ST STE2004S User Manual

STE2004S
102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER

1 FEATURES

102 x 65 bits Display Data RAM
Programmable MUX rate
Programmable Frame Rate
Dual Partial Display Mode
Row by Row Scrolling
N-line Inversion
Automatic data RAM Blanking procedure
Selectable Input Interface:
• I2C Bus Fast and Hs-mode (read and write)
• 68000 & 8080 Parallel Interfaces (read and write)
• 3-lines and 4-lines SPI Interface (read and write)
• 3-lines 9 bit Serial Interface (read and write)
Fully Integrated Oscillator requires no external
components
CMOS Compatible Inputs
Fully Integrated Configurable LCD bias voltage
generator with:
• Selectable
• Effective sensing for High Precision Output
• Eight selectable temperature compensation coefficients
Designed for chip-on-glass (COG) applications.
multiplication factor (up to 5X)
Low Power Consumption, suitable for battery
operated systems
Logic Supply Voltage range from 1.7 to 3.6V
High Voltage Generator Supply Voltage range
from 1.75 to 4.5V
Display Supply Voltage range from 4.5 to 14.5V
Backward Compatibility with STE2001/2/4

2 DESCRIPTION

The STE2004S is a low power CMOS LCD con­troller driver. Designed to drive a 65 rows by 102 columns graphic display, it provides all necessary functions in a single chip, including on-chip LCD supply and bias voltages generators, resulting in a minimum of externals components and in a very low power consumption. STE2004S features six standard interfaces (3­lines Serial, 3-lines SPI, 4-lines SPI, 68000 Paral­lel, 8080 parallel & I the host micro-controller.

Table 1. Order Codes

Part Numbers Type
STE2004S DIE2
2
C) for ease of interfacing with
Bumped Dice on Waffle Pack

Figure 1. Block Diagram

OSC_IN
OSC_OUT
FR_IN
FR_OUT
VSENSE SLAVE
VLCD
VLCDSENSE
VSSAUX
VDD1,2
V
SS
September 2005
RES
OSC
MASTER
SLAVE SYNC
BIAS VOLTAGE
GENERATOR
HIGH VOLTAGE
GENERATOR
RESET
I2C BUS
SAO SDIN/SDA_IN SDA_OUTSCLK/SCL
DATA
REGISTER
9 Bit SERIAL
GENERATOR
TIMING
CLOCK
INSTRUCTION
REGISTER
3 & 4 Line SPI
CO to C101 R0 to R64
COLUMN DRIVERS
DATA
LATCHES
65 x 102
DRIVERS
REGISTER
SCROLL
RAM
DISPLAY
CONTROL
LOGIC
Parallel 8080
DB0
to
DB7
Parallel 68K
ROW
SHIFT
LOGIC
TEST
D/C CSSA1 SDOUT E/WR R/W- RD
TEST_MODE TEST_VREF
ICON_MODE EXT
SEL 3
SEL 2
SEL 1
LR0047
Rev. 1
1/66
STE2004S
Table 2.
PIN DESCRIPTION
Pad Type Function
R0 to R64 1-6
O LCD Row Driver Output
109-141
C0 to C101 6-107 O LCD Column Driver Output
V
SS 192-203 GND Ground pads.
DD1 156-163 Supply IC Positive Power Supply
V
DD2 164-171 Supply Internal Generator Supply Voltages.
V
LCD 205-209 Supply Voltage Multiplier Output
V
V
LCDSENSE
V
SENSE_SLAVE
V
SSAUX
204 Supply
Voltage Multiplier Regulation Input. V
145 Supply Voltage reference for SLAVE CHARGE PUMP
190-177-
O Ground Reference for Pins Configuration
147
V
DD1AUX
SEL1,2,3 152
142 O VDD1 Reference for Pins Configuration
153 154
I Interface Mode Selection
SEL3 SEL2 SEL1 Interface
GND / VSSAUX GND / VSSAUX GND / VSSAUX
- CANNOT BE LEFT FLOATING
GND / VSSAUX GND / VSSAUX VDD1
GND / VSSAUX VDD1 GND / VSSAUX
GND / VSSAUX VDD1 VDD1
VDD1 GND / VSSAUX GND / VSSAUX
VDD1 GND / VSSAUX VDD1
Sensing for Output Voltage Fine Tuning
LCDOUT
SPI 4-Lines 8 bit
SPI 3-Lines 8 bit
Serial 3-Lines 9 bit
Parallel 8080-series
Parallel 68000-series
I2C
EXT_SET 151 I Extended Instruction Set Selection
- CANNOT BE LEFT FLOATING
EXT PAD CONFIG INSTRUCTION SET SELECTED
GND or VSSAUX BASIC
VDD1 EXTENDED
ICON_MODE
155 I Extended Instruction Set Selection
- CANNOT BE LEFT FLOATING
ICON MODE PAD CONFIG ICON MODE STATUS
GND or VSSAUX DISBLED
VDD1 ENABLED
SDOUT 180 O Serial & SPI Data Output - IF UNUSED MUST BE LEFT FLOATING
SDIN - SDAIN 179 I SDIN - Serial & SPI Interface Data Input - CANNOT BE LEFT FLOATING
I
SDAIN - I
2
C Bus Data In - CANNOT BE LEFT FLOATING
SCLK - SCL 181 I SCLK - Serial & SPI Interface Clock - CANNOT BE LEFT FLOATING
I
SDA_OUT 178 O
SA0 149 I
SA1 148 I
2
C bus Clock - CANNOT BE LEFT FLOATING
SCL - I
2
C Bus Data Out IF UNUSED MUST BE LEFT FLOATING
I
2
C Slave Address BIT 0 - CANNOT BE LEFT FLOATING
I
2
C Slave Address BIT 1- CANNOT BE LEFT FLOATING
I
DB0 to DB7 182-189 I/O Parallel Interface 8 Bit Data Bus - CANNOT BE LEFT FLOATING
- RD 175 I R/W - 68000 Series Parallel Interface Read & Write Control Input
R/W
- CANNOT BE LEFT FLOATING
IRD
- 8080 Series Parallel Interface Read enable Clock Input
- CANNOT BE LEFT FLOATING
E / WR
176 I E - 68000 Series Parallel Interface Read & Write Clock Input
- CANNOT BE LEFT FLOATING
2/66
STE2004S
Table 2.
TEST_MODE 191 I Test Pad - 50 kohm internal Pull-down MUST BE CONNECTED TO VSS/VSSAUX
TEST_VREF 146 O Test Pad - MUST BE LEFT FLOATING
OSCOUT 210 O Internal/External Oscillator Out - IF UNUSED MUST BE LEFT FLOATING
PIN DESCRIPTION
Pad Type Function
E / WR 176 I WR - 8080 Series Parallel Interface - Write enable clock input
RES
D/C
CS
OSCIN 144 I
FR_OUT 211 O Master Slave Frame Inversion Synchronization.
FR_IN 143 I Master Slave Frame Inversion Synchronization.
M/S 100 I Master/
172 I Reset Input. Active Low.
174 I Interface Data/Command Selector- CANNOT BE LEFT FLOATING
173 I Serial & Parallel Interfaces ENABLE. When Low the Incoming Data are Clocked In.
(continued)
- CANNOT BE LEFT FLOATING
CANNOT BE LEFT FLOATING
Oscillator Input:
OSC_IN Configuration
High Internal Oscillator Enabled
Low Internal Oscillator Disabled
External Oscillator Internal Oscillator Disabled
IF UNUSED MUST BE LEFT FLOATING
CANNOT BE LEFT FLOATING
Slave Configuration Bit:- CANNOT BE LEFT FLOATING
M/S PIN OSC_OUT FR_OUT FR_IN Charge Pump
High ENABLED Enabled Disabled AuxVsense Disabled
Low ENABLED Enabled Enabled Charge Pump in Slave Mode or Ext
Power
3/66
STE2004S

Figure 2. Chip Mechanical Drawing

ROW 5
ROW 0
COL 0
COL 50
COL 51
ROW 6
MARK_1
MARK_3
STE2004S
(0,0)
X
Y
MARK_4
ROW 27
ROW28
ROW31
FR_OUT OSC_OUT
VLCD
VLCDSENSE
VSS
TEST_MODE
VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK - SCL
SDOUT SDIN - SDAIN SDAOUT
VSSAUX E - WR
R/W - RD
D/C
CS
RES
4/66
COL 101
ROW 32
ROW 37
MARK_2
ROW 38
ROW 59
VDD2
VDD1
ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF
VSENSE_SLAVE
OSC_IN FR_IN VDD1_AUX
ROW64/ICON ROW63
ROW60
LR0048

Figure 3. Improved ALTH & PLESKO Driving Method

V
LCD
V
2
V
3
ROW 0
R0 (t)
V
4
V
5
V
SS
V
LCD
V
2
V
3
ROW 1
R1 (t)
V
4
V
5
V
SS
V
LCD
V
2
V
3
COL 0
C0 (t)
V
4
V
5
V
SS
V
LCD
V
2
V
3
COL 1
C1 (t)
V
4
V
5
V
SS
V
- V
LCD
SS
V3 - V
SS
STE2004S
V1(t) ∆V
(t)
2
V
V
state1
state2
V
- V
LCD
(t)
V3 - V
V
- V
LCD
V3 - V
V
- V
LCD
(t)
V3 - V
(t) = C1(t) - R0(t)
V
1
(t) = C1(t) - R1(t)
V
2
2
0V
SS
SS
SS
2
0V
SS
0 1 2 3 4 5 6 7 8 9 64
.......
FRAME n FRAME n + 1
0 1 2 3 4 5 6 7 8 9 64
.....
.......
.....
V
4 - V5
0V V
SS - V5
V4 - V VSS - V
V
4 - V5
0V V
SS - V5
V4 - V VSS - V
D00IN1154
LCD
LCD
LCD
LCD
5/66
STE2004S

3 CIRCUIT DESCRIPTION

3.1 Supplies Voltages and Grounds

is supply voltages to the internal voltage generator (see below). If the internal voltage generator is
V
DD2
not used, this should be connected to V could be different form V
DD2
.

3.2 Internal Supply Voltage Generator

The IC has a fully integrated (no external capacitors required) charge pump for the Liquid Crystal Display supply voltage generation. The multiplying factor can be programmed to be: Auto, X5, X4, X3, X2, using the ’set CP Multiplication’ Command. If Auto is set, the multiplying factor is automatically selected to have the lowest current consumption in every condition. This make possible to have an input voltage that chang­es over time and a constant V
CDSENSE
pad. For this voltage, eight different temperature coefficients (TC, rate of change with
voltage. The output voltage (V
LCD
temperature) can be programmed using TC1 & TC0 or T2, T1 and T0 bits. This will ensure no contrast degradation over the LCD operating range.
An external supply could be connected to V such event the internal voltage generator must be programmed to zero (PRS = [0;0], Vop = 0 - Reset con­dition) and the Charge pump (CP[0;0]) set to 5x or Auto Mode.
V
DD1
DD2
pad. V
2VLCD
------------------------- 200mV+ n4+()
to supply the LCD without using the internal generator. In
LCD
supplies the rest of the IC. V
DD1
) is tightly controlled through the V
LCD
supply voltage
DD1
L-

3.3 Oscillator

A fully integrated oscillator (requires no external components) is present to provide the clock for the Dis­play System. When used the OSC pad must be connected to V
pad. An external oscillator could be
DD1
used and fed into the OSC pin.If an external oscillator is used, it must be always present when STE2004S is not in power down mode. An oscillator out is provided on the OSCOUT Pad to cascade two or more drivers.

3.4 Master/Slave Mode

STE2004S support the Master Slave working Mode for Both Control Logic and Charge Pump. This func­tion allows to drive matrix such as 204x65 or 102x130 using two synchronized STE2004S and the internal Charge Pump of both device.
If M/S
is connected to VDD1, the driver is configured to work in Master Mode. When STE2004S is in Mas­ter Mode the Vsense_Slave Pin is disabled and is possible to control the VLCD value using Vop Bits. The Master Time Generator outputs on FR_OUT and on OSC_OUT the relevant timing references. If M/S
is connected to GND, the driver is configured to work in Slave Mode. When STE2004S is in Slave Mode, the VLCD configuration set by Vop registers and the thermal compensation slope set by TC register are neglected. The VLCD Value generated is equal to the Voltage value present on Vsense_Slave Pin so the slave configuration can follow the master configuration. The only recognized configuration is Vop=0 that forces the Charge Pump to be in off state whatever is the value of Vsense_aux. To Synchronize the Master & Slave timing circuits, the slave driver FR_IN pad must be connected to Mas­ter Driver FR_OUT pad and Slave Driver OSC_IN pad must be connected to the master driver OSC_OUT Pad (Fig. 4). This connection ensure a synchronization at both Frame level (R0 on the master is driven together with the Slave R0 driver) and at Oscillator Level (same Frame frequency on the master and on the slave). If the Synchronization at Frame level is not required, FR_IN pin must be connected toVDD1 or to VDD1_aux (Fig. 5).
During Power Up Procesure, Master device must be forced to exit from power down before the slave de­vice. To enter in PowerDown Mode, Slave Device must be forced in Power Down state before Master De­vice.
6/66

Figure 4. Master Slave Logic Connection with frame Synchronization

0
0
STE2004S
STE2004S
VDD1AUX
OSCOUT
FROUT OSCINFRINOSCIN FRIN
STE2004S
OSCOUT FROUT
LR0219

Figure 5. Master Slave Logic Connection without frame Synchronization

STE2004S
VDD1AUX
OSCOUT
FROUTOSCIN FRIN
STE2004S
OSCIN
VDD1AUX
FRIN
OSCOUT FROUT
LR022

3.5 Bias Levels

To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are generated. The ratios among these levels and VLCD, should be selected according to the MUX ratio (m). They are established to be (Fig. 6):
V
LCD
n3+
-------------
,
n4+
V
LCD
n2+
-------------
,
n4+
V
LCD
-------------
,
n4+
2
V
LCD
-------------
,
n4+
1
V
LCD,VSS

Figure 6. Bias level Generator

V
R
R
nR
R
R
LCD
n + 3 n + 4
n + 2 n + 4
n + 4
n + 4
V
2
1
SS
·V
LCD
·V
LCD
·V
LCD
·V
LCD
D00IN115
thus providing an 1/(n+4) ratio, with n calculated from:
nm3=
For m = 65, n = 5 and an 1/9 ratio is set.
For m = 49, n =4 and an 1/8 ratio is set.
The STE2004S provides three bits (BS0, BS1, BS2) for programming the desired Bias Ratio as shown below:
7/66
STE2004S

Table 3.

BS2 BS1 BS0 n
0007
0016
0105
0114
1003
1012
1101
1110
The following table Bias Level for m = 65 and m = 49 are provided:

Table 4.

Symbol m = 65 (1/9) m = 49 (1/8)
V1 V
V2 8/9*V
V3 7/9*V
V4 2/9*V V
V5 1/9 *V
V6 V
LCD
LCD
LCD
LCD
LCD
SS
V
7/8*V
6/8*V
2/8*V
1/8*V
V
LCD
LCD
LCD
LCD
LCD
SS

3.6 LCD Voltage Generation

The LCD Voltage at reference temperature (To = 27°C) can be set using the VOP register content according to the following formula:
V
(T=To) = V
LCD
o = (Ai+VOP · B) (i=0,1,2)
LCD
with the following values:
Symbol Value Unit Note
Ao 2.95 V PRS = [0;0]
A1 6.83 V PRS = [0;1]
A2 10.71 V PRS = [1;0]
B 0.0303 V
To 2 7 ° C
Note that the three PRS values produce three adjacent ranges for VLCD. If the VOP register and PRS bits are set to zero the internal voltage generator is switched off.
The proper value for the VLCD is a function of the Liquid Crystal Threshold Voltage (Vth) and of the Mul­tiplexing Rate. A general expression for this is:
1m+
------------------------------------
21
V
LCD(to)
=
V
1
⎛⎞
---------
⎝⎠
m
= 6.85 · V
th
th
For MUX Rate m = 65 the ideal V
LCD
is:
V
LCD
than:
6.85 VthAi–()
V
op
-----------------------------------------=
0.03
8/66
STE2004S

3.7 Temperature Coefficients

As the viscosity, and therefore the contrast, of the LCD are subject to change with temperature, there's the need to vary the LCD Voltage with temperature. STE2004S provides the possibility to change the VLCD in a linear fashion against temperature with eight different Temperature Coefficient selectable through T2, T1 and T0 bits. Only four of them are available through basic instruction set.

Table 5.

NAME TC1 TC0 Value Unit
TC0 0 0
TC2 0 1
TC3 1 0
TC6 1 1
-0.7 · 10
-1.05· 10
-2.1 · 10
-0.0· 10
-3
-3
-3
-3

Table 6.

NAME T2 T1 T0 Value Unit
TC0 0 0 0
TC1 0 0 1
TC2 0 1 0
TC3 0 1 1
TC4 1 0 0
TC5 1 0 1
TC6 1 1 0
TC7 1 1 1
-0.35 · 10
-0.7 · 10
-1.05· 10
-1.4 · 10
-1.75· 10
-2.1 · 10
-0.0· 10
-2.3· 10
-3
-3
-3
-3
-3
-3
-3
-3

Figure 7.

1/ °C
1/°C
1/°C
1/°C
1/ °C
1/°C
1/°C
1/°C
1/°C
1/°C
1/°C
1/°C
LCD
V
1
A
00h 01h 02h 03h 04h 05h …. 7Fh 00h 01h 02h7Ch 7Dh 7Eh 03h 04h 7Dh 7Eh 7Fh05h …. 7Ch
Finally, the V
B
1
0
A
+ B
A
PRS = [0;0] PRS = [0;1]
voltage at a given (T) temperature can be calculated as:
LCD
V
LCD
(T) = V
o · [1 + (T-To) · TC]
LCD
2
A
00h 01h 02h 03h 04h
PRS = [1;0]
05h 7Ch
….
7Dh 7Eh 7Fh
O
V
9/66
STE2004S

3.8 Display Data RAM

The STE2004S, provides an 102X65 bits Static RAM to store Display data. This is organized into 9 (Bank0 to Bank8) banks with 102 Bytes. One of these Banks can be used for Icons. RAM access is accomplished in either one of the Bus Interfaces provided (see below). Allowed addresses are X0 to X101 (Horizontal) and Y0 to Y8 (Vertical).
When writing to RAM, four addressing mode are provided:
• Normal Horizontal (MX=0 and V=0), having the column with address X= 0 located on the left of the mem-
ory map. The X pointer is increased after each byte written. After the last column address (X=X-Car­riage), Y address pointer is set to jump to the following bank and X restarts from X=0. (Fig. 8)
• Normal Vertical (MX=0 and V=1), having the column with address X= 0 located on the left of the memory
map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage), X address pointer is set to jump to next column and Y restarts from Y=0 (Fig. 9).
• Mirrored Horizontal (MX=1 and V=0), having the column with address X= 0 located on the right of the
memory map. The X pointer is increased after each byte written. After the last column address (X=X­Carriage), Y address pointer is set to jump to the next bank and X restarts from X=0 (fig. 10).
• Mirrored Vertical (MX=1 and V=1), having the column with address X= 0 located on the right of the mem-
ory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Car­riage), the X pointer is set to jump to next column and Y restarts from Y=0 (fig. 11).
After the last allowed address (X;Y)=(X-Carriage; Y-Carriage), the address pointers always jump to the cell with address (X;Y) = (0;0) (Fig. 12,13,14 & 15). Data bytes in the memory could have the MSB either on top (D0 = 0, Fig.16) or on the bottom (D0=1, Fig.
17). The STE2004S provides also means to alter the normal output addressing. A mirroring of the Display along the X axis is enabled setting to a logic one MY bit.This function doesn't affect the content of the memory map. It is only related to the memory read process.
When ICON MODE=1 the Icon Row is not mirrored with MY and is not scrolled. When ICON MODE=0 the Icon Row is like an other graphic line and is mirrored and scrolled.
Three are the multiplex ratio available when the partial display mode is disabled (MUX 33, MUX 49 and MUX 65). Only a subset of writable rows are output on Row drivers in MUX 33,49 & 65 Mode.
When Y-Carriage<MUX/8, if Mux 49 is selected only the first 49 memory rows are visualized; if Mux 33 is selected only the first 33 memory rows are visualized. The unused output row & column drivers must be left floating.
When Y-Carriage<=MUX/8 the icon Bank is located to BANK 8 in MUX 65 Mode, to BANK6 in MUX 49 Mode and to BANK 4 in MUX 33 Mode.
In Mux 33 & 49 Mode, when Y-Carriage>MUX/8 lines only 33, 49 lines are visualized.
It is possible to select which lines of DDRAM are connected on the output drivers using the scrolling func­tion (Range: 0-Y-Carriage*8). When Y-Carriage>MUX/8 lines, the icon row is moved in DDRAM to the first row of the Bank correspondant to Y-CARRIAGE Return value, being always connected on the same output Driver.
When MY=0, the icon Row is output on R64 in mux 65 mode, on R56 in MUX 49 and on R48 in MUX33.
When MY=1, and ICON MODE=0, the icon Row is output on R0 whatever is the MUX Rate.
10/66
STE2004S
2
Figure 8. Automatic data RAM writing sequence with V=0 and Data RAM Normal Format (MX=0)1
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5
BANK 6
BANK 7 BANK 8
0123 9899100101
LR0049
Figure 9. Automatic data RAM writing sequence with V=1 and Data RAM Normal Format (MX=0)
0123 9899100101
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5
BANK 6
BANK 7 BANK 8
01
LR0050
Figure 10. Automatic data RAM writing sequence with V=0 and Data RAM Mirrored Format (MX=1)
1
1
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5
BANK 6
BANK 7 BANK 8
32109899100101
LR0051

Figure 11. Automatic data RAM writing sequence with V=1 and Data RAM Mirrored Format (MX=1)1

BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5
BANK 6
BANK 7 BANK 8
1. X Carriage=101; Y-Carriage = 8
10329899100101
LR005
11/66
STE2004S
3
4
6

Figure 12. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=0)

BANK 0
0123
BANK 1 BANK 2
Y CARR
BANK 7 BANK 8
X CARR
98 99 100 101
LR005

Figure 13. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=0)

0123
X CARR
BANK 0 BANK 1 BANK 2
Y CARR
BANK 7 BANK 8
98 99 100 101
LR005

Figure 14. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=1)

X CARR
BANK 0 BANK 1 BANK 2
Y CARR
BANK 7 BANK 8
1239899100101
0
LR0055

Figure 15. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=1)

X CARR
BANK 0
9899100101
BANK 1 BANK 2
Y CARR
BANK 7 BANK 8
0
123
LR005
12/66

Figure 16. Data RAM Byte organization with D0 = 0

7
8
MSB
0
1 2 3 98 99 100 101
LSB
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5
BANK 6
BANK 7 BANK 8

Figure 17. Data RAM Byte organization with D0 = 1

LSB
0123 9899100101
MSB
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5
BANK 6
BANK 7 BANK 8
STE2004S
LR005
LR005
13/66
STE2004S

Figure 18. Memory Rows vs. Row Drivers Mapping ICON_MODE=1 and MUX 65

Y-CARRIAGE
Y Address
D2 D1 D0
D3
0
0
0
0
0
0
0
0
1 X address
D
a
t
a
D0 D1 D2 D3
0
0
0
D4 D5 D6 D7 D0 D1 D2 D3
0
1
0
D4 D5 D6 D7 D0 D1 D2 D3
1
0
0
D4 D5 D6 D7 D0 D1 D2 D3
1
1
0
D4 D5 D6 D7 D0 D1 D2 D3
0
0
1
D4 D5 D6 D7 D0 D1 D2 D3
0
1
1
D4 D5 D6 D7 D0 D1 D2 D3
1
0
1
D4 D5 D6 D7 D0 D1 D2 D3
1
1
1
D4 D5 D6 D7
0
0
0
D0
00H
02H 06H03H 04H 05H
01H
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
5FH
61H 65H62H 63H 64H
60H
Line Address
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
Scrolling Pointer
ROW Output
Normal
Reverse
direction
direction
R0
R63
R1
R62
R2
R61
R3
R60
R4
R59
R5
R58
R6
R57
R7
R56
R8
R55
R9
R54
R10
R53
R11
R52
R12
R51
R13
R50
R14
R49
R15
R48
R16
R47
R17
R46
R18
R45
R19
R44
R20
R43
R21
R42
R22
R41
R23
R40
R24
R39
R25
R38
R26
R37
R27
R36
R28
R35
R29
R34
R30
R33
R31
R32
R32
R31
R33
R30
R34
R29
R35
R28
R36
R27
R37
R26
R38
R25
R39
R24
R40
R23
R41
R22
R42
R21
R43
R20
R44
R19
R45
R18
R46
R17
R47
R16
R48
R15
R49
R14
R50
R13
R51
R12
R52
R11
R53
R10
R54
R9
R55
R8
R56
R7
R57
R6
R58
R5
R59
R4
R60
R3
R61
R2
R62
R1
R63
R0
R64 R64
lr0268
14/66
COL Output
Normal Direction
Reverse Direction
C
C O L
C O L
100 99
C
O
O
L
L
C
C
O
O
L
L
98 979695
C O L 0 C O L
101
C
C
C
O
O
O
L
L
L
C
C
C
O
O
O
L
L
L
C
C
O
O
L
L
C
C
O
O
L
L
5
6
C
C
C
C
O
O
L
L
C
C
O
O
L
L 4
C
O
O
O
L
L
L
1011 2 3 4 5 6 1009998979695
C
C
C
O
O
O
L
L
L
0
123

Figure 19. Memory Rows vs. Row Drivers Mapping ICON_MODE=0 and MUX 65

STE2004S
Y-CARRIAGE
Y Address
D2 D1 D0
D3
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
X address
D a
t
a
D0 D1 D2 D3
0
0
D4 D5 D6 D7 D0 D1 D2 D3
0
1
D4 D5 D6 D7 D0 D1 D2 D3
1
0
D4 D5 D6 D7 D0 D1 D2 D3
1
1
D4 D5 D6 D7 D0 D1 D2 D3
0
0
D4 D5 D6 D7 D0 D1 D2 D3
0
1
D4 D5 D6 D7 D0 D1 D2 D3
1
0
D4 D5 D6 D7 D0 D1 D2 D3
1
1
D4 D5 D6 D7
0
0
D0
00H
02H 06H03H 04H 05H
01H
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
5FH
61H 65H62H 63H 64H
60H
Line Address
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
40H
Scrolling Pointer
ROW Output
Normal direction
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64
Reverse direction
R64 R63 R62 R61 R60 R59 R58 R57 R56 R55 R54 R53 R52 R51 R50 R49 R48 R47 R46 R45 R44 R43 R42 R41 R40 R39 R38 R37 R36 R35 R34 R33 R32 R31 R30 R29 R28 R27 R26 R25 R24 R23 R22 R21 R20 R19 R18 R17 R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0
COL Output
Normal Direction
Reverse Direction
C
C
O
L
C
O
L
100 99
C
O
O
L
L
C
C
O
O
L
L
98 979695
C O L 0 C O L
101
C
C
C
O
O
O
L
L
L
C
C
C
O
O
O
L
L
L
C
C
O
O
L
L
C
C
O
O
L
L
5
6
C
C
C
C
O
O
L
L
C
C
O
O
L
L
4
C
O
O
O
L
L
L
1011 2 3 4 5 6 1009998979695
C
C
C
O
O
O
L
L
L
0
123
lr0269
15/66
STE2004S
Figure 20. Memory Rows vs. Row Drivers Mapping ICON_MODE=1,
D2 D1 D0
0
0
0
0
1
0
1
0
0
1
0
1
1
1
1
1
0
0
D
a
t
a
D0 D1 D2 D3
0
D4 D5 D6 D7 D0 D1 D2 D3
1
D4 D5 D6 D7 D0 D1 D2 D3
0
D4 D5 D6 D7 D0 D1 D2 D3
1
D4 D5 D6 D7 D0 D1 D2 D3
0
D4 D5 D6 D7 D0 D1 D2 D3
1
D4 D5 D6 D7 D0 D1 D2 D3
0
D4 D5 D6 D7 D0 D1 D2 D3
1
D4 D5 D6 D7
0
D0
00H
02H 06H03H 04H 05H
01H
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
5FH
60H
61H 65H62H 63H 64H
Line Address
Y-CARRIAGE
Y Address
D3
0
0
0
0
0
0
0
0
1 X address
Y-Carriage<=6
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH
Scrolling Pointer
1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
and MUX 49
ROW Output
Normal
Reverse
direction
direction
R0
R55
R1
R54
R2
R53
R3
R52
R4
R51
R5
R50
R6
R49
R7
R48
R8
R47
R9
R46
R10
R45
R11
R44
R12
R43
R13
R42
R14
R41
R15
R40
R16
R39
R17
R38
R18
R37
R19
R36
R20
R35
R21
R34
R22
R33
R23
R32 R23
R32
R22
R33
R21
R34
R20
R35
R19
R36
R18
R37
R17
R38
R16
R39
R15
R40
R14
R41
R13
R42
R12
R43
R11
R44
R10
R45
R9
R46
R8
R47
R7
R48
R6
R49
R5
R50
R4
R51
R3
R52
R2
R53
R1
R54
R0
R55
R56
R56
16/66
COL Output
Normal Direction
Reverse Direction
C
C
O
L
C O
L
100 99
C
O
O
L
L
C
C
O
O
L
L
98 979695
C O
L
0 C O L
101
C
C
C
O
O
O
L
L
L
C
C
C
O
O
O
L
L
L
C
C
O
O
L
L
C
C
O
O
L
L
5
6
C
C
C
C
O
O
L
L
C
C
O
O
L
L
4
C
O
O
O
L
L
L
1011 2 3 4 5 6 1009998979695
C
C
C
O
O
O
L
L
L
0
123
lr0270
STE2004S
Figure 21. Memory Rows vs. Row Drivers Mapping ICON_MODE=0,
D2 D1 D0
0
0
0
0
1
0
1
0
0
1
0
1
1
1
1
1
0
0
D a
t
a
D0 D1 D2 D3
0
D4 D5 D6 D7 D0 D1 D2 D3
1
D4 D5 D6 D7 D0 D1 D2 D3
0
D4 D5 D6 D7 D0 D1 D2 D3
1
D4 D5 D6 D7 D0 D1 D2 D3
0
D4 D5 D6 D7 D0 D1 D2 D3
1
D4 D5 D6 D7 D0 D1 D2 D3
0
D4 D5 D6 D7 D0 D1 D2 D3
1
D4 D5 D6 D7
0
D0
00H
02H 06H03H 04H 05H
01H
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
5FH
61H 65H62H 63H 64H
60H
Y-CARRIAGE
Y Address
D3
0
0
0
0
0
0
0
0
1
X address
Y-Carriage<=6
Line Address
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH
Scrolling Pointer
1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
and MUX 49
ROW Output
Normal
Reverse
direction
direction
R0
R56
R1
R55
R2
R54
R3
R53
R4
R52
R5
R51
R6
R50
R7
R49
R8
R48
R9
R47
R10
R46
R11
R45
R12
R44
R13
R43
R14
R42
R15
R41
R16
R40
R17
R39
R18
R38
R19
R37
R20
R36
R21
R35
R22
R34
R23
R33 R32
R32
R23
R33
R22
R34
R21
R35
R20
R36
R19
R37
R18
R38
R17
R39
R16
R40
R15
R41
R14
R42
R13
R43
R12
R44
R11
R45
R10
R46
R9
R47
R8
R48
R7
R49
R6
R50
R5
R51
R4
R52
R3
R53
R2
R54
R1
R55
R0
R56
COL Output
Normal Direction
Reverse Direction
C
C O L
C O
L
100 99
C
O
O
L
L
C
C
O
O
L
L
98 979695
C O L
0 C O
L
101
C
C
C
O
O
O
L
L
L
C
C
C
O
O
O
L
L
L
C
C
O
O
L
L
C
C
O
O
L
L
5
6
C
C
C
C
O
O
L
L
C
C
O
O
L
L 4
C
O
O
O
L
L
L
1011 2 3 4 5 6 1009998979695
C
C
C
O
O
O
L
L
L
0
123
lr0271
17/66
STE2004S
Figure 22.
Y-CARRIAGE
Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage=7, Scrolling Pointer>07h and MUX 49
Y Address
D2 D1 D0
D3
0
0
0
0
0
0
0
0
1 X address
D a
t
a
D0 D1 D2 D3
0
0
0
D4 D5 D6 D7 D0 D1 D2 D3
0
1
0
D4 D5 D6 D7 D0 D1 D2 D3
1
0
0
D4 D5 D6 D7 D0 D1 D2 D3
1
1
0
D4 D5 D6 D7 D0 D1 D2 D3
0
0
1
D4 D5 D6 D7 D0 D1 D2 D3
0
1
1
D4 D5 D6 D7 D0 D1 D2 D3
1
0
1
D4 D5 D6 D7 D0 D1 D2 D3
1
1
1
D4 D5 D6 D7
0
0
0
D0
00H
02H 06H03H 04H 05H
01H
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
5FH
60H
61H 65H62H 63H 64H
Line Address
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
Scrolling Pointer
ROW Output
Normal direction
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56
Reverse direction
R56 R55 R54 R53 R52 R51 R50 R49 R48 R47 R46 R45 R44 R43 R42 R41 R40 R39 R38 R37 R36 R35 R34 R33 R32 R23 R22 R21 R20 R19 R18 R17 R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0
18/66
COL Output
Normal Direction
Reverse Direction
101
C
C O L
C O
L
100 99
C
O
O
L
L
C
C
O
O
L
L
98 979695
C O L 0 C O L
C
C
C
O
O
O
L
L
L
C
C
C
O
O
O
L
L
L
C
C
O
O
L
L
C
C
O
O
L
L
5
6
C
C
C
C
O
O
L
L
C
C
O
O
L
L
4
C
O
O
O
L
L
L
1011 2 3 4 5 6 1009998979695
C
C
C
O
O
O
L
L
L
0
123
lr0275
STE2004S
Figure 23.
Y-CARRIAGE
Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage=7, Scrolling Pointer>07h and MUX 49
Y Address
D2 D1 D0
D3
0
0
0
0
0
0
0
0
1
X address
D a
t
a
D0 D1 D2 D3
0
0
0
D4 D5 D6 D7 D0 D1 D2 D3
0
1
0
D4 D5 D6 D7 D0 D1 D2 D3
1
0
0
D4 D5 D6 D7 D0 D1 D2 D3
1
1
0
D4 D5 D6 D7 D0 D1 D2 D3
0
0
1
D4 D5 D6 D7 D0 D1 D2 D3
0
1
1
D4 D5 D6 D7 D0 D1 D2 D3
1
0
1
D4 D5 D6 D7 D0 D1 D2 D3
1
1
1
D4 D5 D6 D7
0
0
0
D0
00H
02H 06H03H 04H 05H
01H
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
5FH
61H 65H62H 63H 64H
60H
Line Address
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
Scrolling Pointer
ROW Output
Normal direction
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56
Reverse direction
R55 R54 R53 R52 R51 R50 R49 R48 R47 R46 R45 R44 R43 R42 R41 R40 R39 R38 R37 R36 R35 R34 R33 R32 R23 R22 R21 R20 R19 R18 R17 R16 R15 R14 R13 R12 R11 R10
R9 R8 R7 R6 R5 R4 R3 R2 R1 R0
R56
COL Output
Normal Direction
Reverse Direction
101
C
C O L
C O L
100 99
C
O
O
L
L
C
C
O
O
L
L
98 979695
C O
L
0 C O L
C
C
C
O
O
O
L
L
L
C
C
C
O
O
O
L
L
L
C
C
O
O
L
L
C
C
O
O
L
L
5
6
C
C
C
C
O
O
L
L
C
C
O
O
L
L
4
C
O
O
O
L
L
L
1011 2 3 4 5 6 1009998979695
C
C
C
O
O
O
L
L
L
0
123
lr0276
19/66
STE2004S
Figure 24.
Y-CARRIAGE
Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage=8, Scrolling Pointer<10h and MUX 49
Y Address
D2 D1 D0
D3
0
0
0
0
0
0
0
0
1 X address
D a
t
a
D0 D1 D2 D3
0
0
0
D4 D5 D6 D7 D0 D1 D2 D3
0
1
0
D4 D5 D6 D7 D0 D1 D2 D3
1
0
0
D4 D5 D6 D7 D0 D1 D2 D3
1
1
0
D4 D5 D6 D7 D0 D1 D2 D3
0
0
1
D4 D5 D6 D7 D0 D1 D2 D3
0
1
1
D4 D5 D6 D7 D0 D1 D2 D3
1
0
1
D4 D5 D6 D7 D0 D1 D2 D3
1
1
1
D4 D5 D6 D7
0
0
0
D0
00H
02H 06H03H 04H 05H
01H
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
5FH
60H
61H 65H62H 63H 64H
Line Address
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
Scrolling Pointer
ROW Output
Normal direction
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56
Reverse direction
R55 R54 R53 R52 R51 R50 R49 R48 R47 R46 R45 R44 R43 R42 R41 R40 R39 R38 R37 R36 R35 R34 R33 R32 R23 R22 R21 R20 R19 R18 R17 R16 R15 R14 R13 R12 R11 R10
R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R56
20/66
COL Output
Normal Direction
Reverse Direction
101
C
C O L
C O
L
100 99
C
O
O
L
L
C
C
O
O
L
L
98 979695
C O L 0 C O L
C
C
C
O
O
O
L
L
L
C
C
C
O
O
O
L
L
L
C
C
O
O
L
L
C
C
O
O
L
L
5
6
C
C
C
C
O
O
L
L
C
C
O
O
L
L
4
C
O
O
O
L
L
L
1011 2 3 4 5 6 1009998979695
C
C
C
O
O
O
L
L
L
0
123
LR0273
Loading...
+ 46 hidden pages