ST STFPC320 User Manual

Front panel controller/driver with standby
power management and real-time clock
Features
IC front panel VFD controller driver
Standby power management to the host
supply for the IC
IR remote control decoder
(Philips, NEC, Thomson, Sony, Matsushita)
Multiple display modes
(12 seg. and 16 digits to 20 seg and 8 digits)
High voltage outputs (V
No additional external resistors required for
driver outputs (P-CH. open drain + pull-down resistor outputs)
Key scanning (up to 12 x 2 matrix = 24 keys)
LED ports (4 channels 20 mA max each)
Serial I
communication protocol b
Operating speed: up to 400 kHz for I
Programmable hotkeys for IR remote con tr ol
command and KEYSCAN command
Low power consumption in standby mode
Dimming circuit (8 steps)
Real-time clock (accuracy ± 25 secs/month)
Wake-up alarm
Internal oscillator with external crystal for RTC
Available in PQFP-52 package (0.65 mm pitc h
Applications
) and down to -30 V (VSS)
DD
- 33.3 V max)
DD
2
C interface (SCL, SDA)
2
C
STFPC320
PQFP-52
Description
The STFPC320 is designed to integrate the VFD driving, key-scan matrix, LED driving, infrared (I R) remote control decoding and real-time clock (RTC) into one integrated solution. All the functions are programmable using the I
Low power consumpt ion is achieved during standby operation. The STFPC320 provides the standby power management to the main chipset.
The STFPC320 is housed in a 52-pin PQFP package. The pin assignments and application circuit are optimized for an easy PCB layout and cost saving advantages.
2
C bus.
VCR, DVD and personal video recorders
Home theatre with clock feature, STB and HTiB
(home theater in a box)

Table 1. Device summary

Order code Operating temperature Package Packaging
STFPC320 -40°C to 85°C PQFP-52 Tape and reel
July 2008 Rev 2 1/78
www.st.com
78
Contents STFPC320
Contents
1 Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Cold boot up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Entering standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Interrupts/events handling by STFPC320 . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 Ready pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Mute pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.8 Keyscan matrix/front panel keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9 LED ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10.1 Normal display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10.2 RTC display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.11 Remote control decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.12 PIN_AV8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13 Default state upon power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14 Initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Operating state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Real-time clock (RTC) operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1 Real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 2-wire bus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/78
STFPC320 Contents
6.4 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4.1 Reading the real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4.2 Writing to the real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.5 Register table for RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.6 Setting alarm clock registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.7 Calibrating the clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.8 Square wave output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.9 Century bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.10 Oscillator stop detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.11 Initial power-on defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1 Configuration mode setting command . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Data setting command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Display control and hotkey setting command . . . . . . . . . . . . . . . . . . . . . . 38
7.4 Example for device configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8 Key matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.1 Key read sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9 LED port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.1 Writing to LED sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10 SW data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.1 Reading switch sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11 Address setting command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.1 RTC display data read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.2 Display (normal & RTC) data write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12 Normal display memory locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13 Configuration data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
14 Interrupt flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3/78
Contents STFPC320
15 Remote control protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
15.1 Decoded and RAW formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
15.2 Sending IR data on I
15.3 Philips RC-5 remote control protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
15.3.1 RC-5 data in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
15.3.2 RC-5 data in RAW format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
15.4 NEC remote control protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
15.4.1 NEC in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
15.4.2 NEC in RAW format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
15.5 Sony remote control format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
15.5.1 Sony in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
15.5.2 Sony in RAW format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
15.6 Matsushita remote control format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
15.6.1 Matsushita in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
15.6.2 Matsushita in RAW format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2
C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
15.7 R2000 remote control format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
15.7.1 R2000 in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
15.7.2 R2000 in RAW format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
15.8 RCA remote control format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
15.8.1 RCA in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
15.8.2 RCA in RAW format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
16 Serial communication format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
17 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
17.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
17.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
17.3 Power consumption estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
17.4 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
17.5 Crystal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
17.6 Oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
17.7 Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
17.8 Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
18 STFPC320 typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4/78
STFPC320 Contents
19 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
20 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5/78
List of tables STFPC320
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Default state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. Register table for RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 5. Alarm repeat modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 6. Square wave output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. Century bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 8. Initial power-on default values of the registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 9. Data write command. b5 b4: 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 10. Data read 1 command. b5 b4: 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 11. Data read 2 command. b5 b4: 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 12. Display RAM address and display mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 13. Sony remote control format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 14. Matsushita remote control format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 15. Absolute maximum ratings (TA = 25°C, GND = 0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 16. Recommended operating conditions (T Table 17. Electrical specifications
(T
= -20 to +70 °C, VDD = 3.3 V, GND = 0 V, VSS = VDD – 33.3 V)70
A
Table 18. Crystal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 19. Oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 20. Switching characterist ics
(T
= -20 to +70 °C, VDD = 3.3V, VSS = -30V)73
Table 21. Switching characterist ics (T
A
= -20 to +70 °C, VDD = 3.3V, VSS = -30V) . . . . . . . . . . . . . . 73
A
Table 22. PQFP52 (10 x 10 x 2 mm) mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 23. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
= -20 to +70°C, GND = 0V) . . . . . . . . . . . . . . . . 68
A
6/78
STFPC320 List of figures
List of figures
Figure 1. STFPC320 block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. Functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3. Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. Power-up behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5. Standby mode behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 6. Wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. Interrupts/events handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 8. Operating state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9. Serial bus data transfer sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
Figure 10. Acknowledgement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11. Alarm interrupt reset waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 12. Crystal accuracy across temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 13. Calibrating waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14. First byte format after configuration byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 15. Second byte format after configuration byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 16. 14-segment + dotpoint display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 17. Front panel hotkeys configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 18. Key matrix and key-input data storage RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 19. LED byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 20. LED byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 21. Configuration data bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 22. Configuration data bytes (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 23. Interrupt byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 24. IR data format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 25. Bi-phase coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 26. RC-5 protocol frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 27. Example of RC-5 transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 28. RC-5 data structure in decoded format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 29. RC-5 data structure in raw format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 30. Pulse distance modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 31. The transmitted waveform for NEC protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 32. NEC data structure in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 33. NEC data structure in raw format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 34. Output code waveform timing definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 35. Sony data structure in decoded format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 36. Sony data structure in raw format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 37. Matsushita remote control protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 38. Matsushita data structure in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 39. Matsushita data structure in raw format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 40. Thomson R2000 remote control protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 41. R2000 data structure in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 42. R2000 data structure in raw format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 43. Thomson RCA remote control protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 44. RCA data structure in decoded format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 45. RCA data structure in raw format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 46. Complete data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 47. Valid data changes on the SDA bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 48. Valid start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7/78
List of figures STFPC320
Figure 49. Acknowledge response from receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 50. Bus timing requirements sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 51. Slave address location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 52. Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 53. Alternative READ mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 54. WRITE mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 55. Key scanning and display timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 56. Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 57. PQFP52L package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8/78
STFPC320 Device block diagram

1 Device block diagram

Figure 1. STFPC320 block diagram

IR_DATA_IN
VDD
VDD
SW1
SW1
SW2
SW2
SCL
SCL
SDA
SDA
R
R
Key1
Key1 Key2
Key2
IR_DATA_IN
Serial
Serial
OSC
OSC
2
2
2-bit
2-bit
Latc h
Latc h
READY
READY
PIN_AV8
PIN_AV8
I2C
I2C
I/F
I/F
Remote Control
Remote Control
Decoder & Stand
Decoder & Stand
By Function
By Function
Command Decoder
Command Decoder
Display Memory
Display Memory
(20 x 16)
(20 x 16)
Timing Generator
Timing Generator
Key Scan and
Key Scan and
Dimming Circuit
Dimming Circuit
Key Data Mem ory
Key Data Mem ory
(2 x 12)
(2 x 12)
32 KHz
32 KHz
oscillator
oscillator
MUTE
MUTE STBY
STBY
20-bit
20-bit
Output
Output
Latc h
Latc h
16-bit
16-bit
Shift
Shift
Register
Register
4
4
4-bit
4-bit
Latch
Latch
Real-time Clock
Real-time Clock
Real-time Clock
Real-time Clock
Calendar
Calendar
RTC wit h Alarm
RTC wit h Alarm
& Calibrat ion
& Calibrat ion
Watchdog
Watchdog
20 12
20 12
8
8
Data
Data
Selector
Selector
8
8
16
16
LED1
LED1
LED2
LED2
LED3
LED3 LED4
LED4
AFE
AFE
8
8
8
8
Drivers
Drivers
Segment
Segment
Drivers
Drivers
Multiplexed
Multiplexed
Grid
Grid
Drivers
Drivers
VDD
VDD
(+3.3V)
(+3.3V)
IRQ_N/SQW
IRQ_N/SQW
SEG1/KS1
SEG1/KS1
SEG12/KS12
SEG12/KS12
SEG13/GRID16
SEG13/GRID16
SEG20/GRID9
SEG20/GRID9
GRID8
GRID8
GRID1
GRID1
GND
GND
(0V)
(0V)
(-30V)
(-30V)
VSS
VSS
9/78
Functional diagram STFPC320

2 Functional diagram

Figure 2. Functional diagram

10/78
STFPC320 Pin settings

3 Pin settings

3.1 Pin connection

Figure 3. Pin connection (top view)

Note: For a description of each pin behaviour, please refer to the STFPC320 Table 2: Pin
description on page 12
11/78
Pin settings STFPC320

3.2 Pin description

Table 2. Pin description

Pin N° Name Type Description
1 OSC IN Connect to an external resistor of value 33 kΩ ± 1% 2 SW1 IN General purpose switch input port. 3 SW2 IN General purpose switch input port.
4 MUTE OUT
5STBYOUT
6, 38 VDD SUPPLY 3.3 V ± 10%. Core main supply voltage.
7 XIN IN Oscillator input pin. 32.768 KHz crystal. 8 XOUT OUT Oscillator output pin. 32.768 KHz crystal. 9 GND SUPPLY Connect this pin to system GND.
10,11 KEY1, KEY2 IN
12 READY IN
13 IR_DATA_IN IN Remote control input. Connect to IR photodiode.
14 to 25
26 VSS SUPPLY VFD outputs high voltage pull-down level. VDD- 33.3 V max.
27 to 34
35-37 GRID8 to GRID6 OUT Grid output pins.
39 RESET_N IN Active low reset input.
SEG1/KS1 to SEG12/KS12
SEG13/GRID16
to SEG20/GRID9
OUT Segment output pins (dual function as key source).
OUT These pins are selectable for segment or grid driving.
High level means mute status for audio. Low level stands for normal working.
Pin to control power to the main board. High level means standby status. Low level stands for normal working. Active high.
Input data to these pins from external keyboard are latched at end of the display cycle (maximum keyboard size is 12 x 2).
High level on this pin means that main board chip has been working normally. Connect an external pull down resistor of 10kΩ on this pin.
40-44 GRID5 to GRID1 OUT Grid output pins.
45 SDA IN/OUT Serial data in/out. Connect to 3.3 V through an external pull-up resistor. 46 SCL IN Serial clock input. Connect to 3.3 V through an external pull-up resistor.
A rising edge transition on this input will signal wake-up operation. This
47 PIN_AV8 IN
48 IRQ_N/SQW OUT
49, 50,
51, 52
12/78
LED4, LED3,
LED2, LED1
OUT CMOS sink outputs (20 mA max).
signal comes from the SCART interface. The micro processor can use this signal to start the recording or take other actions.
Interrupt/square wave output (open drain). A pull up resistor of 10 kΩ must be connected on this pin.
STFPC320 Functional description

4 Functional description

The STFPC320 integrates the supply standby management functionality, remote control decoder, a 2 8-bit VFD driver and a real-time cloc k (R TC). This d e vice is meant to reduce the standby power consumption of the whole front panel application and also to reduce hardware/cost by integrating the above mentioned functions in a single chip.
By utilizing the standby function, the host processor and other ICs could be turned off, thus reducing the system power consumption. The STFPC 32 0 is able to wake-up the system when programmed hotkeys are detected to signal that the full operation of the system is required. The hotkeys could be entered to the system through the front panel keys or through the infrared (IR) remote control. STFPC320 supports multiple remote control protocols decoding by setting the appropriate register.
The integrated 28-bit VFD driver can drive up to 16 digits of display. Controlling of the display is done through writing to a internal RAM. The 4 LED drivers allow indication of operation of the system. 2-wire serial interface (I host processor and STFPC320.
The STFPC320 integrates a a low-power serial RTC with a built-in 32.768kHz oscillator (external crystal controlled). Eight bytes of the SRAM are used for the clock/calendar function and are configured in bin ary coded decimal (BCD) f ormat. An additio nal 12 b ytes of SRAM provide status/ control of alarm, watchdog and square wave functions. Addresses and data are transf erred serially via a two line, bidirectional I address register is incremented automatically after each WRITE or READ data byte.
2
C) completes the interfacing part between
2
C interface. The built-in
Functions available to the user include a non-volatile, time-of-day clock/calendar, alarm interrupts, watchdog timer a nd progr ammab le Square W a v e output. T he eight cloc k address locations contain the century, year, month, date, day, hour, minute, second and tenths/hundredths of a second in 24 hour BCD format. Corrections for 28, 29 (leap year ­valid until year 2100), 30 and 31 day months are made automatically.

4.1 Reset

Reset is an active low input signal to the STFPC320. A negative pulse input on RESET_N pin resets the STFPC320. Electrical specifications of this pin are identical to that of the logic input pin.
Upon power-up, an internal power on reset circuit resets the whole chip. This occurs when V
is ramping up (at appro xim ately 2.7 V) and the whole chip is initialized within 4 µs. This
DD
time is much lesser than the typical V RESET_N pin permanently by a pull-up resistor to V during normal operation. For an initia lization on po wer-up, a power-on-reset in STFPC320 is sufficient to reset the entire STFPC320.
As soon as the 3.3 V supply to the chip is stable, the I communication.
ramp-up time. It is recommended to tie the
DD
if reset to STFPC320 is not desired
DD
2
C bus of the STFPC320 is ready for
13/78
Functional description STFPC320

4.2 Cold boot up

When power is first applied to the system, the STFPC320 will be reset. It will then manage the power to the main board by bringing the STBY pin to a low level. This will wake-up the main processor which will assert the READY pin to a high lev el to indicate to STFPC320 of a proper boot-up sequence.
If the microprocessor does not assert the READY pin to a high within 10s, the STFPC320 will cut off the power to the Host by asserting the STBY pin. The high level on READY pin signifies that the processor is ready. After this, the processor can configure the STFPC320 by sending the v arious I mapping, hot-keys.
The power-up behavior in 2 conditions is shown in the Figure 4.

Figure 4. Power-up behaviour

2
C commands for configuration o f displa y, RC protocol, R TC displa y
Note: 1 Guard timer is turned off by default upon READY assertion.
2 If the guard timer is to be kept on during READY high condition, the guard timer registers
must be set accordingly by proper commands through I
2
C bus. 3 In this power-up condition, the guard timer is triggered by internal POR pulse. 4 During power-up, the guard timer value is 10s.
14/78
STFPC320 Functional description

4.3 Entering standby mode

The STFPC320 will control the power to the main board using the STBY pin. During normal operation, the STBY pin is at a low level which externally controls a power MOS switch to enable power to the main board. The STFPC320 asserts the STBY pin to a high when any one of the following condit ions occur:
Processor fails to respond by enabling the READY pin within 10 s upon first power-up
(cold boot up)
Guard timer counts down to 0 s
Processor makes the READY pin to low (can happen in various conditions, such as
user presses STBY key on front panel, STBY key on remote control, etc.)

Figure 5. Standby mode behaviour

Note: 1 Guard timer can be kept on during normal condition when READY is high (depending on the
user).
2 In this condition, the guard timer can be disabled or enabled. If the guard timer is enabled,
the timer needs to be cleared before the programmed count o f the timer is reached. If the programmed count is reached, the STBY will be asserted.
3 It is advisable not to enable the guard timer during normal operation.
15/78
Functional description STFPC320

4.4 Wake-up

The STFPC320 can wake-up f rom any one of the fo llowing sources:
Front-panel keys
Remote-control keys
Real-time clock (RTC) in 3 conditions (alarm, watchdog timer, oscillator fail)
External pin PIN_AV8 (only by a low-to-high transition on this pin)

Figure 6. Wake-up

Note: 1 When the hot-key is detect ed either fr om front-pane l or remote cont rol or RTC or from a low-
to-high transition on PIN_AV8 pin during standby, the STBY pin de-asserts. 2 The de-assertion of the STBY triggers the guard timer. 3 The timer value is the progr am med value by the user (1-1 5s). If t he u ser did not chan ge the
value before entering standby, then it remains 10s. 4 Also note that the guard timer is off when the STFPC320 is in the standby mode.
Guard timer is thus triggered by a de-assertion of the STBY signal or by internal power on
reset signal.
16/78
STFPC320 Functional description

4.5 Interrupts/events handling by STFPC320

The STFPC320 interrupts the Host by pulling the IRQ_N/SQW pin to a low-level both in
normal mode of operation and during wak e-up . The int errupt is enable d by ST FPC320 when
any of the conditions occur:
Front panel key press in normal operation or during system standb y state
Remote control key press in normal operation or during system standby state
A low-to-high transition on the external pin, PIN_AV8
Real-time clock triggers (alarm, watchdog timer, oscillator fail)
The IRQ_N/SQW is an active low level signal and is cleared only after the interrupt b u ffer is
read. After reading the interrupt buffer, the Host will know the actual source of the interrupt.
This allows the Host to exact ly kno w the event which caused the interrupt (e.g STBY key on
the front panel). The interrupt signal is used to inf orm the Host of any events detected by the
STFPC320. Note that the IRQ_N/SQW pin is an open-drain pin which requires an external
pull-up resistor.

Figure 7. Interrupts/events handling

4.6 Ready pin

The STFPC320 supports cutting-off power to the main board for standby operation for good
power management. STBY will be set to high when the READY transitions from high to low.
During a cold boot up or wakeup from standby, if the READY pin stays low, the STFPC320
will assert the STBY when the guard timer has finished counting down to 0.
When the READY drops to a low, MUTE goes high immediately and soon after (2 µs) the
STBY is asserted.
In the normal mode of operation, when READY is a high, the STBY is asserted only when
the guard timer is enabled and has finished counting down to 0. This is meant to put the
system into standby as the READY pin was stuck at high and the guard timer regi ster was
not cleared before it finished counting down to 0. It is advised to disable the guard timer
during normal operation.
17/78
Functional description STFPC320

4.7 Mute pin

The MUTE pin is set to logic high to mute the audio output before power is cut to the host
processor. In wakeup mode, the MUTE pin is set to logic low to enable the audio output
immediately after the high assertion of the READY pin. In general, MUTE f ollows READY pin
with an inverted polarity. This pin is used to prevent pop-up sound during power-up and
power-down states.

4.8 Keyscan matrix/front panel keys

The key scan matrix on the STFPC320 helps to pass command from the front panel to the
host processor through the SDA pin on STFPC320. The STFPC320 can be prog r a mme d to
wake-up the system from standby using any of the 24 keys pressed on the front panel.
These wake-up keys are also referred to as hot-keys.

4.9 LED ports

4 LED displays are supported by the STFPC320. Turning on or off of the LED is done by
issuing write command to the LED port. After reset, the LEDs are off. Note that the LED
outputs sink the current, so the cathode of the diode must be connected to the LED pins of
STFPC320.

4.10 Display

The display is divided into two sections, Normal and real-time clock (RTC).

4.10.1 Normal display

The VFD display is configurable for displays from 8 digits/20 segments to 16 digits/12
segments. The VFD displa y can be configured to be eith er in the normal VFD mode or in the
RTC mode. In the normal VFD mode, the display shows whatever is written in the VFD
display memory.
If the user desires to show normal display simultaneously with the RTC, then CPU must
read the time of RTC display memory and then write all the data to be displayed to the
normal display memory. After writing the values to the display memory, a display-on
command will show both the normal and RTC display on the front panel.
On first power on, the default configuration is 16-digit, 12-segment mode (with display
turned OFF).

4.10.2 RTC display

In RTC mode, th e display can be configured to show the time in two modes, either by dire ct
mapping of RTC to t he display or by using the CPU. If CPU is used, the CPU reads th e R T C
value from RTC registers and then writes the time to be displayed in the RTC display
memory.
18/78
STFPC320 Functional description

4.11 Remote control decoder

Remote control (RC) decoder module decodes the signal coming from IR_DATA_IN. The list
of IR remote control protocols recognized by STFPC320 is Philips RC-5, SONY, NEC,
Thomson-RCA, Thomson-R2000 and Matsushita. The selection of remote control protocol
to use is done by setting the RC Protocols register. The commands from RC is used to
wake-up from standb y and resume n ormal operation. All RC ke ys can be pro grammed t o act
like RC hotkeys. Upon receiving any one of the designated hotkeys, wake-up operation will
begin.

4.12 PIN_AV8

External device (e.g. set-top box) could pull this pin high to wake-up the system. A low-to-
high transition on this pin will signal the STPFC320 to wake-up and provide power to the
system. This signal is considered high when it is in the range of 2.5 - 3.6 V (proper voltage
division must be done externally so that the STFPC320 PIN_ AV8 sees no more than 3.6 V).
No action is taken on the high-to-low transition on PIN_AV8. Also when the pin is already a
high, the current state of the system is maintained and it does not trigger anything.

4.13 Default state upon power-up

The Table 3 below shows the default state of the STFPC320 upon power-up.

Table 3. Default state

S.No. Functions Default state
1 Display OFF 2Key-scan ON 3 IR (Remote Control) ON 4 Display mode 12 segment/16 digit 5 Display address 10H with Address increment mode 6 RC protocol RC-5 (Raw format) 7LED OFF 8 Dimming 1/16 duty factor 9 Hot Keys (IR and FP) Disabled
10 Guard timer 10s
19/78
Functional description STFPC320

4.14 Initial state

On power application, the 1/16-pulse width is set and th e display shows the value
configured in the VFD display RAM before entering the standby mode. Thus if HELLO is
required to be shown on the VFD upon w ak e-up , then the user must write the cor responding
digit and segments locations in the VFD displa y memory before going in to the standby mo de
of operation. Note that t he V
value of the display changes only after user configuration.
If the user wishes to display t he RTC value during standby, then the user must configure the
STFPC320 by sending the appropriate command. If the user does not configure the
STFPC320 to display the RTC in standby, the VFD shows the same value as was written in
the VFD display memory location.
Note that all the hot keys are disabled on power-up. Only the hotkeys (FP or RC) or RTC or
the low to high transition on the PIN_AV8 pin can be detected to wake-up the system from
standby condition.
must be present in order to keep th e VFD displa y activ e . The
SS
20/78
STFPC320 Operating state diagram

5 Operating state diagram

Figure 8. Operating state diagram

21/78
Real-time clock (RTC) operation STFPC320

6 Real-time clock (RTC) operation

6.1 Real-time clock

The RTC operates as a slave device through the slave address of the STFPC320 on the
serial bus. Access is obtained by implementing a start condition followed by the correct
slave address (Write: 0x52H and Read: 0x53H). The 16 bytes contained in the device can
then be accessed sequentially in the following order:
1. Reserved
2. Seconds register
3. Minutes register
4. Hours register
5. Square wave/day register
6. Date register
7. Century/month register
8. Year register
9. Calibration register
10. Watchdog register
11 - 15. Alarm registers
16. Flags register

6.2 2-wire bus characteristics

The bus is intended for communication between different ICs. It consists of two lines: a
bidirectional data signal (SDA) and a clock signal (SCL). Both the SDA and SCL lines must
be connected to a positive supply voltage (typical voltage is 3.3 V) via a pull-up resistor
(typical value is 10 K). The following protocol has been defined:
Data transfer may be initiated only when the bus is not busy.
During data transfer, the data line must remain stable whenever the clock line is High.
Changes in the data line, while the clock line is High, will be interpreted as control
signals.
Accordingly, the following bus conditions have been defined:
Bus not busy: both data and clock lines remain High.
Start data transfer: a change in the state of the data line, from high to Low, while the
clock is High, defines the START condition.
Stop data transfer: a change in the state of the data line , from Low to High, while the
clock is High, defines the STOP condition.
Data Valid: the st ate o f the data line represent s v a lid data when after a sta rt condition,
the data line is stable fo r the durat ion of the high period of the clo ck signal. The data on the line may be changed during the Low pe riod of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a start condition and terminated with a stop
22/78
STFPC320 Real-time clock (RTC) operation
condition. The number of data bytes transferred between the start and stop conditions is not limited. The information is transmitted byte-wide an d each receiver ac knowledges with a ninth bit. By definition a device that gives out a message is called “transmitter,” the receiving device that gets the message is called “recei v er.” The de vice t hat controls t he message is called “master.” The devices that are co ntrolled by the master are called “sla ves.”
Acknowledge: each byte of eight bits is followed by one Acknowledge Bit. This
Acknowledge Bit is a low level put on the bus by the receiver whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed is obliged to generate an acknowledge afte r the reception of each byte that has been clocked out of the master transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way th at the SD A line is a stable Lo w during the High period of the acknowledge related clock pulse. Of course, set up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case the transmitter must lea v e t he data line High to enab le the master t o gener ate the STOP condition.

Figure 9. Serial bus data transfer sequence

Figure 10. Acknowledgement sequence

23/78
Real-time clock (RTC) operation STFPC320

6.3 Watchdog timer

The watchdog timer can be used to detect an out of control microprocessor. The user
programs the watchdog timer by setting the desired amou nt of time-out into the Watchdog
Register, address 09h. Bits BMB4-BMB0 store a binary multiplier and the three bits RB2-
RB0 select the resolution where:
000 = 1/16 second (16Hz)
001 = 1/4 second (4Hz)
010 = 1 second (1Hz)
011 = 4 seconds (1/4Hz)
100 = 1 minute (1/60Hz)
Note: Invalid combinations (101, 110, and 111) do NOT enable a watchdog time-out. Setting the
BMB4-BMB0 = 0 with any combination of RB2-RB0, other than 000, will result in an
immediate watchdog time-out. The amount of time-out is then determined to be the
multiplication of the five-bit multiplier value with the resolution. (For example: writing
00001110 in the Watch dog reg ist er = 3*1 or 3 second s). If the pro ces so r do es not reset th e
timer within the specified period, the STFPC320 generates a watchdog output pulse on the
IRQ_N/SQW pin.
The watchdog timer can only be reset b y having the microprocessor perf orm a WRITE of the
Watchdog register. The time-out period then starts over. Should the watchdog timer time-
out, any value may be written to the Watchdog Register in order to clear the IRQ_N/SQW
pin. A value of 00h will disable the watchdog function until it is again programmed to a new
value. A READ of the Flags Register will reset the W atchdog flag (Bit D7; Register 0Fh). The
watchdog function is automatically disabled upon power-up, and the Watchdog Register is
cleared.

6.4 Real-time clock (RTC)

The RTC keeps track of the date and time. Once the date and time are set, the clock works
when the STFPC320 is in normal operation and standby operation. The wake-up alarm
feature is included in the RTC module. The accuracy of the RTC is approximately 10 ppm
(±25 secs/month).
The wakeup alarm is programmed to wake up once the date and time set are met. This
feature is present in normal and standby mode of operation. Only one date and time is
available for setting.
The real-time clock (RTC) uses an external 32.768 kHz quartz crystal to maintain an
accurate internal representation of the second, minute, hour, day, date, month, and year.
The RTC has leap-year correction. The clock also corrects for months having fewer than 31
days.
24/78
Loading...
+ 54 hidden pages