ST STB7N52K3, STD7N52K3, STF7N52K3, STP7N52K3 User Manual

ST STB7N52K3, STD7N52K3, STF7N52K3, STP7N52K3 User Manual

!

STB7N52K3 - STD7N52K3

STF7N52K3 - STP7N52K3

N-channel 525 V, 0.84 Ω, 6.3 A, D2PAK, DPAK, TO-220FP, TO-220

SuperMESH3™ Power MOSFET

Preliminary Data

Features

 

Type

VDSS

RDS(on)

ID

Pw

 

 

 

max

3

3

 

 

 

< 0.98 Ω

 

 

1

 

STB7N52K3

525 V

6.3 A

90 W

1

DPAK

 

STD7N52K3

525 V

< 0.98 Ω

6.3 A

90 W

D²PAK

 

 

 

 

STF7N52K3

525 V

< 0.98 Ω

6.3 A(1)

25 W

 

 

 

STP7N52K3

525 V

< 0.98 Ω

6.3 A

90 W

 

 

1.

Limited by package

 

 

 

 

 

 

 

 

 

 

 

3

3

100% avalanche tested

 

 

2

 

 

2

1

 

 

 

 

 

 

1

TO-220FP

Extremely high dv/dt capability

 

 

TO-220

Gate charge minimized

Very low intrinsic capacitances

Improved diode reverse recovery

Figure 1. Internal schematic diagram

 

characteristics

 

Zener-protected

 

Application

Switching applications

Description

The new SuperMESH3™ series is obtained through the combination of a further fine tuning of ST's well established strip-based PowerMESH™ layout with a new optimization of the vertical structure. In addition to reducing on-resistance significantly versus previous generation, special attention has been taken to ensure a very good dv/dt capability and higher margin in breakdown voltage for the most demanding application.

Table 1. Device summary

Order codes

Marking

 

Package

Packaging

 

 

 

 

 

STB7N52K3

7N52K3

 

D²PAK

Tape and reel

 

 

 

 

 

STD7N52K3

7N52K3

 

DPAK

Tape and reel

 

 

 

 

 

STF7N52K3

7N52K3

 

TO-220FP

Tube

 

 

 

 

 

STP7N52K3

7N52K3

 

TO-220

Tube

 

 

 

 

 

July 2008

Rev 1

 

1/15

 

 

 

 

 

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to

www.st.com

change without notice.

 

Contents

STB7N52K3 - STD7N52K3 - STF7N52K3 - STP7N52K3

 

 

Contents

1

Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

2

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

3

Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

4

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

5

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

6

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

2/15

STB7N52K3 - STD7N52K3 - STF7N52K3 - STP7N52K3

Electrical ratings

 

 

1 Electrical ratings

Table 2.

Absolute maximum ratings

 

 

 

 

 

Symbol

Parameter

 

 

Value

 

Unit

 

 

 

 

 

 

TO-220

DPAK

D²PAK

TO-220FP

 

 

 

 

 

 

 

 

 

 

 

 

VDS

Drain-source voltage (VGS = 0)

 

525

 

V

VGS

Gatesource voltage

 

± 30

 

V

I

Drain current (continuous) at T

= 25 °C

6.3

 

6.3 (1)

A

D

C

 

 

 

 

 

 

I

Drain current (continuous) at T

= 100 °C

4

 

4(1)

A

D

C

 

 

 

 

 

 

IDM (2)

Drain current (pulsed)

 

25

 

25 (1)

A

PTOT

Total dissipation at TC = 25 °C

 

90

 

25

W

 

Derating factor

 

0.72

 

0.2

W/°C

 

 

 

 

 

 

 

VESD(G-S)

Gate source ESD(HBM-C = 100 pF,

2500

 

V

R = 1.5 kΩ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dv/dt (3)

Peak diode recovery voltage slope

 

TBD

 

V/ns

 

Insulation withstand voltage (RMS) from all

 

 

 

 

 

VISO

three leads to external heat sink

 

--

 

2500

V

 

(t = 1 s; TC = 25 °C)

 

 

 

 

 

 

 

 

 

 

 

 

 

Tstg

Storage temperature

 

 

-55 to 150

 

°C

Tj

Max. operating junction temperature

150

 

°C

1.Limited by package

2.Pulse width limited by safe operating area

3.ISD ≤ 6.3 A, di/dt = TBD, VDD = 80% V(BR)DSS.

Table 3.

Thermal data

 

 

 

 

 

 

Symbol

Parameter

TO-220

DPAK

D²PAK

TO-220FP

Unit

 

 

 

 

 

 

 

 

Rthj-case

Thermal resistance junction-case max

 

1.39

 

 

5

°C/W

Rthj-pcb

Thermal resistance junction-pcb max

--

50

 

30

--

°C/W

Rthj-amb

Thermal resistance junction-ambient max

62.5

--

 

--

62.5

°C/W

Tl

Maximum lead temperature for soldering

 

 

300

 

°C

purpose

 

 

 

Table 4.

Avalanche characteristics

 

 

Symbol

Parameter

Max value

Unit

 

 

 

 

IAR

Avalanche current, repetitive or not-repetitive

6.3

A

(pulse width limited by Tj max)

 

 

 

EAS

Single pulse avalanche energy

TBD

mJ

(starting Tj = 25°C, ID = IAR, VDD = 50V)

 

 

 

3/15

Electrical characteristics

STB7N52K3 - STD7N52K3 - STF7N52K3 - STP7N52K3

 

 

2 Electrical characteristics

(TC = 25 °C unless otherwise specified)

 

 

 

 

 

 

Table 5.

On /off states

 

 

 

 

 

 

 

 

Symbol

Parameter

 

Test conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

V(BR)DSS

Drain-source

ID = 1 mA, VGS = 0

525

 

 

V

breakdown voltage

 

 

IDSS

Zero gate voltage

VDS = Max rating

 

 

1

µA

drain current (VGS = 0)

VDS = Max rating, TC=125 °C

 

 

50

µA

 

 

 

IGSS

Gate-body leakage

VGS = ± 20 V

 

 

 

± 10

µA

current (VDS = 0)

 

 

 

 

 

 

 

 

 

 

 

 

VGS(th)

Gate threshold voltage

VDS = VGS, ID = 50 µA

3

3.75

4.5

V

R

Static drain-source on

V

= 10 V, I

D

= 3.1 A

 

0.84

0.98

DS(on

resistance

GS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.

Dynamic

 

 

 

 

 

Symbol

Parameter

Test conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

gfs (1)

Forward

VDS = 15 V, ID = 3.1 A

 

TBD

 

S

transconductance

 

 

 

 

 

 

 

 

 

Ciss

Input capacitance

 

 

TBD

 

pF

Output capacitance

 

 

 

Coss

VDS = 50 V, f = 1 MHz, VGS = 0

 

TBD

 

pF

Reverse transfer

 

 

Crss

 

 

TBD

 

pF

capacitance

 

 

 

(1)

Equivalent output

 

 

 

 

 

COSS eq

capacitance

VGS = 0, VDS = 0 to 420 V

 

TBD

 

pF

RG

Intrinsic gate

f = 1 MHz open drain

 

TBD

 

resistance

 

 

 

 

 

 

 

 

 

Qg

Total gate charge

VDD = 420 V, ID = 6.3 A,

 

TBD

 

nC

Qgs

Gate-source charge

VGS = 10 V

 

TBD

 

nC

Qgd

Gate-drain charge

(see Figure 3)

 

TBD

 

nC

1.Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 7.

Switching times

 

 

 

 

 

Symbol

Parameter

Test conditions

Min.

Typ.

Max

Unit

 

 

 

 

 

 

 

td(on)

Turn-on delay time

VDD = 262 V, ID = 3.1 A,

 

TBD

 

ns

tr

Rise time

 

TBD

 

ns

RG = 4.7 Ω, VGS = 10 V

 

 

td(off)

Turn-off-delay time

 

TBD

 

ns

(see Figure 2)

 

 

tf

Fall time

 

TBD

 

ns

 

 

 

4/15

STB7N52K3 - STD7N52K3 - STF7N52K3 - STP7N52K3

Electrical characteristics

 

 

 

 

 

 

 

 

 

 

Table 8.

Source drain diode

 

 

 

 

 

 

 

Symbol

Parameter

Test conditions

 

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

ISD

Source-drain current

 

 

 

 

6.3

A

 

(1)

Source-drain current (pulsed)

 

 

 

 

25

A

 

ISDM

 

 

 

 

 

(2)

Forward on voltage

ISD = 6.3 A, VGS = 0

 

 

 

1.6

V

 

VSD

 

 

 

 

trr

Reverse recovery time

ISD = 6.3 A, di/dt = 100 A/µs

 

 

TBD

 

ns

 

Qrr

Reverse recovery charge

 

 

TBD

 

nC

 

VDD = 30 V (see Figure 7)

 

 

 

 

IRRM

Reverse recovery current

 

 

TBD

 

A

 

 

 

 

 

 

trr

Reverse recovery time

ISD = 6.3 A, di/dt = 100 A/µs

 

 

TBD

 

ns

 

Qrr

Reverse recovery charge

VDD = 30 V, Tj = 150 °C

 

 

TBD

 

nC

 

IRRM

Reverse recovery current

(see Figure 7)

 

 

TBD

 

A

1.Pulse width limited by safe operating area

2.Pulsed: Pulse duration = 300 µs, duty cycle 1.5%

Table 9.

Gate-source Zener diode

 

 

 

 

Symbol

Parameter

Test conditions

Min

Typ

Max

Unit

 

 

 

 

 

 

 

(1)

Gate-source breakdown

Igs=± 1 mA (open drain)

30

 

 

V

BVGSO

voltage

 

 

1.The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device’s ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device’s integrity. These integrated Zener diodes thus avoid the usage of external components

5/15

Loading...
+ 10 hidden pages