extension connectors

Two 2.54 mm pitch headers CN4 and CN5 called “extension connectors” are intended to connect an external board to the STM32L073Z-EVAL evaluation board.
Both connectors CN4 and CN5 give access to the GPIOs that are not accessible by the LCD glass connectors.
In addition to GPIOs, CN4 and CN5 have the following supplies and signals:
GND, +3V3, D5V, RESET#, VDD, Clocks pins (PC14, PC15, PH0, PH1).
For more details regarding clock pins, refer to Section 7.4: Clock source.
UM1878 Rev 2 39/64
63
Page 40
Hardware layout and configuration UM1878
CN4 (left side) CN5 (right side)
Pin Signal Pin Signal
1GND1GND
2+3V32GND
3 PE7 3 PA5
4 PE8 4 PB2
5 PE9 5 PA0
6 PE10 6 PA4
7 PE11 7 PH1
8 PE12 8 PH0
9 PE13 9 PH10
10 PE14 10 PH9
11 GN D 11 P C 1 4
12 GND 12 PC15
13 PE15 13 PC13
14 PA11 14 GND

Table 24. Extension connectors pin-out

15 PA13 15 GND
16 PA12 16 NC
17 PD0 17 VLCD
18 PA14 18 PE6
19 PD3 19 PE5
20 PD1 20 PE4
21 PD6 21 BOOT0
22 PD5 22 PB7
23 PD7 23 PB6
24 D5V 24 RESET#
25 GND 25 GND
26 GND 26

7.24 IDD auto-measurement

In addition to the jumpers allowing to measure separately each power domain or the whole microcontroller consumption, the STM32L073Z-EVAL evaluation board offers also an automatic consumption measurement. The current of the microcontroller STM32L073VZT6 can be autonomously measured while it is in Run or Low power saving modes.
V
DD
40/64 UM1878 Rev 2
Page 41
UM1878 Hardware layout and configuration
VDD
R133 10K [1%]
VDD_MCU
GND
VDD
C104 100nF
GND
GND
R170 22K
to MCU
R132
1K [1%]
R130 100 [1%]
R131 10 [1%]
R134 1 [1%]
C100 100nF
GND
GND
GND GND GND
GND
CAL
SH0 SH1 SH2 SH3
3
4
5
G
SD
6
2
1
T10
STT7P2UH7
3
4
5
G
SD
6
2
1
T4
STT7P2UH7
3
4
5
G
SD
6
2
1
T2
STT7P2UH7
3
4
5
G
SD
6
2
1
T6
STT7P2UH7
3
4
5
G
SD
621
T8 STT7P2UH7
C102
100nF
+3V3
V+
V-
3
2
1
4 8
U21A TSZ122IST
V+
V-
3
2
1
4 8
U23A
TSZ122IST
GND
+5V
C88 100nF
GND
5
6
7
U21B
TSZ122IST
IDD_MEAS
SH1_D SH2_D SH3_DSH0_D
CAL_D
5
6
7
U23B
TSZ122IST
321
JP10
R151 100
C87 10uF
R164
100
C101 1uF
GND
R159
1K [0.1%]
R162
1K [0.1%]
R163
49K9 [0.1%]
R165
49K9 [0.1%]
R167 1K
R127 100K
R124 100K
R126 100K
R123 100K
R125 100K

Table 25. IDD auto-measurement related jumper settings

Jumper Description
JP10 2 and 3 closed (jumper in IDD position): STM32L073VZT6 is powered through IDD measurement circuit.
(default setting)
JP10 1 and 2 closed (jumper in
JP10
IDD measurement circuit is bypassed, STM32L073VZT6 is powered directly.
JP10: no jumper to pins 1, 2, 3. STM32L073VZT6 total current consumption can be measured by connecting an
ampere-meter between pins 1 and 2 of JP10.

7.24.1 Analog section description

V
DD
position):
The analog part of the IDD auto-measurement circuit is based on five shunts resistors: R134, R131, R130, R132 and R133, switched by PMOS transistors to get enough resolution and precision over a wide range of currents. The possibility to use shunts from 1 10
Kohm allows to measure currents from 100 mA to few 10 mA typically. This covers all
functional modes of the STM32L073VZT6 microcontroller.
Figure 17. Figure: analog section schematic
see note *
see note * see note *
see note *
bypass
Current direction
decoupling capacitor close to TS Z122
decoupling capacitors close to TS Z122
see note *
differential amplifier
Shunts
UM1878 Rev 2 41/64
ohm to
63
Page 42
Hardware layout and configuration UM1878
R133 10K [1%]
GND
VDD
C104 100nF
GND
GND
R170 22K
R132
1K [1%]
R130 100 [1%]
C100 100nF
GND
GND GND
SH2 SH3
3
4
5
G
SD
6
2
1
T2
STT7P2UH7
3
4
5
G
SD
6
2
1
T6
STT7P2UH7
C102
100nF
+3V3
V+
V-
3
2
1
4 8
U21A TSZ122IST
V+
V-
3
2
1
4 8
U23A
TSZ122IST
GND
+5V
C88 100nF
GND
5
6
7
U21B
TSZ122IST
IDD_MEAS
5
6
7
U23B
TSZ122IST
R151 100
C87 10uF
R164
100
C101 1uF
GND
R159
1K [0.1%]
R162
1K [0.1%]
R163
49K9 [0.1%]
R165
49K9 [0.1%]
R167 1K
R127 100K
R124 100K
The voltage drop across the selected shunt is amplified by a very high accuracy and zero-drift operational amplifier TSZ122.
The voltage drop is connected to pins 3 and 5 of the operational amplifier TSZ122 U21.
The digital section switches or not to a higher resistance shunt for a better measurement, depending on the measurement result obtained with one shunt. The transistor T8 is used to set to zero the voltage difference for the calibration of the analog amplifier.

7.24.2 Difference amplifier

Figure 18. Difference amplifier
decoupling capacitor close to TSZ122
decoupling capacitors close to TSZ122
see note *see note *
Shunts
The voltage measured over the shunt is amplified by a difference amplifier based on high performances operational amplifiers TSZ122. The DC gain is 49.9. Finally the output voltage I
DD_MEAS
is available for conversion and treatment by the digital section.

7.24.3 Digital section description

The multifunction expander MFX U25 is, among other functions, in charge of sequencing and acquiring the IDD auto-measurement feature.
It controls the switches of the analog section to measure the current sequentially from the lowest resistance shunt to the highest one, to maximize the precision of the current measurement. It works as an auto-range ampere-meter. It has internally some functionalities to avoid a too big voltage drop on the supply voltage of the microcontroller under test.
From SW point of view, it is up to the host STM32L073VZT6 to send the commands to the MFX to measure the current via the I to request a measurement and have enough time to go in low-power mode. After the given delay the MFX will measure the current. At the end, the measured value can be read by the host STM32L073VZT6 inside the MFX registers through the I
42/64 UM1878 Rev 2
2
C bus. A delay can be used to allow the host STM32,
differential amplifier
2
C bus.
Page 43
UM1878 Hardware layout and configuration
MFX_IRQOUT
MFX_SWCLK
CAL
SH2
SH1
MFX_SWDIO
SH3
R166 0
PE6
VDD
C116
100nF
C94
100nF
C91
100nF
C106
100nF
VDD
one capa citor close to each MFX pins: VDD, VDD_1, VDD_2, VDD_3
C99
100nF
SH0
VDD_MCU
JOY_SEL JOY_DOWN JOY_LEFT JOY_RIGHT JOY_UP
R177 0
R179 0
PB6 PB7
MFX_WKUP
VDD
R174
510
L7
BEAD
C90 1uF
C93
100nF
VDD
R176 [N/A]
R171 10K
R189 10K
R190 10K
R191 10K
R188 10K
PE6 can also be used to wak e-up the MCU
MFX_I2C_SDA
MFX_I2C_SCL
MFX_MicroSD_detect
RESET#
R158
0
XPTP27 [N/A]
XNTP 26 [N/A]
YPTP29 [N/A]
TP31
[N/A]
R180 0
R169 10K
C95 [N/A]
R155 [N/A]
MFX MFX MFX MFX MFX MFX
R157 100K
D8
BAT60JFILM
IDD_MEAS
MFX_V3
WAKEUP
2
NRST
7
TSC_XP/GPO0
10
TSC_XN/GPO1
11
TSC_YP/GPO2
12
TSC_YN/GPO3
13
USART_T X
21
USART_R X
22
SPARE
14
SWDIO
34
SWCLK
37
I2C_SCL
42
I2C_SDA
43
BOOT0
44
I2C_ADDR
45
IRQOUT
46
IDD_CAL/GPO4
3
IDD_SH0
4
IDD_SH1/GPO5
5
IDD_SH2/GPO6
6
IDD_MEAS
25
GPIO0
18
GPIO1
19
GPIO2
20
GPIO3
39
GPIO4
40
GPIO5
15
GPIO6
16
GPIO7
17
GPIO8
29
GPIO9
30
GPIO10
31
GPIO11
32
GPIO12
33
GPIO13
26
IDD_SH3/GPO7
38
GPIO14
27
GPIO15
28
IDD_VDD_MCU
41
VDD
1
VDDA
9
VDD_124VDD_236VDD_3
48
VSSA
8
VSS_123VSS_235VSS_3
47
U25
STM32L152CCT6
Figure 19. Digital section schematic
MFX Multi Function eXpander
Warning: To avoid current injection from STM32 to components on the
board during IDD measurement it is strongly recommended to keep V
DD_MCU
powered by 3.3 V so that, if V
3.3 V. Some components on the board are
DD_MCU
is higher than 3.3 V, a
current can be injected.
UM1878 Rev 2 43/64
63
Page 44
Connectors UM1878
-36
-36
'&9
*1'

8 Connectors

8.1 RS-232 connector CN6

Figure 20. RS-232 connector CN6 (front view)

Pin number Description
1 NC 6 Bootloader_BOOT0
2 RX (PD6) 7 RTS (PD4)
3 TX (PD5) 8 CTS/ Bootloader_RESET
4NC9NC
5GND--

Table 26. RS-232 connector CN6

8.2 Power connector CN18

STM32L073Z-EVAL evaluation board can be powered from a DC 5 V power supply via the external power supply jack (CN18) shown in central pin must be positive.

Figure 21. Power supply connector CN18

Pin
number
Description
Figure 21: Power supply connector CN18. The
44/64 UM1878 Rev 2
Page 45
UM1878 Connectors

8.3 LCD glass daughterboard connectors CN10 and CN14

Two 48-pins male headers CN10 and CN14 are used to connect with the LCD glass daughterboard (MB979). The space between these two connectors and the position of every LCD glass signals are defined as a standard, which allows to develop common daughterboards for several evaluations boards. The standard width between CN10 pin 1 and CN14 pin 1 is 700
GPIO signals on these two connectors can be tested on odd pins when LCD glass board is not plugged in. For signals assignment details refer to
connectors.
Odd pin GPIO signal Odd pin GPIO signal
1PA91PD2
3PA83PC12
5 PA10 5 PC11
7PB97PC10
9 PB11 9 PC3
11 PB10 11 PC4
13 PB5 13 PC5
mils (17.78 mm).
Tabl e 27: LCD glass daughterboard

Table 27. LCD glass daughterboard connectors

CN10 CN14
15 PB14 15 PC6
17 PB13 17 PC7
19 PB12 19 PC8
21 PA15 21 PC9
23 PB8 23 PD8
25 PB15 25 PD9
27 PC2 27 PD10
29 PC1 29 PD11
31 PC0 31 PD12
33 PA3 33 PD13
35 PA2 35 PD14
37 PB0 37 PD15
39 PA7 39 PE0
41 PA6 41 PE1
43 PB4 43 PE2
45 PB3 45 PE3
47 PB1 47 PA1
UM1878 Rev 2 45/64
63
Page 46
Connectors UM1878
If CN10 and CN14 are used as GPI/O extension connectors on a daughterboard, odd pins and even pins must not be connected directly on the daughterboard.

8.4 ST-LINK/V2-1 programming connector CN15

The connector CN16 is used only for embedded ST-LINK/V2-1 programming during board manufacture. It is not populated by default and not for end user.

8.5 ST-LINK/V2-1 USB Type B connector CN17

The USB connector CN17 is used to connect embedded ST-LINK/V2-1 to PC for debugging of board.

Figure 22. USB type B connector CN17

Pin number Description Pin number Description
1 VBUS (power) 4 GND
2 DM 5,6 Shield
3DP- -
46/64 UM1878 Rev 2

Table 28. USB type B connector CN17

Page 47
UM1878 Connectors
D^ϯϬϳϮϮsϮ
  
 

  
 
D^ϯϬϳϮϮsϮ
  
 

  
 

8.6 SWD connector CN12

Figure 23. Trace debugging connector CN12 (top view)

Table 29. SWD debugging connector CN12

Pin number Description Pin number Description
V
1
power 2 VDD power
DD
3-4GND
5-6GND
7 SWDIO PA13 8 GND
9 SWCLK PA14 10 GND
11 - 1 2 G N D
13 - 14 GND
15 RESET# 16 GND
17 DBGRQ 18 GND
19 DBGACK 20 GND

8.7 Trace debugging connector CN11

Figure 24. Trace debugging connector CN11 (top view)

UM1878 Rev 2 47/64
63
Page 48
Connectors UM1878

Table 30. Trace debugging connector CN11

Pin number Description
1 VDD power 2 SWDIO PA13
3GND4SWCLK PA14
5GND6-
7 Pin is removed 8 -
9GND10RESET#
11 GN D 12 -
13 GND 14 -
15 GND 16 -
17 GND 18 -
19 GND 20 -

8.8 MicroSD connector CN3

Figure 25. MicroSD connector CN3

Pin
number
Description
Pin
number
Description

Table 31. MicroSD connector CN3

number
1NC 6 GND
2 MicroSD_CS (PD0) 7 SPI_MISO (PE14)
3 SPI_MOSI (PE15) 8 NC
4+3V39 GND
5 SPI_CLK (PE13) 10 MicroSDcard_detect (to expander MFX)
48/64 UM1878 Rev 2
Pin
Description
Page 49
UM1878 Connectors
069



8.9 RF-EEPROM daughterboard connector CN3

Figure 26. RF-EEPROM daughterboard connector CN3 (front view)

Pin number Description Pin number Description
1 I2C_SDA (PG13) 5 V
2NC6 NC
3 I2C_SCL (PG14) 7 GND
4 EXT_RESET(PC6) 8 NC

Table 32. RF-EEPROM daughterboard connector CN3

DD
UM1878 Rev 2 49/64
63
Page 50
50/64 UM1878 Rev 2
112
MB1168
MB1168 C-01
2/4/2016
Title:
Size: Reference:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
I2C1_SDA I2C1_SCL
MFX_IRQOUT
Bootloader_BOOT0_3V3 Bootloader_RESET_3V3
BOOT0
USART2_ RX_3V3
USART2_ CTS_3V 3
USART2_ TX
USART2_ RTS
SPI1_SCK
SPI1_MOSI
MicroSD_CS
TFT_CS
KEY
LED4
LED3
LED1 LED2
USART4_ RX_3V3
USART4_ TX
PRESSURE
TS_G1_IO2
TS_G1_IO3
DAC_OUT1
TS_G3_IO2
TS_G3_IO3
TS_G6_IO2
TS_G6_IO3
ADC_IN5
USB_DM
USB_DP
SWDIO
SWCLK
SPI1_MISO_3V3
DET_DAC_OUT1
SPI1_MOSI_DIR
LCDSEG[0..39] LCDCOM[0..7] PA[0..15] PB[0..15] PC[0..15] PD[0..15] PE[0..15]
RESET#
PH1
PH0
PH10
PH9
MFX_WKUP
TS_G8_IO1 TS_G8_IO2
DET_COMP2_INP
POWER_CONTROL
DET_COMP2_OUT
DET_LPTIM_CH1
U_MCU MCU.SchDoc
PRESSURE
U_ADC16b_Pressure ADC16b_Pressure.SchDoc
DET_COMP2_INP
DET_COMP2_OUT
DET_DAC_OUT1
POWER_CONTROL
DET_LPTIM_CH1
U_Detection Detection.SchDoc
MFX_IRQOUT
JOY_SEL JOY_DOWN JOY_LEFT JOY_RIGHT JOY_UP
MFX_WKUP
MFX_MicroSD_detect
RESET#
MFX_I2C_SDA
MFX_I2C_SCL
U_IDD_measurement IDD_measurement.SchDoc
LCDSEG[0..39]
LCDCOM[0..7]
LPUART_RX_3V3 LPUART_TX
LPUART_CTS_3V3 LPUART_RTS
TST_MOSI_DIRTempSensor_INT
EXT_RESET
PA[0..15] PB[0..15] PC[0..15] PD[0..15]
PE[0..15]
RESET#
PH1
PH0
BOOT0
PH10
PH9
U_LCD_Glass_Ext_conne ctor LCD_Glass_Ext_connector.SchDoc
I2C1_SDA
TempSensor_INT
EXT_RESET
JOY_SEL
JOY_DOWN
JOY_LEFT
JOY_RIGHT
JOY_UP
DAC_OUT1
ADC_IN5
KEY
LED4
LED3
LED1 LED2
I2C1_SCL
U_Peripherals Peripherals.S chDoc
U_Power Power.SchDoc
USART4_RX_3V3
USART4_ TX
SWDIO
SWCLK
RESET#
U_STLIN K STLINK.SchDoc
MFX_MicroSD_detectRESET#
SPI1_MISO_3V3
SPI1_MOSI
SPI1_MOSI_DIR
SPI1_SCK
MicroSD_CS
TFT_CS
TST_MOSI_DIR
U_TFT_MicroSD TFT_MicroSD.SchDoc
USART2/IrDA_ RX_3V3
Bootloader_BOOT0_3 V3
Bootloader_RESET_3V3
USART2_CTS_3V3
USART2_ TX
USART2_RTS
LPUART_RX_3V3
LPUART_CTS_3V3
LPUART_TX
LPUART_RTS
U_USART_L PUART USART_LP UART.Sc hDoc
RESET#
SWDIO SWCLK
USB_DM
USB_DP
TS_G1_IO2
TS_G6_IO2 TS_G3_IO2
TS_G6_IO3 TS_G3_IO3 TS_G1_IO3 TS_G8_IO1 TS_G8_IO2
U_SWD_ Touch_ USB SWD_Touch_USB.SchDoc

Appendix A Electrical schematics

Electrical schematics UM1878

Figure 27. STM32L073Z-EVAL

rev B-02: modified parts: X2, C30, C34, C46, C63. rev B-03: added microSDcard, changed C30, C34 rev C-01: added L4, L11, L12, C61, C62, C84, R72, R75 for EMC.
Page 51
212
MCU
MB1168 C-01
10/14/2015
Title:
Size: Reference:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
PE2
1
PE3
2
PE4
3
PE5
4
PE6
5
PC13-WKUP2
7
PC14-OSC32_IN
8
PC15-OSC32_OUT
9
PH0-OSC_IN
12
PH1-OSC_OUT
13
NRST
14
PC0
15
PC1
16
PC2
17
PC3
18
PA0
23
PA1
24
PA2
25
PA3
26
PA4
29
PA5
30
PA6
31
PA7
32
PC4
33
PC5
34
PB0
35
PB1
36
PB2
37
PE7
38
PE8
39
PE9
40
PE10
41
PE11
42
PE12
43
PE13
44
PE14
45
PE15
46
PB10
47
PB11
48
PB12
51
PB13
52
PB14
53
PB15
54
PD8
55
PD9
56
PD10
57
PD11
58
PD12
59
PD13
60
PD14
61
PD15
62
PC6
63
PC7
64
PC8
65
PC9
66
PA8
67
PA9
68
PA10
69
PA11
70
PA12
71
PA13
72
PA14
76
PA15
77
PC10
78
PC11
79
PC12
80
PD0
81
PD1
82
PD2
83
PD3
84
PD4
85
PD5
86
PD6
87
PD7
88
PB3
89
PB4
90
PB5
91
PB6
92
PB7
93
BOOT0
94
PB8
95
PB9
96
PE0
97
PE1
98
PH9
10
PH10
11
U5A
STM32L073VZT6
R27
0
C12 1uF
VLCD1
TP2
R26
0
C11 1uF
VLCD2
TP4
R25
0
C10 1uF
VLCD3
TP3
PE11 PE12
PB2
R56 1K2
R53
1K2
VDD
I2C1_SDA
I2C1_SCL
MFX_IRQOUT
PE6
R55 0
R52 0
PB6 PB7
PB5 LCDSEG9
C118 100nF
R213 [N/A]
X1
8MHz (with socket)
R42
390
R36
10K
2
3
1
SW1
09.03290.01
D1
BAT60JFILM
D2 BAT60JFILM
PH0 PH1
JP3
R35
150
1
4 3
2
B1 RESET
VDD
VDD
Bootloader_BOOT0_3 V3
Bootloader_RESET_3V3
JP6
RESET#
BOOT0
BOOT0
C30
2.7pF
C34
2.7pF
R48
0
R49
0
PC14 PC15
LCDCOM1
LCDCOM0
LCDCOM2
LCDCOM3
LCDSEG11
LCDSEG10
LCDSEG14
LCDSEG17
LCDSEG16
LCDSEG15
LCDSEG20
LCDSEG19
LCDSEG2
LCDSEG1
LCDSEG5
LCDSEG7
LCDSEG6
LCDSEG21 LCDSEG22 LCDSEG23
LCDSEG24
LCDSEG25
LCDSEG26 LCDSEG27
LCDSEG28 LCDSEG29 LCDSEG30 LCDSEG31 LCDSEG32 LCDSEG33 LCDSEG34 LCDSEG35
LCDSEG36 LCDSEG37 LCDSEG38 LCDSEG39
LCDSEG0
LCDCOM7
LCDCOM6
LCDCOM5
LCDCOM4
PB0 PB1
PB3 PB4
PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15
PA4 PA5 PA6 PA7
PA11 PA12
PA9 PA10
PA0 PA1
PA15
PA3
PA13 PA14
PA2
PA8
PC13
PD0 PD1
PD3 PD4 PD5 PD6
PD8 PD9 PD10 PD11 PD12 PD13
PD2
PD14
PD7
PD15
PE0
PE14
PE9
PE8
PE10
PE15
PE13
PE1 PE2 PE3 PE4 PE5
PE7
USART2_ RX_3 V3
USART2_CTS_3V3
USART2_ TX
USART2_RTS
PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12
PH9 PH10
SPI1_SCK
SPI1_MOSI
MicroSD_CS
TFT_CS
KEY
LED4
LED3
LED1 LED2
USART4_ RX_3 V3
USART4_ TX
PRESSURE
TS_G1_IO2
SB11 Open by default
SB10 Open by default
TS_G1_IO3
DAC_OUT1
close to MCU
SB8
Open by default
close to MCU
SB7
Open by default
close to MCU
SB6
Open by default
close to MCU
SB15
Open by default
close to MCU
PB12 LCDSEG12
PB13 LCDSEG13
TS_G3_IO2
TS_G3_IO3
TS_G6_IO2
TS_G6_IO3
ADC_IN5
USB_DM USB_DP SWDIO
R45 0
SWCLK
R51 0
POWER_CONTROL
SPI1_MISO_3V3
LCDSEG3
3
2
1
JP2
DET_DAC_OUT1
Detection demo
DAC_OUT
ADC_IN
SPI1_MOSI_DIR
PH9
R46 [N/A]
PH10
R47 [N/A]
C28 100nF
VDD_MCU
close to MCU
LCDSEG[0..39]
LCDSEG[0..39]
LCDCOM[0..7]
LCDCOM[0..7]
PA[0..15]
PA[0..15]
PB[0..15]
PB[0..15]
PC[0..15]
PC[0..15]
PD[0..15]
PD[0..15]
PE[0..15]
PE[0..15]
RESET#
RESET#
PH1
PH0
PH0
PH1
PH10
PH9
PH9
PH10
VLCD1
VLCD2 VLCD3
WKUP3
MFX_WKUP
SB12 Closed by default
SB14 Closed by default
SB9 Closed by default
SB13 Closed by default
SB5 Closed by default
SB16 Closed by default
C27
20pF
C25
20pF
X2
NDK NX3215SA-32.768KHZ-EXS00A-MU00525
SB17 Open by default
close to MCU
SB18 Closed by default
SB24 Open by default
close to MCU
SB22 Closed by default
TS_G8_IO1
TS_G8_IO2
DET_COMP2_OUT
LCDSEG8
DET_COMP2_INP
PB432
1
JP15
LCDSEG5
LCD
DET
JP16
SB34 Open by default
LCDSEG4
3
2
1
JP1
LCDSEG5
LCD
DET
JP14
SB28 Open by default
PA7
located close to MCU pin PA7
SB35 Closed by default
DET_LPTIM_CH1
3
2
1
JP17
LCDSEG19
LCD
DET
JP18
SB36 Open by default
PC0
LCDSEG18
UM1878 Rev 2 51/64

Figure 28. MCU

= shortest as possible and clearance with other tracks Following circuitry is in Detection sheet
32.768 kHz crystal
UM1878 Electrical schematics
Page 52
52/64 UM1878 Rev 2
312
LCD_Glass_Ext_connector
MB1168 C-01
10/14/2015
Title:
Size: Referen ce:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
CN14
Header 24X2
PD11 PD12 PD13 PD14 PD15
PD10
PD9
PD8
PD2 PC12 PC11 PC10
PC4 PC5 PC6 PC7 PCPC8 PC9
PC3
PE0 PE1 PE2 PE3 PA1
LCDSEG21 LCDSEG22 LCDSEG23 LCDSEG24 LCDSEG25 LCDSEG26 LCDSEG27 LCDSEG28 LCDSEG29 LCDSEG30 LCDSEG31 LCDSEG32 LCDSEG33 LCDSEG34 LCDSEG35 LCDSEG36 LCDSEG37 LCDSEG38 LCDSEG39 LCDSEG0
LCDCOM7 LCDCOM6 LCDCOM5 LCDCOM4
LCDSEG[0..39]
LCDSEG[0..39]
LCDCOM[0..7]
LCDCOM[0..7]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
CN10
Header 24X2
LCD Glass Connectors for module MB979
LCDCOM1
PA9 PA8 PA10
PA15
PA3 PA2
PA7 PA6
PB9 PB11 PB10 PB5 PB14 PB13 PB12
PB8
PB0
PB4 PB3 PB1
PB15 PC2 PC1 PC0
LCDCOM0 LCDCOM2 LCDCOM3 LCDSEG11 LCDSEG10 LCDSEG9 LCDSEG14 LCDSEG13 LCDSEG12 LCDSEG17 LCDSEG16 LCDSEG15 LCDSEG20 LCDSEG19 LCDSEG18 LCDSEG2 LCDSEG1 LCDSEG5 LCDSEG4 LCDSEG3 LCDSEG8 LCDSEG7 LCDSEG6
LPUART_RX_3V3
LPUART_TX
LPUART_CTS_3V3
LPUART_RTS
TST_MOSI_DIR
TempSensor_INT
EXT_RESET
R101
[N/A]
reserved use
R41 820
+3V3
PA[0..15]
PA[0..15]
PB[0..15]
PB[0..15]
PC[0..15]
PC[0..15]
PD[0..15]
PD[0..15]
PE[0..15]
PE[0..15]
RESET#
RESET#
Left Right
RESET#
PH1
PH0
SB23
Open by default
SB25
Open by default
close to MCU
D5V
PE8PE7
R19 0
VDD
SB27
Open by default
SB26
Open by default
PC14
PC15
PH1
PH0
PH0
PH1
BOOT0
BOOT0
Upper connector Lower connector
Extension connectors
PE9 PE10 PE11 PE12 PE13 PE14
PE15 PA11
PA12PA13 PA14PD0 PD1PD3 PD5PD6
PD7
PB2PA5 PA4PA0
PH1 PH0
PH10 PH9
PC14 PC15
PC13
PE6 PE5 PE4 BOOT0 PB7 PB6
R39 820
PH10
PH9
PH9
PH10
VLCD
R104 330
R106 10K R107 100K
Resistors for IDD production test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
CN5
Header 13X2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
CN4
Header 13X2
R103 330
R102 330
Resistors for IDD production test
R105 1K

Figure 29. LCD glass external connector

Electrical schematics UM1878
Page 53
412
Power
MB1168 C-01
10/14/2015
Title:
Size: Referen ce:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
SV
1
SG
2
CV
3
CG1
4
CG2
5
CG3
6
L8
BNX002-01
C96 220uF
E5V
C98 10uF[ESR<0.2ohm]
VDD_ADJ
+5V
VDD_ADJ
TP24
1
3
2
CN18
DC-10B
Z1 SMAJ5.0A-TR
C105 100nF
123
U27 ZEN056V130A24LS
13
2RV1
3386P-503H[5%]
R149
10.2K[1%]
Power Supply VDD_ADJ [1.65V to 3.61V]
R154
20K[1%]
C82
4.7uF
Vout=1.22*(1+R1/ R2)
C92 100nF
VDD_MCUVDD
L6
BEAD
3
2
1
JP12
VDD TP25
+3V3
VDD_ADJ
5V
TP22
+5V
R153
1K
1 2
LD5 Red
GND TP23
D5V
U5V_STLINK
U5V
78 56 34 12
JP11
Header 4X2
E5V
EN
1
GND
2
VO
4
ADJ
5
GND
7
VI
6
PG
3
U22 ST1L05BPUR
+5V +3V3
TP20
C79
4.7uF
R143
20.5K[1%]
R129
11.8K[1%]
C80 10uF[ESR<0.2ohm]
EN
1
GND
2
VO
4
ADJ
5
GND
7
VI
6
PG
3
U20 ST1L05BPUR
Power Supply 3.3V Vout=1.22*(1+R1/R2)
C81 100nF
+3V3
GND TP1
VDDA TP5
VDD_USB
TP7
C83 1uF
C86 100nF
GND TP21
GND TP10
VDD_MCU
JP4
R147 [N/A]
VDD_MCU
C37 100nF
C33 100nF
C20
1uF
C31
1uF
C13 100nF
C14 100nF
C29 100nF
VLCD
6
VSS
49
VSS
74
VREF-
20
VREF+
21
VDDA
22
VSS
27
VDD_USB
75
VSS
99
VSSA
19
VDD
100
VDD
73
VDD
50
VDD
28
U5B
STM32L073VZT6
VREF+ TP6
VDD_MCU
JP5
3
2
1
JP7
VDD_MCU
USB_VBUS 3V3
R50
0
C35
1uF
VLCD TP8
C24
1uF
C23 100nF
R40
0
U5V
USB_VBUS 3V3
TP9
C44
4.7uF
R58
20.5K[1%]
R57
11.8K[1%]
C36 1uF
EN
1
GND
2
VO
4
ADJ
5
GND
7
VI
6
PG
3
U6 ST1L05BPUR
C32 100nF
USB_VBUS 3V3
R148 1M
+5V
+3V3_PG
R150
0
+3V3_PG
R156 1M
+5V
VDD_PG
R60
820
VDD_PG
C41 1nF
VDD_ANA
R44
0
R43
[N/A]
VDDA
VDD_USB
VREF+
+3V3
C21 100nF
VDD
AGND
L1
BEAD
VLCD
SB3 Closed by default SB20 Closed by default SB1 Closed by default SB21 Closed by default SB2 Closed by default SB19 Closed by default
C89 [N/A]
L5 82μH 10%
SB38 Open by default

Figure 30. Power

UM1878 Rev 2 53/64
Recommendation: 100nF decoupling capacitor close to each supply pin
connected by the shunt of IDD_measurement ci rcuitry
UM1878 Electrical schematics
AGND is the local ground plane of pressure sensor circuitry (refer to ADC16b_Pressure schematic sheet)
Page 54
54/64 UM1878 Rev 2
512
Peripherals
MB1168 C-01
10/14/2015
Title:
Size: Referen ce:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
SDA
1
SCL
2
OS/INT
3
GND4A2
5
A1
6
A0
7
VDD
8
U2
STLM75M2F
VDD
C3
100nF
VDD
VDD
I2C1_SCL
I2C1_SDA
R9 0
R10 0
R4 0
Temperature sensor
TempSensor_INT
PB7
R2 0
R1 0
RF EEPROM MB1020 A-02 I2C address= 0xA6
PB6 PB5
SDA SCL
1 2 3 4 5 6 7 8
CN1
SSM-104-L-DH
RFEEPROM & Extension Connector
EXT_RESET
PE2
R3 [N/A]
VDD
SB4
Closed by default
VDD
By default SB4 closed: I2C address = 0x92
Operating voltage: 2.7V to 3.6V
R203
100
COMMON
5
Selection
2
DWON
3
LEFT
1
RIGHT
4
UP
6
B3
MT008-A
JOY_SEL JOY_DOWN JOY_LEFT JOY_RIGHT JOY_UP
MFX
MFX MFX MFX MFX
DAC_OUT1
C15 [N/A]
R28
0
Close to MCU
PA4
1 2
DAC_OUT1
CN3
R29
0
ADC_IN5
C2 [N/A]
R7
0
Close to MCU
PA5
1 2
ADC_IN5
CN2
R8
0
WKUP/TAMPER Button
R215 220K
1
43
2
B2 WKUP
VDD
R214
330
KEY
PC13
1 2
LD1 Green
1 2
LD3 Red
1 2
LD2 Orange
+3V3
R202 510
R201 680
R200 680
R199 680
LED4
LED3
LED1
LED2
PE4
1 2
LD4 Blue
PE5
PD1
PE7
VDD
+3V3
R198
1K [1%]
R196
1.15K [1%]
+5V
12
LD7 Red
R210 1K
6
5
7
U28B
TS3702IPT
2
3
1
4 8
U28A TS3702IPT
12
LD8 Orange
R211 1K
12
LD9 Green
R212 1K
VDD
R197
49.9 [1%]
VDD<1.71V
1.71V<VDD<1.8V
VDD>1.8V
+5V
C117 100nF
R5
10K
R6
10K
(If SB4 opened: I2C address = 0x90)

Figure 31. Peripherals

Electrical schematics UM1878
RFEEPROM module MB102 0 A-0 2 is plugged in CN1 pins 1, 3, 5, 7
Page 55
UM1878 Rev 2 55/64
612
TFT_MicroSD
MB1168 C-01
10/14/2015
Title:
Size: Referen ce:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
+3V3
MFX_MicroSD_detect
CS
1
SCL
2
SDI
3
RS
4
WR
5
RD
6
RESET
8
VDD
9
VCI
10
SDO
7
GND
11
GND
12
BL_VDD
13
BL_Control
14
BL_GND
15
BL_GND
16
CN16
2.4" LCD connector (MB895/S)
+3V3
TFT LCD
MFX
+5V
C110 10uF
L9
BEAD
C111 100nF
L10
BEAD
+3V3
R128 [N/A]
+3V3
R110 [N/A]
+3V3
RVS
1
CS
2
DI
3
Vdd
4
SCLK
5
Vss
6
DO
7
RVS
8
SW2
9
SW1
10
CN13
PJS008-2000 (SMS064FF or SMS128FF)
PE10
PD0
R116
0
RESET#
+3V3
VDD
R145 4K7
R144 270
R112 10K
R135 270
R114 0
SPI LCD
SPI MICRO SD
SPI1_MISO_3V3
PE14
Input pin with pull-up
SPI1_MOSI
PE15
R138 0
VCCA
1
A1
2
A2
3
GND4DIR
5
B2
6
B1
7
VCCB
8
U18
SN74LVC2T45DCUT
+3V3VDD
VDD
C77 100nF
C71 100nF
SPI1_MOSI_3V3
SPI1_MOSI_DIR
R117 10K
R118 0
SPI1_SCK
VCCA
1
A1
2
A2
3
GND4DIR
5
B2
6
B1
7
VCCB
8
U17
SN74LVC2T45DCUT
+3V3VDD
VDD
C76 100nF
C70 100nF
SPI1_SCK_3V3
PE13
R136 100K
VDD
R137 0
VCCA
1
A1
2
A2
3
GND4DIR
5
B2
6
B1
7
VCCB
8
U19
SN74LVC2T45DCUT
+3V3VDD
VDD
C78 100nF
C72 100nF
PD0
R122 100K
R121 0
PE10
MicroSD_CS TFT_CS
R140 0
R139 100K
VDD
R120 [N/A]
R141 [N/A]
R119 0 R142 0
PE13
PE15
PH9
TST_MOSI_DIR
SB40 Closed by default SB41 Open by default
3
4
5
G
SD
621
T11
STT5N2VH5
p
reserved use
ZZ1
micro SD card
L11
BEAD
L4
BEAD
L12
BEAD
C61 N/A
R72 0 R75 0
C84 N/A
C62 N/A
close to U1 7
close to U1 8
close to U1 9
R72, R75 close to CN16

Figure 32. TFT microSD

UM1878 Electrical schematics
MB895/S LCD TFT 2.4 inches module is
lugged in CN16
Page 56
56/64 UM1878 Rev 2
712
USART_LPUART
MB1168 C-01
10/14/2015
Title:
Size: Reference:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
SD
5
TxD
3
GND
8
Anode (VCC2)
1
Cathode
2
RxD
4
VCC1
6
Vlogic
7
U14
TFDU6300
+3V3
C68
4.7uF
C65
4.7uF
1 6 2 7 3 8 4 9 5
CN6
DB9-male
USART2/I rDA_RX_ 3V3
USART2
Bootloader_BOOT0_3V3
Bootloader_RESET_3V3
C2+
1
C2-2V-
3
R1IN
4
R2IN
5
R3IN
6
R4IN
7
R5IN
8
T1OUT
9
T2OUT
10
T3OUT
11
T3IN
12
T2IN
13
T1IN
14
R5OUT
15
R4OUT
16
R3OUT
17
R2OUT
18
R1OUT
19
R2OUTB
20
R1OUTB
21
nSHDN
22
nEN
23
C1-24GND
25
VCC
26
V+
27
C1+
28
U7
ST3241EBPR
C45
100nF
C38
100nF
C43 100nF
C39 100nF C42 100nF
+3V3
+3V3
RXD RTS TXD CTS
DSR
R91
0
USART2_ CTS_3V 3
PD3
R90 5.1
R92 47
PD6
USART2_RTS_3V3
PD4
VCCA
1
A1
2
A2
3
GND4DIR
5
B2
6
B1
7
VCCB
8
U13
SN74LVC2T45DCUT
+3V3
VDD
VDD
C67 100nF
C64 100nF
R95 100K
R94 100K
VDD
USART2_RTS_3V3
R63 0
R93 0
R96 0
C69 100nF
C66 100nF
USART2_ TX
IRDA
USART2_RTS
PD5
IRDA_RX
GND
GND
1 6 2 7 3 8 4 9 5
CN7
DB9-male
LPUART_RX_3V3
LPUART
C2+
1
C2-2V-
3
R1IN
4
R2IN
5
R3IN
6
R4IN
7
R5IN
8
T1OUT
9
T2OUT
10
T3OUT
11
T3IN
12
T2IN
13
T1IN
14
R5OUT
15
R4OUT
16
R3OUT
17
R2OUT
18
R1OUT
19
R2OUTB
20
R1OUTB
21
nSHDN
22
nEN
23
C1-24GND
25
VCC
26
V+
27
C1+
28
U8
ST3241EBPR
C50
100nF
C53
100nF
C52 100nF
C55 100nF C51 100nF
+3V3
+3V3
RXD RTS TXD CTS
DSR
LPUART_CTS_3V3
PD11
PD9
LPUART_RTS_3V3
PD12
VCCA
1
A1
2
A2
3
GND4DIR
5
B2
6
B1
7
VCCB
8
U12
SN74LVC2T45DCUT
+3V3VDD
VDD
C56 100nF
C60 100nF
R89 100K
R83 100K
VDD
LPUART_RTS_3V3
LPUART_TX
LPUART_RTS
PD8
GND
GND
R62
0
R88
0
R61
0
R87
0
3
2
1
JP9
Electrical schematics UM1878

Figure 33. USART_LPUART

Page 57
UM1878 Rev 2 57/64
812
ADC16b_Pressure
MB1168 C-01
10/14/2015
Title:
Size: Reference:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
PRESSURE
PA0
Pressure Sensor
R11 220 0.1%
R15 27400 0.1%
R14
47K 0.1%
R17
47K 0.1%
R32
10K 0.1%
R33
10K 0.1%
R20
10K 0.1%
R22
20K 0.1%
V+
V-
3
2
1
4 8
U3A
TSZ122IST
V+
V-
3
2
1
4 8
U4A
TSZ122IST
5
6
7
U3B
TSZ122IST
R21
20K 0.1%
AGND
C6 1uF
AGND
C7 1uF
AGND
R34
100
C19 10uF
AGND
Vs
3
GND
1
Vout+
2
Vout-
4
U1
MPXM2102AS
C1 100nF
AGND
C8
100nF
C9
1uF
AGND
AGND
C17
100nF
C18
1uF
AGND AGND
R16 27400 0.1%
3Hz low-pass filter
Differential amplifier
Operating voltage: 3.3V
VDD_ANA
5
6
7
U4B
TSZ122IST
Spare operational amplifier
R30
[N/A]
R24 0
R31
0
R23 0
R38
0
C16
[N/A]
AGND

Figure 34. Pressure sensor

- AGND is the local ground plane of this section
- AGND local ground plane is connected to GND by default using solder bridges SB1, SB2, SB3, SB19, SB20, SB21 or by a ferrite bead L1. (refer to Power sheet)
- VDD_ANA is distributed in star sche me
UM1878 Electrical schematics
Page 58
58/64 UM1878 Rev 2
912
LC Detection
MB1168 C-01
10/14/2015
Title:
Size: Referen ce:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
C40 1nF
DET_COMP2_INP
1 2
External LC network
CN8
DET_COMP2_OUT
-
Comp2
STM32L
PB4
PA7
+
R67
0
C57
[N/A]
R59
120
VDD/2 generation
AC ground
LC sensor
Internal comparator 2
CompOut
TP18
VDD/2
TP14
JP8
C46
100pF
C63
1nF
R73 330K
R76 330K
POWER_CONTROL
3
1
2
4
5
Vcc-
Vcc+
U9
TSV631ILT
4
3
2
1
5
Vcc-
Vcc+
U11 TSV911ILT
SB29
Closed by default
SB30
Closed by default
LC_H
LC_L
L3 [N/A)
LC_H
LC_L
L
1
NC
2
NC
3
L
4
NC
8
NC
7
NC
6
NC
5
N
N
N
N
N
N
L2
100uH
Parts placed close to STM32L073
SB33
Open by default
SB32
Open by default
DET_DAC_OUT1
C59 1nF
C47
[N/A]
R64 330K
R54 330K
PA4
PD7
SB31
Closed by defau lt
close to MCU
TP18 located close to MCU pin PA7
DET_LPTIM_CH1
LPTIM input
PC0
C58
100nF
Note *: Sensor inductors L2 or L3 are exclusive.
Using a double PCB footprint.
see note *
see note *

Figure 35. LC sensor metering

Comp2 INM input can be conn ected to DAC OUT1 using an in ternal switch of the MCU
Electrical schematics UM1878
Page 59
10 12
IDD_measurement
MB1168 C-01
10/14/2015
Title:
Size: Referen ce:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
VDD
R133 10K [1%]
VDD_MCU
GND
VDD
C104 100nF
GND
GND
R170 22K
R132
1K [1%]
R130 100 [1%]
R131 10 [1%]
R134 1 [1%]
C100 100nF
GND
GND
GND GND GND
GND
CAL
SH0 SH1 SH2 SH3
3
4
5
G
SD
6
2
1
T10
STT7P2UH7
3
4
5
G
SD
6
2
1
T4
STT7P2UH7
3
4
5
G
SD
6
2
1
T2
STT7P2UH7
3
4
5
G
SD
6
2
1
T6
STT7P2UH7
3
4
5
G
SD
621
T8 STT7P2UH7
C102
100nF
+3V3
V+
V-
3
2
1
4 8
U21A TSZ122IST
V+
V-
3
2
1
4 8
U23A
TSZ122IST
GND
+5V
C88 100nF
GND
5
6
7
U21B
TSZ122IST
MFX_IRQOUT
MFX_SWCLK
CAL
SH2
SH1
MFX_SWDIO
IDD_MEAS
SH3
N p
SH1_D SH2_D SH3_DSH0_D
CAL_D
435
G
SD
6 7 8
2
1
T9
STS9P2UH7
VDD
SH0_D
SH0
435
G
SD
6 7 8
2
1
T7
STS9P2UH7
VDD
CAL_D
CAL
435
G
SD
6 7 8
2
1
T3
STS9P2UH7
SH1_D
SH1
435
G
SD
6 7 8
2
1
T1
STS9P2UH7
SH2_D
SH2
435
G
SD
6 7 8
2
1
T5
STS9P2UH7
SH3_D
SH3
CAL_D
CAL_D
CAL_D
R166 0
PE6
MFX_SWDIO MFX_SWCLK
VDD
1 2 3 4 5
CN19
[N/A]
VDD
C116
100nF
C94
100nF
C91
100nF
C106
100nF
VDD
C99
100nF
SH0
VDD_MCU
JOY_SEL JOY_DOWN JOY_LEFT JOY_RIGHT JOY_UP
R177 0
R179 0
PB6 PB7
MFX_WKUP
VDD
R174
510
L7
BEAD
C90 1uF
C93
100nF
VDD
R176[N /A]
R171 10K
R189 10K
R190 10K
R191 10K
R188 10K
PE6 can also be used to wake-up the MCU
MFX_I2C_SDA
MFX_I2C_SCL
MFX_MicroSD_detect
RESET#
R158
0
XPTP27 [N/A]
XNTP26 [N/A ]
YPTP29 [N/A]
TP31
[N/A]
5
6
7
U23B
TSZ122IST
321
JP10
R151 100
C87 10uF
R164
100
C101 1uF
GND
R192 0
R180 0
R159
1K [0.1%]
R162
1K [0.1%]
R163
49K9 [0.1%]
R165
49K9 [0.1%]
R169 10K
C95 [N/A]
R155 [N/A]
R167 1K
R127 100K
R124 100K
R126 100K
R123 100K
R125 100K
MFX MFX MFX MFX MFX MFX
R157 100K
D8
BAT60JFILM
IDD_MEAS
MFX_V3
WAKEUP
2
NRST
7
TSC_XP/GPO0
10
TSC_XN/GPO1
11
TSC_YP/GPO2
12
TSC_YN/GPO3
13
USART_TX
21
USART_RX
22
SPARE
14
SWDIO
34
SWCLK
37
I2C_SCL
42
I2C_SDA
43
BOOT0
44
I2C_ADDR
45
IRQOUT
46
IDD_CAL/GPO4
3
IDD_SH0
4
IDD_SH1/GPO5
5
IDD_SH2/GPO6
6
IDD_MEAS
25
GPIO0
18
GPIO1
19
GPIO2
20
GPIO3
39
GPIO4
40
GPIO5
15
GPIO6
16
GPIO7
17
GPIO8
29
GPIO9
30
GPIO10
31
GPIO11
32
GPIO12
33
GPIO13
26
IDD_SH3/GPO7
38
GPIO14
27
GPIO15
28
IDD_VDD_MCU
41
VDD
1
VDDA
9
VDD_124VDD_236VDD_3
48
VSSA
8
VSS_123VSS_235VSS_3
47
U25
STM32L152CCT6
bypass
see note *
to MCU
UM1878 Rev 2 59/64
see note *
Current direction
see note * see note *
Shunts
MFX Multi Function eXpander

Figure 36. IDD measurement

one capacitor close to each MFX pins: VDD, VDD_1, VDD_2, VDD_3
decoupling capacitors close to TSZ1 22
differential amplifier
see note *
UM1878 Electrical schematics
decoupling capacitor close to TSZ1 22
ote *: two footprints superimposed allows to
opulate also with SO-8 package P MOS transistors:
STS7P2UH7, STS9P2UH7.
Page 60
60/64 UM1878 Rev 2
11 12
SWD_Touch_USB.SchDoc
MB1168 C-01
2/4/2016
Title:
Size: Referen ce:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CN11 FTSH-110-01-L-DV
VDD
R100 [N/A]
R108 [N/A]
VDD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CN12
VDD
VDD
R113 10K
R115 10K
R109 10K
RESET#
SWDIO SWCLK
KEY
PA13 PA14
SWD connectors
R99 [N/A]
R98 22 R97 22
R111 22
IO1
1
IO2
3
GND
2
IO3
4
IO4
5
U15
ESDALC6V1W5
U5V
C49 100nF
I/O1
1
GND
2
I/O23I/O2
4
Vbus
5
I/O1
6
U10
USBLC6-2P6 (optional)
U5V
R74 100K
USB_DM USB_DP
R70 0
R69 0
PA12
PA11
TS_G1_IO2
TS_G6_IO2
TS_G3_IO2
TS_G6_IO3
TS_G3_IO3
TS_G1_IO3
PB12
PB13
PB0
PA1
PB1
C5 47nFC447nF
C22 47nF
PA2
Capacitors 47nF,5%,25V,NPO,0805 Kemet
R18 10K
R13 10K
R12 10K
1122334
4
LS1
TS_G8_IO1
TS_G8_IO2
R37
10K
PC6
C26 220nF
GND
PC7
MICROB_N MICROB_P
VBUS
1
DM
2
DP
3
ID
4
GND
5
Shield
6
USB_Micro-B receptacle
Shield
7
Shield
8
Shield
9
EXP
10
EXP
11
CN9
1050170001
TS_Shield
USB
4 buttons touch sensing slider

Figure 37. SWD, Touch, USB

Electrical schematics UM1878
Page 61

Figure 38. ST-LINK/V2-1

12 12
STLINK
MB1168 C-01
10/14/2015
Title:
Size: Referen ce:
Date: Sheet: of
A3
Revision:
STM32L073Z-EVAL
Project:
VBAT
1
PC13
2
PC14
3
PC15
4
OSC_IN
5
OSC_OUT
6
/RST
7
VSSA
8
VDDA
9
PA0
10
PA1
11
U2_TX
12
U2_RX13U2_CK14S1_CK15S1_MISO16S1_MOSI17PB018PB119PB2/BOOT120PB1021VSS_123VDD_1
24
PB12
25
PB11
22
S2_CK
26
S2_MISO
27
S2_MOSI
28
PA8
29
PA9
30
PA10
31
PA11
32
PA12
33
JTMS
34
VSS_2
35
VDD_2
36
JTCK
37
JTDI
38
JTDO
39
JNRST
40
PB541PB642PB7
43
BOOT0
44
PB845PB9
46
VSS_3
47
VDD_3
48
U24 STLINK
1 2
X3
8MHz
STL_USB_DM
STL_USB_DP
STM_RST
T_JTCK
T_JTCK
T_JTDO
T_JTDI
T_JTMS
STM_JTMS_SWDIO
STM_JTCK_SWCLK
LED_STLINK
OSC_IN OSC_OUT
T_NRST
T_JRST
LED_STLINK
R186
4K7
R185
4K7
AIN_1
C114 100nF
R184
100K
VDD
STL_USB_DM STL_USB_DP
C97 100nF
C115 100nF
C107 100nF
C103 100nF
R193 22 R194 22
MCU
USB
STM_JTMS_SWDIO STM_JTCK_SWCLK
VUSB_STLINK
SWIM_PU_CTRL
R175
100K
T_SWDIO_IN
T_SWO
R195
1.5K
R207 10K
R206 36K
R183 [N/A]
R182
10K
R172 100K
MCO
21
4 3
Red Yellow COM
LD6
HSMF-A201-A00J1
R204 100
R209 100
R208 0
USART4_RX_3V3
PWR_EXT
PE9
USART4_TX
PE8
R187
0
R168 2K2
GND+5V
R205
100
USB_RENUMn
USB_RENUMn
51
2
GND
3
4
BYPASS
INH
Vin Vout
U16
LD3985M33R
C75
10nF
GNDGND
GND
+3V3_STLINK
+3V3_STLINK
+3V3_STLINK
+3V3_STLINK
+3V3_STLINK
+3V3_STLINK
+3V3_STLINK
+3V3_STLINK
+3V3_STLINK
+3V3_STLINK
PWR_ENn
VUSB_STLINK
R173 4K7
C74
1uF
C73
1uF
VCCA
1
A1
2
A2
3
GND4DIR
5
B2
6
B1
7
VCCB
8
U26
SN74LVC2T45DCUT
VDD
VDD
C109 100nF
C108 100nF
R178 100K
3
1
2
T14 9013-SOT23
+3V3_STLINK
R181
0
D3
BAT60JFILM D4
BAT60JFILM D5
BAT60JFILM D6
BAT60JFILM
U5V
D5V
E5V
VUSB_STLINK
1 2 3 4 5
CN15
[N/A]
VCC
1
D-
2
D+
3
GND
4
SHELL
6
SHELL
5
CN17
USB-typeB connector
+3V3_STLINK
T_SWDIO_IN
T_JTCK
T_NRST
T_JTMS
SWDIO
SWCLK
RESET#
USB Virtual ComPort: USART4
PA14
PA13
C113 20pF
C112 20pF
TP28
[N/A]
D7
BAT60JFILM
JP13
IN
1
IN
2
ON3GND
4
SET
5
OUT
6
OUT
7
FAULT
8
U29 ST890CDR
U5V_STLINK
R68 100K
R71 10K
C54
100nF
output current limitation : 600mA
R66 2K2
1 2
LD10
Red
R65
1K
C48
100nF
VUSB_STLINK
UM1878 Electrical schematics
UM1878 Rev 2 61/64
transistor pins numbers follow SOT23 JEDEC standard,
Power Switch to supply +5V from STLINK USB
Page 62
Mechanical dimensions UM1878
06Y9
PP
PP
PP
PP
PP
PP
PP
PP

Appendix B Mechanical dimensions

Figure 39. Mechanical dimensions

62/64 UM1878 Rev 2
Page 63
UM1878 Revision history

Revision history

Table 33. Document revision history

Date Revision Changes
16-Feb-2016 1 Initial version.
Added Chapter 3: System requirements and Chapter 4:
Development toolchains.
25-May-2018 2
Updated Chapter 1: Features, Chapter 2: Product marking,
Chapter 5: Demonstration software, and Chapter 6: Ordering information.
UM1878 Rev 2 63/64
63
Page 64
UM1878
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved
64/64 UM1878 Rev 2
Loading...