ST STA323W User Manual

Features

STA323W
2.1-channel high-efficiency digital audio system
! Wide supply voltage range (10 V - 36 V)
! Three power output configurations
– 2x10W + 1 x20W –2x20W –1x40W
! Thermal protection
! Under-voltage protection
! Short-circuit protection
! PowerSO-36 slug down package
! 2.1 channels of 24-bit DDX
100-dB SNR and dynamic range
!
! 32 kHz to 192 kHz input sample rates
! Digital gain/attenuation +48 dB to -80 dB in
®
0.5-dB steps
! Four 28-bit user programmable biquads (EQ)
per channel
2
! I
C control
! 2-channel I
! Individual channel and master gain/attenuation
! Individual channel and master soft and hard
2
S input data interface
mute
! Individual channel volume and EQ bypass
! DDX
! Bass/treble tone control
! Dual independent programmable
®
POP free operation
limiters/compressors
! AutoModes™ settings for:
– 32 preset EQ curves – 15 preset crossover settings – Auto volume controlled loudness – 3 preset volume curves – 2 preset anti-clipping modes – Preset night-time listening mode – Preset TV AGC
PowerSO-36 (slug down)
! Input and output channel mapping
! AM noise-reduction and PWM frequency
shifting modes
! Soft volume update and muting
! Auto zero detect and invalid input detect
muting selectable DDX
®
ternary or binary
PWM output plus variable PWM speeds
! Selectable de-emphasis
! Post-EQ user programmable mix with default
2.1 bass-management settings
! Variable max power correction for lower
full-power THD
! Four output routing configurations
! Selectable clock input ratio
! 96 kHz internal processing sample rate, 24 to
28-bit precision
! Video application supports 576 * fs input mode

Table 1. Device summary

Order code Package
STA323W PowerSO-36 (slug down)
STA323W13TR PowerSO-36 in tape & reel
May 2008 Rev 6 1/77
www.st.com
1
Contents STA323W

Contents

1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 EQ processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Output options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 General interface specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 DC electrical specifications (3.3 V buffers) . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Power electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Power supply and control sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 Output power against supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Audio performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1 Stereo mode, operation with VCC = 26 V, 8 Ω load . . . . . . . . . . . . . . . . 23
5.2.2 Stereo mode, operation with V
5.2.3 Half-bridge binary mode, operation with Vcc = 18.5 V . . . . . . . . . . . . . 28
6I
2
C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
= 18.5 V . . . . . . . . . . . . . . . . . . . . . . 24
CC
7 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1 Configuration register A (address 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.1 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2/77
STA323W Contents
7.1.2 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.4 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.5 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Configuration register B (address 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.1 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.2 Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.3 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Configuration register C (address 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3.1 DDX® power-output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3.2 DDX
®
variable compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 Configuration register D (address 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.1 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.2 De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.3 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.4 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4.5 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4.6 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 45
7.4.7 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.5 Configuration register E (address 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.1 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.2 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.3 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.4 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.5 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5.6 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.6 Configuration register F (address 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.6.1 Output configuration selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.7 Volume control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.1 Master controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.2 Channel controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.3 Volume description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.8 AutoModes™ registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.8.1 AutoModes™ EQ, volume, GC (address 0x0B) . . . . . . . . . . . . . . . . . . . 52
7.8.2 AutoModes™ AM/pre-scale/bass management scale (address 0x0C) . 53
7.8.3 Preset EQ settings (address 0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3/77
Contents STA323W
7.9 Channel configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.1 Channel 1 configuration (address 0x0E) . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.2 Channel 2 configuration (address 0x0F) . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.3 Channel 3 configuration (address 0x10) . . . . . . . . . . . . . . . . . . . . . . . . 56
7.10 Tone control (address 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11 Dynamics control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11.1 Limiter 1 attack/release threshold (address 0x12) . . . . . . . . . . . . . . . . . 57
7.11.2 Limiter 1 attack/release threshold (address 0x13) . . . . . . . . . . . . . . . . . 57
7.11.3 Limiter 2 attack/release rate (address 0x14) . . . . . . . . . . . . . . . . . . . . . 57
7.11.4 Limiter 2 attack/release threshold (address 0x15) . . . . . . . . . . . . . . . . . 58
7.11.5 Dynamics control description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.11.6 Anti-clipping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.11.7 Dynamic range compression mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8 User-programmable settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1 EQ - biquad equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.4 Mix/bass management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5 Calculating 24-bit signed fractional numbers from a dB value . . . . . . . . . 65
8.6 User defined coefficient RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.6.1 Coefficient address register 1 (address 0x16) . . . . . . . . . . . . . . . . . . . . 65
8.6.2 Coefficient b1data register bits 23:16 (address 0x17) . . . . . . . . . . . . . . 65
8.6.3 Coefficient b1data register bits 15:8 (address 0x18) . . . . . . . . . . . . . . . 65
8.6.4 Coefficient b1data register bits 7:0 (address 0x19) . . . . . . . . . . . . . . . . 65
8.6.5 Coefficient b2 data register bits 23:16 (address 0x1A) . . . . . . . . . . . . . 65
8.6.6 Coefficient b2 data register bits 15:8 (address 0x1B) . . . . . . . . . . . . . . 66
8.6.7 Coefficient b2 data register bits 7:0 (address 0x1C) . . . . . . . . . . . . . . . 66
8.6.8 Coefficient a1 data register bits 23:16 (address 0x1D) . . . . . . . . . . . . . 66
8.6.9 Coefficient a1 data register bits 15:8 (address 0x1E) . . . . . . . . . . . . . . 66
8.6.10 Coefficient a1 data register bits 7:0 (address 0x1F) . . . . . . . . . . . . . . . 66
8.6.11 Coefficient a2 data register bits 23:16 (address 0x20) . . . . . . . . . . . . . 66
8.6.12 Coefficient a2 data register bits 15:8 (address 0x21) . . . . . . . . . . . . . . 66
8.6.13 Coefficient a2 data register bits 7:0 (address 0x22) . . . . . . . . . . . . . . . 67
8.6.14 Coefficient b0 data register bits 23:16 (address 0x23) . . . . . . . . . . . . . 67
8.6.15 Coefficient b0 data register bits 15:8 (address 0x24) . . . . . . . . . . . . . . 67
4/77
STA323W Contents
8.6.16 Coefficient b0 data register bits 7:0 (address 0x25) . . . . . . . . . . . . . . . 67
8.6.17 Coefficient write control register (address 0x26) . . . . . . . . . . . . . . . . . . 67
8.7 Reading and writing coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.1 Reading a coefficient from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.2 Reading a set of coefficients from RAM . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.3 Writing a single coefficient to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.4 Writing a set of coefficients to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.8 Variable max power correction (address 0x27-0x28) . . . . . . . . . . . . . . . . 70
8.9 Fault detect recovery (address 0x2B - 0x2C) . . . . . . . . . . . . . . . . . . . . . . 71
8.10 Status indicator register (address 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.1 Thermal warning indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.2 Fault detect indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.3 PLL unlock indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10 Trademarks and other acknowledgements . . . . . . . . . . . . . . . . . . . . . . 75
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5/77
List of tables STA323W

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Component selection “Table A” - full-bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Component selection "Table B" - binary half-bridge operation . . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Component selection "Table C" - mono operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 7. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 8. Recommended DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. General interface electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 10. DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 11. Power electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 12. Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 13. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 15. IR and MCS settings for input sample rate and clock rate . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 16. Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 17. IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 18. Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 19. Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 20. Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 21. Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 22. Supported serial audio input formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 23. Serial input data timing characteristics (fs = 32 to 192 kHz). . . . . . . . . . . . . . . . . . . . . . . . 42
Table 24. Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 25. Channel input mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 26. DDX® power-output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 27. DDX® output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 28. DDX® compensating pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 29. High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 30. De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 31. DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 32. Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 33. Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 34. Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 35. Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 36. Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 37. Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 38. AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 39. PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 40. PWM output speed selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 41. Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 42. Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 43. Output configuration selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 44. Output configuration selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 45. Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 46. Binary clock loss detection enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 47. Auto-EAPD on clock loss enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 48. Software power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6/77
STA323W List of tables
Table 49. External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 50. Master volume offset as a function of MV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 51. Channel volume as a function of CxV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 52. AutoModes™ EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 53. AutoModes™ volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 54. AutoModes™ gain compression/limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 55. AMPS - AutoModes™ auto pre scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 56. AutoModes™ AM switching enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 57. AutoModes™ AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 58. AutoModes™ crossover setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 59. Crossover frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 60. Preset EQ selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 61. Channel Limiter Mapping Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 62. Channel PWM output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 63. Tone control boost/cut selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 64. Limiter attack rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 65. Limiter release rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 66. Limiter attack - threshold selection (AC-mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 67. Limiter release threshold selection (AC-mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 68. Limiter attack - threshold selection (DRC-mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 69. Limiter release threshold selection (DRC-mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 70. RAM block for biquads, mixing, and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 71. Thermal warning indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 72. Fault detect indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 73. PLL unlock indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 74. PowerSO-36 slug down dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 75. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7/77
List of figures STA323W

List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. Channel signal flow diagram through the digital core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. Channel signal flow diagram through the EQ block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. Output power stage configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Schematic for 2 (half-bridge) channels + 1 (full-bridge) channel . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Power schematic for 2 (full-bridge) channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Power schematic for 1 mono parallel channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Package pins (viewed from top of device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Test circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. Test circuit 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Recommended power up and power down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 12. Stereo mode - output power vs. supply voltage, THD+N = 10% . . . . . . . . . . . . . . . . . . . . 21
Figure 13. Output power vs. supply for stereo bridge, THD+N=1% . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14. Half-bridge binary mode output power vs. supply, THD+N=10% . . . . . . . . . . . . . . . . . . . 22
Figure 15. Half-bridge binary mode output power vs. supply voltage, THD+N=1% . . . . . . . . . . . . . . 22
Figure 16. Typical efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 17. Typical frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 18. FFT -60 dB, 1 kHz output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 19. FFT inter-modulation distortion 19 kHz and 20 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 20. Frequency response, 1 W, BTL, 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 21. Channel separation, 1 W, BTL stereo mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 22. THD vs. output power, BTL, 1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 23. THD vs. frequency, 1 W output, stereo mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 24. THD vs. frequency, BTL, 16 W output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 25. FFT 0 dBFS 1 kHz, 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 26. FFT 0 dBFS 1 kHz, 6 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 27. FFT 0 dBFS 1 kHz, 4 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 28. FFT -60 dBFS 1 kHz, 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 29. FFT -60 dBFS 1 kHz, 6 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 30. FFT -60 dBFS 1 kHz, 4 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 31. PSRR BTL, 500 mV ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 32. Frequency response, 1 W, binary half-bridge mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 33. Channel separation, 1 W, half bridge binary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 34. THD+N vs. output power, single ended, 1 kHz, half-bridge binary . . . . . . . . . . . . . . . . . . . 29
Figure 35. THD vs. frequency, single ended, 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 36. THD vs. frequency, single ended, 8 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 37. FFT 0 dB, 1 kHz, single ended, 2 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 38. FFT 0 dB, 1 kHz, single ended, 3 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 39. FFT 0 dB, 1 kHz, single ended, 4 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 40. FFT -60 dB, single ended, 1 kHz, 2 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 41. FFT -60 dB, single ended, 1 kHz, 4 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 42. FFT -60 dB, single ended, 1 kHz, 3 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 43. PSRR single ended, 500 mV ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 44. I Figure 45. I
Figure 46. General serial input and output formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 47. Serial input and data timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 48. Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2
C write procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2
C read procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8/77
STA323W List of figures
Figure 49. Biquad filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 50. Mix/bass management block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 51. PowerSO-36 slug down outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9/77
Description STA323W

1 Description

The STA323W is a single-chip audio system comprising digital audio processing, digital amplifier control and a DDX
®
power-output stage. The STA323W uses all-digital
amplification to provide high-power, high-quality and high-efficiency.
The STA323W power section consists of four independent half-bridges. These can be configured, by digital control, to operate in the following modes.
" Tw o channels, provided by two half-bridges, and a single full-bridge giving up to
2 x 10 W + 1 x 20 W of power output.
" Two channels, provided by two full-bridges, giving up to 2 x 20 W of power.
" A single, parallel, full-bridge channel capable of high-current operation and giving
1 x 40W output.
The STA323W also provides a full set of digital processing features. This includes up to four programmable 28-bit biquads (EQ) per channel, and bass and treble tone control. AutoModes™ enable a time-to-market advantage by substantially reducing the amount of software development needed for specific functions. These includes auto volume loudness, preset volume curves and preset EQ settings. New advanced AM radio-interference reduction modes are also provided.
The serial audio data input interface accepts all existing formats, including the I
Three channels of DDX
®
processing are provided. This high-quality conversion from PCM
2
S.
audio to DDX patented 3-state PWM switching provides over 100 dB of SNR and dynamic range.

Figure 1. Block diagram

SDA
LRCKI
BICKI
SDI_12
SCL
I2C
Serial data
input, channel
mapping and
resampling
Power d own
System control
System timing
CLK
Audio EQ, mix,
crossover,
volume, limiter
processing
DDX
processing
TWARN
Powe r d own
power stage
FAU LT

Figure 2. Channel signal flow diagram through the digital core

2
I
S
input
Channel mapping
Re-sampling
ED
processing
Mix
Crossover
filter
Vol um e
limiter
Interpol
Quad
half-bridge
4x
EAPD
DDX
OUT1A
OUT1B
OUT2A
OUT2B
DDX output
10/77
STA323W Description

1.1 EQ processing

Two channels of input data (re-sampled if necessary) at 96 kHz are provided to the EQ processing block. In these blocks, up to four user-defined Biquads can be applied to each of the two channels.
Pre-scaling, DC-blocking high-pass, de-emphasis, bass, and tone control filters can also be implemented by means of configuration parameter settings.
The entire EQ block can be bypassed for all channels simultaneously by setting the DSPB bit to 1. The CxEQBP bits can also be used to bypass the EQ functionality on a per channel basis. Figure 3 shows the internal signal flow through the EQ block.

Figure 3. Channel signal flow diagram through the EQ block

Re-sampled input
pre-scale
High pass
If HPB= 0

1.2 Output options

Figure 4. Output power stage configurations

Half
bridge
Half
bridge
Half
bridge
Half
bridge
Half
bridge
Half
bridge
Half
bridge
Half
bridge
filter
OUT1A
OUT1B
OUT2A
OUT2B
OUT1A
OUT1B
OUT2A
OUT2B
BQ#1
BQ#2 BQ#3 BQ#4
4 biquads User defined if AMEQ = 00 Preset EQ if AMEQ = 01 Auto loudness if AMEQ = 10
If DSPB = 0 and CxEQB = 0
Channel 1
Channel 2
Channel 1
Channel 2
Channel 3
2-channel (full bridge) configuration, register bits OCFG[1:0] = 00
2.1-channel configuration, register bits OCFG[1:0] = 01
De-
emphasis
If DEMP = 1
Bass
filter
If CxTCB = 0 BTC: bass boost/cut TTC: treble boost/cut
Tr eb l e
filter
To mix
Half
bridge
Half
bridge
Half
bridge
Half
bridge
OUT1A
OUT1B
OUT2A
OUT2B
1-channel mono-parallel configuration, register bits OCFG[1:0] = 11
Channel 3
The setup register is Configuration
register F (address 0x05) on page 48
11/77
Applications STA323W

2 Applications

Table 2. Component selection “Table A” - full-bridge operation

Load Inductor Capacitor
4 10 µH1.0µF
6 15 µH 470 nF
8 22 µH 470 nF

Table 3. Component selection "Table B" - binary half-bridge operation

Load Inductor Capacitor
4 22 µH 680 nF
6 33 µH 470 nF
8 47 µH 390 nF

Table 4. Component selection "Table C" - mono operation

Load Inductor Capacitor
2 4.7 µH2.0µF
3 6.8 µH1.0µF
4 10 µH1.0µF

Figure 5. Schematic for 2 (half-bridge) channels + 1 (full-bridge) channel

VCC_SIGN
VSS
VDD
GND
BICKI
LRCKI
SDI
VDDA
GNDA
XTI
PLL_FILTER
RESERVED
SDA
SCL
RESET
CONFIG
VL
VDD_REG
STA323W
SUB_GND
SUB_GND
OUT2B
VCC2B
GND2B
GND2A
VCC2A
OUT2A
OUT1B
VCC1B
GND1B
GND1A
VCC1A
OUT1A
GND_CLEAN
GND_REG
N.C.
N.C.
N.C.
12/77
STA323W Applications

Figure 6. Power schematic for 2 (full-bridge) channels

VCC_SIGN
VSS
VDD
GND
BICKI
LRCKI
SDI
VDDA
GNDA
XTI
PLL_FILTER
RESERVED
SDA
SCL
RESET
CONFIG
VL
VDD_REG
SUB_GND
SUB_GND
OUT2B
VCC2B
GND2B
GND2A
VCC2A
OUT2A
OUT1B
VCC1B
GND1B
GND1A
VCC1A
OUT1A
GND_CLEAN
GND_REG
N.C.
N.C.
N.C.
STA323W

Figure 7. Power schematic for 1 mono parallel channel

VCC_SIGN
VSS
VDD
GND
BICKI
LRCKI
SDI
VDDA
GNDA
XTI
PLL_FILTER
RESERVED
SDA
SCL
RESET
CONFIG
VL
VDD_REG
STA323W
SUB_GND
SUB_GND
OUT2B
VCC2B
GND2B
GND2A
VCC2A
OUT2A
OUT1B
VCC1B
GND1B
GND1A
VCC1A
OUT1A
GND_CLEAN
GND_REG
N.C.
N.C.
N.C.
13/77
Pin out STA323W

3 Pin out

3.1 Pin numbering

Figure 8. Package pins (viewed from top of device)

Table 5. Pin list
SUB_GND
N.C. OUT2B VCC2B
N.C. GND2B GND2A VCC2A OUT2A OUT1B VCC1B GND1B GND1A
N.C. VCC1A OUT1A
GND_CLEAN
GND_REG
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18
Pin Type Name Description
1 I/O SUB_GND Ground
2 N.C. N.C. Not connected
3 O OUT2B Output half bridge 2B
4 I/O VCC2B Positive supply
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19
VCC_SIGN VSS VDD GND BICKI LRCKI SDI VDDA GNDA XTI PLL_FILTER RESERVED SDA SCL RESET CONFIG VL VDD_REG
5 N.C. N.C. Not connected
6 I/O GND2B Negative supply
7 I/O GND2A Negative supply
8 I/O VCC2A Positive supply
9 O OUT2A Output half bridge 2A
10 O OUT1B Output half bridge 1B
11 I/O VCC1B Positive supply
12 I/O GND1B Negative supply
13 I/O. GND1A Negative supply
14 N.C. N.C. Not connected
15 I/O VCC1A Positive supply
16 O OUT1A Output half bridge 1A
14/77
STA323W Pin out
Table 5. Pin list (continued)
Pin Type Name Description
17 I/O GND_CLEAN Reference ground
18 I/O GND_REG Substrate ground
19 I/O VDD_REG Logic supply
20 I/O VL Logic supply to power section
21 I CONFIG Logic levels
22 I RESET Reset
2
23 I SCL I
24 I/O SDA I
25 - RESERVED Reserved test pin must be connected to ground
26 I PLL_FILTER Connection to PLL filter
27 I XTI PLL input clock
28 I/O GNDA Analog ground
29 I/O VDDA Analog supply 3.3
30 I SDI_12 I
31 I/O LRCKI I
32 I BICKI I
33 I/O GND Digital ground
34 I/O VDD Digital supply 3.3 V
C serial clock
2
C serial data
2
S serial data channels 1 and 2
2
S left/right clock,
2
S serial clock
35 I/O VSS 5 V regulator referred to Vcc
36 I/O VCC_SIGN 5 V regulator referred to ground

3.2 Pin description

OUT1A, 1B, 2A and 2B (pins 16, 10, 9 and 3)
The half-bridge PWM outputs 1A, 1B, 2A and 2B provide the inputs signals to the speakers.
RESET (pin 22)
Driving RESET low sets all outputs low and returns all register settings to their default (reset) values. The reset is asynchronous to the internal clock.
SDA, SCL (pins 24, 23)
The SDA (I2C Data) and SCL (I2C Clock) pins operate according to the I2C specification (See Chapter 6 on page 33.) Fast-mode (400 kB/s) I
VDDA, GNDA (pins 29,28)
The phase locked loop power is applied here. This +3.3V supply must be well decoupled and filtered for good noise immunity since the audio performance of the device depends upon the PLL circuit.
2
C communication is supported.
15/77
Pin out STA323W
CLK (pin 27)
This is the master clock input used by the digital core. The master clock must be an integer multiple of the LR clock frequency. Typically, the master clock frequency is 12.288 MHz (256 * fs) for a 48kHz sample rate; it is the default setting at power-up. Care must be taken to provide the device with the nominal system clock frequency; over-clocking the device may result in anomalous operation, such as inability to communicate.
PLL_FILTER (pin 26)
This is the connection for the external filter components for the PLL loop compensation. Refer to the schematic diagram Figure 7: Power schematic for 1 mono parallel channel on
page 13 for the recommended circuit.
BICKI (pin 32)
The serial or bit clock input is for framing each data bit. The bit clock frequency is typically 64 * fs using I
2
S serial format.
SDI (pin 30)
This is the serial data input where PCM audio information enters the device. Six format choices are available including I of 16, 18, 20 and 24 bits.
2
S, left or right justified, LSB or MSB first, with word widths
LRCKI (pin 31)
The left/right clock input is for data word framing. The clock frequency is at the input sample rate, fs.
16/77
STA323W Electrical specifications

4 Electrical specifications

Table 6. Absolute maximum ratings

Symbol Parameter Value Unit
V
DD_3.3
V
i
V
o
T
stg
T
amb
V
CC
V
MAX

Table 7. Thermal data

3.3 V I/O power supply -0.5 to 4 V
Voltage on input pins -0.5 to (VDD+0.5) V
Voltage on output pins -0.5 to (VDD+0.5) V
Storage temperature -40 to +150 °C
Ambient operating temperature -40 to +85 °C
DC supply voltage 40 V
Maximum voltage on pin 20 5.5 V
Symbol Parameter Min Typ Max Unit
R
thj-case
T
j-SD
T
WARN
T
h-SD

Table 8. Recommended DC operating conditions

Thermal resistance junction to case (thermal pad) 2.5 °C/W
Thermal shut-down junction temperature 150 °C
Thermal warning temperature 130 °C
Thermal shut-down hysteresis 25 °C
Symbol Parameter Value Unit
V
DD_3.3
T
j
I/O power supply 3.0 to 3.6 V
Operating junction temperature -40 to +125 °C

4.1 General interface specifications

Operating conditions V

Table 9. General interface electrical characteristics

Symbol Parameter Test Condition Min. Typ. Max. Unit
I
il
I
ih
I
OZ
V
esd
1. The leakage currents are generally very small < 1 nA. The values given here are maximum after an electrostatic stress on the pin.
Leakage current: low level input, no pull-up
Leakage current: high level input, no pull-down
Leakage current: 3-state output without pull-up/down
Electrostatic protection (human body model)
= 3.3 V ±0.3 V, T
DD33
amb
V
= 0 V
i
= V
V
i
DD33
= V
V
i
DD33
Leakage < 1µA2000 V
17/77
= 25° C unless otherwise specified.
(1)
(1)
(1)
1 µA
2 µA
2 µA
Electrical specifications STA323W

4.2 DC electrical specifications (3.3 V buffers)

Operating conditions V

Table 10. DC electrical characteristics

= 3.3 V ±0.3 V, T
DD33
Symbol Parameter Test condition Min. Typ. Max. Unit
V
IL
V
IH
V
hyst
V
ol
V
oh
Low level Input voltage 0.8 V
High level Input voltage 2.0 V
Schmitt trigger hysteresis 0.4 V
Low level output IoI = 2mA 0.15 V
High level output Ioh = -2mA

4.3 Power electrical specifications

Operating conditions V otherwise specified.
Table 11. Power electrical characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
R
I
g
g
dsON
dss
N
P
Power Pchannel/Nchannel MOSFET R
Power Pchannel/Nchannel leakage I
dss
Power Pchannel R matching
Power Nchannel R matching
= 3.3 V ±0.3 V, VL= 3.3 V, VCC=30V, T
DD33
dsON
Id = 1 A 200 270 m
Vcc = 35 V 50 µA
dsON
dsON
Id = 1 A 95 %
Id = 1 A 95 %
= 25° C unless otherwise specified
amb
VDD -
0.15
= 25° C unless
amb
V
Dt_s Low current dead time (static)
t
d ON
t
d OFF
t
r
t
f
V
CC
V
L
V
H
I
VCC-
PWRDN
I
VCC-hiz
Turn-on delay time Resistive load 100 ns
Turn-off delay time Resistive load 100 ns
Rise time
Fall time
Supply voltage 8 36 V
Low logical state voltage VL = 3.3 V 0.8 V
High logical state voltage VL = 3.3 V 1.7 V
Supply current from Vcc in PWRDN
Supply current from Vcc in 3­state
18/77
See test circuits , Figure
9 and Figure 10
Resistive load, Figure 9
and Figure 10
Resistive load, Figure 9
and Figure 10
10 20 ns
25 ns
25 ns
PWRDN = 0 3 mA
V
= 30 V, 3-state 22 mA
CC
STA323W Electrical specifications
Table 11. Power electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Input pulse width = 50% duty,
switching frequency = 384 kHz,
no LC filters;
80 mA
46 A
I
VCC
I
out-sh
Supply current from VCC in operation
(both channel switching)
Overcurrent protection threshold (short circuit current limit)
V
UV
t
pw-min
P
o
P
o
Under voltage protection threshold
Output minimum pulse width No Load 70 150 ns
Output power
Output power

4.4 Timing specifications

Table 12. Timing characteristics

Symbol Parameter Test condition Min. Typ. Max. Unit
t
RESET
f
VCO

Figure 9. Test circuit 1

Hold time for RESET (pin 22) Active low rest 100 ns
VCO free run frequency No clock applied to XTI 18 28 MHz
Low current dead time = MAX(DTr, DTf)
Duty cycle = 50%
INxY
M58
M57
THD = 10%,
= 8 Ω, VCC = 18 V
R
L
THD = 1%, R
= 8 Ω, VCC = 18 V
L
+Vcc
OUTxY
gnd
OUTxY
DTr DTf
R 8
V67
+
­vdc = Vcc/2
7V
20 W
16 W
Vcc
(3/4)Vcc
(1/2)Vcc
(1/4)Vcc
t
19/77
Electrical specifications STA323W

Figure 10. Test circuit 2

High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))
+V
CC
Duty cycle=A Duty cycle=B
M58
DTin(A)
INA
M57
Duty cycle A and B: Fixed to have DC output current of 4A in the direction shown in figure
Q1
Q3
OUTA
Iout=1.5A
DTout(A)
C69
470nF
Rload=4
C71 470nF
L68 10µL67 10µ
C70
470nF

4.5 Power supply and control sequencing

Figure 11 shows the recommended power-up and power-down sequencing. The "time zero"
reference point is taken where V

Figure 11. Recommended power up and power down sequence

crosses the under voltage lockout threshold.
CC
M64
OUTB
Q2
INB
M63
Q4
D06AU1651
DTout(B) DTin(B)
Iout=1.5A
20/77
STA323W Electrical characteristics curves

5 Electrical characteristics curves

5.1 Output power against supply voltage

Figure 12. Stereo mode - output power vs. supply voltage, THD+N = 10%

Output power (W)
80
70
60
50
40
30
20
10
10 12 14 16 18 20 22 24 26
Power Supply Voltage (VDC)
4ohm
6ohm
8ohm
Figure 12 shows the full-scale output power (0 dBFS digital input with unity amplifier gain)
as a function of power supply voltage for 4, 6, and 8 loads in either DDX
®
mode or binary full bridge mode. Output power is constrained for higher impedance loads by the maximum voltage limit of the STA323W and by the over-current protection limit for lower impedance loads. The minimum threshold for the over-current protection circuit of the STA323W is 4 A (at 25° C) but the typical threshold is 6 A for the device. The solid curves shows the typical output power capability of the device. The dotted curves shows the output power capability constrained to the minimum current specification of the STA323W. The output power curves assume proper thermal management of the power device's internal dissipation.

Figure 13. Output power vs. supply for stereo bridge, THD+N=1%

output power (W) - BTL 1% THD
60
6 ohm
50
40
30
20
10
4 ohm
8 ohm
16ohm
0
10 15 20 25 30
supply voltage (V)
21/77
Electrical characteristics curves STA323W
Figure 13 shows the mono mode output power as a function of power supply voltages for
loads of 4, 6, 8 and 16 Ω. The same current limits as those given for Figure 12 apply, except output current is 8 A minimum, with 12 A typical in the mono-bridge configuration. The solid curves show typical performance and dashed curves depict the minimum current limit. The output power curves assume proper thermal management of the power device internal dissipation.

Figure 14. Half-bridge binary mode output power vs. supply, THD+N=10%

Output power (W)
25
Curves measured at f = 1 kHz and using
20
a blocking capacitor of 330 µF
15
10
5
0
10 12 14 16 18 20 22 2 26
Power Supply Voltage (VDC)
4ohm
6ohm
8ohm
Figure 14 shows the output power as a function of power supply voltages for loads of 4, 6,
and 8 when the STA323W is operated in a half-bridge binary mode. The curves depict typical performance. Minimum current limit is not reached for these combinations of voltage and load impedance. The output power curves assume proper thermal management of the power device internal dissipation.

Figure 15. Half-bridge binary mode output power vs. supply voltage, THD+N=1%

output power (W)
25
3 ohm
Curves measured at f = 1 kHz and using
20
2 ohm
a blocking capacitor of 330 µF
15
10
4 ohm
8 ohm
5
0
10 15 20 25 30
supply voltage (V)
22/77
STA323W Electrical characteristics curves
100

5.2 Audio performance

5.2.1 Stereo mode, operation with VCC = 26 V, 8 load
Figure 16. Typical efficiency
90
80
70
60
50
40
30
20
10
0
010203040 50
Total Output Power (Watts)
Figure 17. Typical frequency response
60 70 80
Figure 18. FFT -60 dB, 1 kHz output
23/77
Electrical characteristics curves STA323W
Figure 19. FFT inter-modulation distortion 19 kHz and 20 kHz

5.2.2 Stereo mode, operation with VCC = 18.5 V

Figure 20. Frequency response, 1 W, BTL, 8
dBr A
+3
+2.5
+2
+1.5
+1
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3 20 20k50 100 200 500 1 k 2k 5k 10k
6ohm
Figure 21. Channel separation, 1 W, BTL stereo mode
dBr A
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100 20 20k50 100 200 500 1k 2k 5k 10k
4ohm
Hz
8ohm
4 ohm
8ohm
24/77
STA323W Electrical characteristics curves
Figure 22. THD vs. output power, BTL, 1 kHz
%
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
100m 50200m 500m 1 2 5 10 20
W
8ohm
6ohm
4ohm
Figure 23. THD vs. frequency, 1 W output, stereo mode
%
1
0.5
0.2
0.1
0.05
0.02
0.01 20 20k50 100 200 500 1k 2k 5k 10k
4ohm
6ohm
8ohm
Hz
Figure 24. THD vs. frequency, BTL, 16 W output
%
1
0.5
0.2
0.1
0.05
0.02
0.01
6ohm
8ohm
4ohm
20 20k50 100 200 500 1k 2k 5k 10k
Hz
25/77
Electrical characteristics curves STA323W
Figure 25. FFT 0 dBFS 1 kHz, 8
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 26. FFT 0 dBFS 1 kHz, 6
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 27. FFT 0 dBFS 1 kHz, 4
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140 20 20k50 100 200 500 1k 2k 5 k 10k
26/77
Hz
STA323W Electrical characteristics curves
Figure 28. FFT -60 dBFS 1 kHz, 8
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
-160 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 29. FFT -60 dBFS 1 kHz, 6
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
-160 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 30. FFT -60 dBFS 1 kHz, 4
dBr
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
-160 20 20k50 100 200 500 1k 2k 5k 10k
Hz
27/77
Electrical characteristics curves STA323W
Figure 31. PSRR BTL, 500 mV ripple
dBr
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100 20 20030 40 50 60 70 80 90 100
6ohm8 ohm
4 ohm
Hz
TT

5.2.3 Half-bridge binary mode, operation with Vcc = 18.5 V

Figure 32. Frequency response, 1 W, binary half-bridge mode
dBr A
+3
+2.5
+2
+1.5
+1
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3
20 20k50 10 0 200 500 1k 2k 5k 10k
3ohm
4ohm
2ohm
Frequency (Hz)
Figure 33. Channel separation, 1 W, half bridge binary
dBr A
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100 20 20k50 100 20 0 500 1k 2k 5k 10k
28/77
8ohm
4 ohm
Hz
STA323W Electrical characteristics curves
Figure 34. THD+N vs. output power, single ended, 1 kHz, half-bridge binary
%
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
100m 50200m 500m 1 2 5 10 20
W
4ohm 3 ohm
2 ohm
Figure 35. THD vs. frequency, single ended, 1 W
%
0.5
0.4
0.3
0.2
0.1
0.08
0.06
0.05
0.04
0.03
0.02
2ohm
3ohm
4ohm
0.01 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 36. THD vs. frequency, single ended, 8 W
%
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01 20 20k50 100 200 500 1k 2k 5k 10k
2ohm
3ohm
4ohm
Hz
29/77
Electrical characteristics curves STA323W
Figure 37. FFT 0 dB, 1 kHz, single ended, 2
dBr
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-120 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 38. FFT 0 dB, 1 kHz, single ended, 3
dBr
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-120 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 39. FFT 0 dB, 1 kHz, single ended, 4
dBr
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
20 20k50 100 200 500 1k 2k 5k 10k
Hz
30/77
STA323W Electrical characteristics curves
Figure 40. FFT -60 dB, single ended, 1 kHz, 2
dBr
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 41. FFT -60 dB, single ended, 1 kHz, 4
dBr
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 42. FFT -60 dB, single ended, 1 kHz, 3
dBr
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140 20 20k50 100 200 500 1k 2k 5k 10k
31/77
Hz
Electrical characteristics curves STA323W
Figure 43. PSRR single ended, 500 mV ripple
dBr A
+10
+0
-10
-20
-30
-40
-50 2 ohm
-60
-70
-80
-90
-100
3 ohm
4 ohm
20
Hz
20030 40 5 0 60 70 80 90100
32/77
STA323W I2C bus specification

6 I2C bus specification

The STA323W supports the I2C fast mode (400 kbit/s) protocol. This protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master always starts the transfer and provides the serial clock for synchronization. The STA323W is always a slave device in all of its communications.

6.1 Communication protocol

Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is high is used to identify a START or STOP condition.
Start condition
START is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A START condition must precede any command for data transfer.
Stop condition
STOP is identified by a low to high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A STOP condition terminates communication between STA323W and the bus master.
Data input
During the data input the STA323W samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low.

6.2 Device addressing

To start communication between the master and the STA323W, the master must initiate with a START condition. Following this, the master sends 8 bits (MSB first) on the SDA line corresponding to the device select address and read or write mode.
The 7 MSBs are the device address identifiers, corresponding to the I the STA323W the I
The 8th bit (LSB) identifies read or write operation, RW. This bit is set to 1 in read mode and 0 for write mode. After a START condition the STA323W identifies the device address on the bus. If a match is found, it acknowledges the identification on the SDA bus during the 9th bit time. The byte following the device identification byte is the internal space address.
2
C interface uses a device address of decimal 34 (binary 00100010).
2
C bus definition. In
33/77
I2C bus specification STA323W
A
A
A
A
A

6.3 Write operation

Figure 44. I2C write procedure

BYTE WRITE
MULTIBYTE
WRITE
DEV-ADDR
START
DEV-ADDR
START
ACK
SUB-ADD R
RW
ACK
SUB-ADD R
RW
Following the START condition the master sends a device select code with the RW bit set to 0. The STA323W acknowledges this and then the master writes the internal address byte.
After receiving the internal byte address the STA323W again responds with an acknowledgement.
Byte write
In the byte write mode the master sends one data byte. This is acknowledged by the STA323W. The master then terminates the transfer by generating a STOP condition.
ACK
ACK
DATA IN
DATA IN
CK
STOP
CK
DATA IN
CK
STOP
Multi-byte write
The multi-byte write modes can start from any internal address. Sequential data bytes are written to sequential addresses within the STA323W.
The master generates a STOP condition to terminate the transfer.

6.4 Read operation

Figure 45. I2C read procedure

CURRENT ADDRESS
READ
RANDOM
ADDRESS
READ
SEQUENTIAL
CURRENT
READ
SEQUENTIAL
RANDOM
READ
Current address byte read
Following the START condition the master sends a device select code with the RW bit set to 1. The STA323W acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.
DEV-ADDR
START
DEV-ADDR
START
DEV-ADDR
START
DEV-ADDR
START
ACK
RW
ACK
RW
RW=
ACK
HIGH
ACK
RW
DATA
SUB-ADDR
DATA
SUB-ADDR
NO ACK
STOP
ACK
DEV-ADDR
START RW
ACK
DATA
ACK
DEV-ADDR
START RW
ACK
ACK
ACK
NO ACK
DATA
STOP
NO ACK
DATA
STOP
CK
DATA
DATA
CK NO ACK
DATA
STOP
34/77
STA323W I2C bus specification
Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA323W. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer.
Random address byte read
Following the START condition the master sends a device select code with the RW bit set to 0. The STA323W acknowledges this and then the master writes the internal address byte. After receiving, the internal byte address the STA323W again responds with an acknowledgement. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA323W acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.
Random address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are then read from sequential addresses within the STA323W. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer.
35/77
Register descriptions STA323W

7 Register descriptions

You must not reprogram the register bits marked “Reserved”. It is important that these bits keep their default reset values.
Table 13. Register summary
Address Name D7 D6 D5 D4 D3 D2 D1 D0
0x00 ConfA FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
0x01 ConfB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
0x02 ConfC Reserved CSZ4 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
0x03 ConfD MME ZDE DRC BQL PSL DSPB DEMP HPB
0x04 ConfE SVE ZCE DCCV PWMS AME Reserved MPC MPCV
0x05 ConfF EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0
0x06 Mmute Reserved Reserved Reserved Reserved Reserved Reserved Reserved MMute
0x07MvolMV7MV6MV5MV4MV3MV2MV1MV0
0x08 C1VolC1V7C1V6C1V5C1V4C1V3C1V2C1V1C1V0
0x09 C2VolC2V7C2V6C2V5C2V4C2V3C2V2C2V1C2V0
0x0A C3VolC3V7C3V6C3V5C3V4C3V3C3V2C3V1C3V0
0x0B Auto1 AMPS Reserved AMGC1 AMGC0 AMV1 AMV0 AMEQ1 AMEQ0
0x0C Auto2 XO3 XO2 XO1 XO1 AMAM2 AMAM1 AMAM0 AMAME
0x0D Auto3 Reserved Reserved Reserved PEQ4 PEQ3 PEQ2 PEQ1 PEQ0
0x0E C1Cfg C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB
0x1F C2Cfg C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB
0x10 C3Cfg C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP Reserved Reserved
0x11 Tone TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
0x12 L1ar L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
0x13 L1atrt L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
0x14 L2ar L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
0x15 L2atrt L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
0x16 Cfaddr2 CFA7 CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
0x17 B1cf1 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
0x18 B1cf2 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
0x19 B1cf3C1B7C1B6C1B5C1B4C1B3C1B2C1B1C1B0
0x1A B2cf1 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
0x1B B2cf2 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
0x1C B2cf3C2B7C2B6C2B5C2B4C2B3C2B2C2B1C2B0
0x1D A1cf1 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16
36/77
STA323W Register descriptions
Table 13. Register summary (continued)
Address Name D7 D6 D5 D4 D3 D2 D1 D0
0x1E A1cf2 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
0x1F A1cf3C3B7C3B6C3B5C3B4C3B3C3B2C3B1C3B0
0x20 A2cf1 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
0x21 A2cf2 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
0x22 A2cf3C4B7C4B6C4B5C4B4C4B3C4B2C4B1C4B0
0x23 B0cf1 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
0x24 B0cf2 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
0x25 B0cf3C5B7C5B6C5B5C5B4C5B3C5B2C5B1C5B0
0x26 Cfud Reserved Reserved Reserved Reserved Reserved Reserved WA W1
0x27 MPCC1 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
0x28 MPCC2 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
0x29 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
0x2A Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
0x2B FDRC1 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
0x2C FDRC2 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
0x2D Status PLLUL Reserved Reserved Reserved Reserved Reserved FAULT TWARN

7.1 Configuration register A (address 0x00)

D7 D6 D5 D4 D3 D2 D1 D0
FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
01100011

7.1.1 Master clock select

Table 14. Master clock select
Bit R/W RST Name Description
0RW1MCS0
1RW1MCS1
2RW0MCS2
The STA323W supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz. Therefore the internal clock is:
" 32.768 MHz for 32 kHz
" 45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
" 49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
Master clock select: selects the ratio between the input
2
I
S sample frequency and the input clock.
37/77
Register descriptions STA323W
The external clock frequency provided to the XTI pin must be a multiple of the input sample frequency (fs). The correlation between the input clock and the input sample rate is determined by the status of the MCSx bits and the IR (input rate) register bits. The MCSx bits determine the PLL factor generating the internal clock and the IR bit determines the oversampling ratio used internally.
Table 15. IR and MCS settings for input sample rate and clock rate
Input sample rate
fs (kHz)
IR
32, 44.1, 48 00 768 * fs 512 * fs 384 * fs 256 * fs 128 * fs 576 * fs
88.2, 96 01 384 * fs 256 * fs 192 * fs 128 * fs 64 * fs x
176.4, 192 1X 384 * fs 256 * fs 192 * fs 128 * fs 64 * fs x

7.1.2 Interpolation ratio select

Table 16. Interpolation ratio select
Bit R/W RST Name Description
4:3 RW 00 IR[1:0]
The STA323W has variable interpolation (re-sampling) settings such that internal processing and DDX output rates remain consistent. The first processing block interpolates by either 2 times or 1 time (pass-through) or provides a down-sample by a factor of 2.
The IR bits determine the re-sampling ratio of this interpolation.
Table 17. IR bit settings as a function of input sample rate
Input sample rate fs (kHz) IR[1, 0] 1st stage interpolation ratio
MCS[2:0]
000 001 010 011 100 101
2
Selects internal interpolation ratio based on input I
S sample
frequency
32 00 2 times over-sampling
44.1 00 2 times over-sampling
48 00 2 times over-sampling
88.2 01 Pass-Through
96 01 Pass-Through
176.4 10 Down-sampling by 2
192 10 Down-sampling by 2
38/77
STA323W Register descriptions

7.1.3 Thermal warning recovery bypass

Table 18. Thermal warning recovery bypass
Bit R/W RST Name Description
5RW1TWRB
0: thermal warning recovery enabled 1: thermal warning recovery disabled
If the thermal warning adjustment is enabled (TWAB = 0), then the thermal warning recovery determines if the adjustment is removed when thermal warning is negative. If TWRB = 0 and TWAB = 0, then, when a thermal warning disappears, the gain adjustment determined by the thermal warning post-scale (default = -3 dB) is removed and the gain is applied to the system. If TWRB = 1 and TWAB = 0, then when a thermal warning disappears, the thermal warning post-scale gain adjustment remains until TWRB is changed to zero or the device is reset.

7.1.4 Thermal warning adjustment bypass

Table 19. Thermal warning adjustment bypass
Bit R/W RST Name Description
6RW1TWAB
The STA323W on-chip power output block provides feedback to the digital controller by the power control block inputs. The TWARN input is used to indicate a thermal warning condition. When TWARN is active (set to 0 for a period greater than 400 ms) the power control block forces an adjustment to the modulation limit in an attempt to eliminate the thermal warning condition. Once the thermal warning volume adjustment is applied, whether the gain is reapplied when TWARN is inactive, depends on the TWRB bit.
0: thermal warning adjustment enabled 1: thermal warning adjustment disabled

7.1.5 Fault detect recovery bypass

Table 20. Fault detect recovery bypass
Bit R/W RST Name Description
7 RW 0 FDRB
The DDX power block provides feedback to the digital controller using inputs to the power control block. The FAULT input is used to indicate a fault condition (either over-current or thermal). When FAULT is active (set to 0), the power control block attempts a recovery from the fault by activating the 3-state output (setting it to 0 which directs the power output block to begin recovery). It holds it at 0 for period of time in the range of 0.1 ms to 1 second as defined by the fault-detect recovery constant register (FDRC registers 0x29-0x2A), then toggles it back to 1. This sequence is repeated as long as the fault indication exists. This feature is enabled by default but can be bypassed by setting the FDRB control bit to 1.
0: fault detector recovery enabled 1: fault detector recovery disabled
39/77
Register descriptions STA323W

7.2 Configuration register B (address 0x01)

D7 D6 D5 D4 D3 D2 D1 D0
C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
10000000

7.2.1 Serial audio input interface format

Table 21. Serial audio input interface format
Bit R/W RST Name Description
3:0 RW 0000 SAI[3:0]
4 RW 0 SAIFB

7.2.2 Serial data interface

The STA323W serial audio input interfaces with standard digital audio components and accepts several different serial data formats. The STA323W always acts as a slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using 3 input pins: left/right clock LRCKI, serial clock BICKI, and serial data SDI.
The SAI register (configuration register B (address 0x01) bits D3-D0) and the SAIFB register (configuration register B (address 0x01) bit D4) are used to specify the serial data format. The default serial data format is I
Figure 46 and in Tab le 2 1 and Tab le 2 2 .
Figure 46. General serial input and output formats
I2S
LRCLK
SCLK
SDATA
Left Justified
LRCLK
SCLK
Determines the interface format of the input serial digital audio interface.
Data format: 0: MSB first 1: LSB first
2
S, MSB first. The formats available are shown in
Left Right
LSBMSB LSBMSB MSB
Left Right
SDATA
Right Justified
LRCLK
SCLK
SDATA
LSBMSB
Left Right
Table 22. lists the serial audio input formats supported by STA323W when
BICKI = 32 * fs, 48 * fs or 64 * fs, where the sampling rate fs = 32, 44.1, 48, 88.2, 96, 176.4 or 192 kHz.
40/77
LSBMSB MSB
LSBMSB LSB
MSB MSB
STA323W Register descriptions
Table 22. Supported serial audio input formats
BICKI SAI[3:0] SAIFB Interface format
32 * fs 1100 X I
1110 X Left/right-justified 16-bit data
48 * fs 0100 X I
0100 X I
1000 X I
0100 0 MSB first I
1100 1 LSB first I
0001 X Left-justified 24-bit data
0101 X Left-justified 20-bit data
1001 X Left-justified 18-bit data
1101 X Left-justified 16-bit data
0010 X Right-justified 24-bit data
0110 X Right-justified 20-bit data
1010 X Right-justified 18-bit data
2
S 15-bit data
2
S 23-bit data
2
S 20-bit data
2
S 18-bit data
2
2
S 16-bit data
S 16-bit data
1110 X Right-justified 16-bit data
2
64 * fs 0000 X I
0100 X I
1000 X I
0000 0 MSB first I
1100 1 LSB first I
S 24-bit data
2
S 20-bit data
2
S 18-bit data
2
2
S 16-bit data
S 16-bit data
0001 X Left-justified 24-bit data
0101 X Left-justified 20-bit data
1001 X Left-justified 18-bit data
1101 X Left-justified 16-bit data
0010 X Right-justified 24-bit data
0110 X Right-justified 20-bit data
1010 X Right-justified 18-bit data
1110 X Right-justified 16-bit data
For example, SAI = 1110 and SAIFB = 1 specifies right justified 16-bit data, LSB first.
41/77
Register descriptions STA323W
Table 23. Serial input data timing characteristics (fs = 32 to 192 kHz)
parameter Timing
BICKI frequency (slave mode) 12.5 MHz max.
BICKI pulse width high (T1) (slave mode) 40 ns min.
BICKI active to LRCKI edge delay (T2) 20 ns min.
BICKI active to LRCKI edge delay (T3) 20 ns min.
SDI valid to BICKI active setup (T4) 20 ns min.
BICKI active to SDI hold time (T5) 20 ns min.
Figure 47. Serial input and data timing
T3T2
LRCKI
BICKI
SDI
T0
T4
T5
T1

7.2.3 Delay serial clock enable

Table 24. Delay serial clock enable
Bit R/W RST Name Description
5RW0DSCKE
g
Table 25. Channel input mapping
Bit R/W RST Name Description
6RW0C1IM
7RW1C2IM
Each channel received from the I2S can be mapped to any internal processing channel via the channel input mapping registers. This allows processing flexibility. The default settings of these registers map each I
2
S input channel to its corresponding processing channel.
0: no serial clock delay 1: serial clock delay by 1 core clock cycle to tolerate
anomalies in some I
0: processing channel 1 receives left I 1: processing channel 1 receives right I
0: processing channel 2 receives left I 1: processing channel 2 receives right I
2
S master devices
2
S input
2
S input
2
S input
2
S input
42/77
STA323W Register descriptions

7.3 Configuration register C (address 0x02)

D7 D6 D5 D4 D3 D2 D1 D0
Reserved CSZ4 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
01000010

7.3.1 DDX® power-output mode

Table 26. DDX® power-output mode
Bit R/W RST Name Description
®
1:0 RW 10 OM[1:0] Selects configuration of DDX
The DDX® power output mode selects how the DDX® output timing is configured. Different power devices can use different output modes. The recommended use is OM = 10. When OM = 11 the CSZ bits determine the size of the DDX
Table 27. DDX® output modes
OM[1,0] Output stage - mode
00 Not used
01 Not used
10 Recommended
®
compensating pulse.
output.
11 Variable compensation

7.3.2 DDX® variable compensating pulse size

The DDX® variable compensating pulse size is intended to adapt to different power stage ICs. Contact ST for support when using this function.
Table 28. DDX® compensating pulse
CSZ[4:0] Compensating pulse size
00000 0 clock period compensating pulse size
00001 1 clock period compensating pulse size
……
10000 16 clock period compensating pulse size
……
11111 31 clock period compensating pulse size
43/77
Register descriptions STA323W

7.4 Configuration register D (address 0x03)

D7 D6 D5 D4 D3 D2 D1 D0
MME ZDE DRC BQL PSL DSPB DEMP HPB
01000000

7.4.1 High-pass filter bypass

Table 29. High-pass filter bypass
Bit R/W RST Name Description
0RW0HPB
The STA323W features an internal digital high-pass filter for DC blocking. The purpose of this filter is to prevent DC signals from passing through a DDX® amplifier. DC signals can cause speaker damage.

7.4.2 De-emphasis

Table 30. De-emphasis
Bit R/W RST Name Description
1RW0DEMP
By setting this bit to 1, de-emphasis is implemented on all channels. DSPB (DSP Bypass, Bit D2, CFA) bit must be set to 0 for de-emphasis to function.

7.4.3 DSP bypass

Table 31. DSP bypass
Bit R/W RST Name Description
2 RW 0 DSPB
0: AC coupling high pass filter enabled 1: AC coupling high pass filter enabled
0: no de-emphasis 1: de-emphasis
0: normal operation 1: bypass of EQ and mixing functionality
Setting the DSPB bit bypasses all the EQ and mixing functions of the STA323W core.
44/77
STA323W Register descriptions

7.4.4 Post-scale link

Table 32. Post-scale link
Bit R/W RST Name Description
3 RW 0 PSL
0: each channel uses individual post-scale value 1: each channel uses channel 1 post-scale value
Post-scale functionality is an attenuation placed after the volume control and directly before the conversion to PWM. Post-scale can also be used to limit the maximum modulation index and therefore the peak current. Setting 1, in the PSL register, causes the value stored in Channel 1 post-scale to be used for all three internal channels.

7.4.5 Biquad coefficient link

Table 33. Biquad coefficient link
Bit R/W RST Name Description
4RW0BQL
0: each channel uses coefficient values 1: each channel uses channel 1 coefficient values
For ease of use, all channels can use the biquad coefficients loaded into the channel 1 coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to be performed once.

7.4.6 Dynamic range compression/anti-clipping bit

Table 34. Dynamic range compression/anti-clipping bit
Bit R/W RST Name Description
5RW0DRC
Both limiters can be used in one of two ways: anti-clipping or dynamic range compression. When used in anti-clipping mode the limiter threshold values are constant and dependent on the limiter settings. In dynamic range compression mode the limiter threshold values vary with the volume settings allowing a nighttime listening mode that provides a reduction in the dynamic range regardless of the volume level.

7.4.7 Zero-detect mute enable

Table 35. Zero-detect mute enable
Bit R/W RST Name Description
6 RW 1 ZDE Setting of 1 enables the automatic zero-detect mute
Setting the ZDE bit enables the zero-detect automatic mute. When ZDE = 1, the zero-detect circuit looks at the input data to each processing channel after the channel-mapping block. If any channel receives 2048 consecutive zero value samples (regardless of fs) then that individual channel is muted if this function is enabled.
0: limiters act in anti-clipping mode 1: limiters act in dynamic range compression mode
45/77
Register descriptions STA323W

7.5 Configuration register E (address 0x04)

D7 D6 D5 D4 D3 D2 D1 D0
SVE ZCE Reserved PWMS AME Reserved MPC MPCV
11000010

7.5.1 Max power correction variable

Table 36. Max power correction variable
Bit R/W RST Name Description
0RW0MPCV
By enabling MPC and setting MPCV = 1, the max power correction becomes variable. By adjusting the MPCC registers (address 0x27-0x28) it is possible to adjust the THD at maximum unclipped power to a lower value for a particular application.

7.5.2 Max power correction

Table 37. Max power correction
Bit R/W RST Name Description
1RW1MPC
Setting the MPC bit corrects the power device at high power. This mode lowers the THD+N of the full DDX
®
system at, and slightly below, maximum power output.

7.5.3 AM mode enable

Table 38. AM mode enable
Bit R/W RST Name Description
3RW0AME
0: use standard MPC coefficient 1: use MPCC bits for MPC coefficient
0: MPC disabled 1: MPC enabled
0: normal DDX 1: AM reduction mode DDX
®
operation
®
operation
The STA323W features a DDX® processing mode that minimizes the amount of noise generated in the frequency range of AM radio. This mode is intended for use when DDX operating in a device with an active AM tuner. The SNR of the DDX to ~83 dB in this mode, which is still greater than the SNR of AM radio.

7.5.4 PWM speed mode

Table 39. PWM speed mode
Bit R/W RST Name Description
4 RW 0 PWMS Normal or odd
46/77
®
processing is reduced
®
is
STA323W Register descriptions
Table 40. PWM output speed selections
PWMS[1:0] PWM output speed
0 Normal speed (384kHz) all channels
1 Odd speed (341.3kHz) all channels

7.5.5 Zero-crossing volume enable

Table 41. Zero-crossing volume enable
Bit R/W RST Name Description
1: volume adjustments will only occur at digital zero-
6RW1ZCE
crossings 0: volume adjustments will occur immediately
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-crossings no clicks are audible.

7.5.6 Soft volume update enable

Table 42. Soft volume update enable
Bit R/W RST Name Description
7 RW 1 SVE
1: volume adjustments will use soft volume 0: volume adjustments will occur immediately
The STA323W includes a soft volume algorithm that steps through the intermediate volume values at a predetermined rate when a volume change occurs. By setting SVE = 0 this can be bypassed and volume changes will jump from the old to the new value directly. This feature is available only if individual channel volume bypass bit is set to 0.
47/77
Register descriptions STA323W

7.6 Configuration register F (address 0x05)

D7 D6 D5 D4 D3 D2 D1 D0
EAPD PWDN ECLE Reserved BCLE IDE OCFG1 OCFG0
01011100

7.6.1 Output configuration selection

Table 43. Output configuration selection
Bit R/W RST Name Description
1:0 RW 00 OCFG[1:0] 00: 2-channel (full-bridge) power, 1-channel DDX is default
Table 44. Output configuration selections
OCFG[1:0] Output power configuration
2 channel (full-bridge) power, 1 channel DDX:
00
01
1A/1B 1A/1B 2A/2B 2A/2B
2(half-bridge).1(full-bridge) on-board power: 1A 1A Binary 2A 1B Binary 3A/3B 2A/2B Binary
10 Reserved
1 channel mono-parallel:
11
3A 1A/1B 3B 2A/2B
Table 45. Invalid input detect mute enable
Bit R/W RST Name Description
2RW1IDE
0: disabled 1: enabled
Setting the IDE bit enables this function, which looks at the input I2S data and clocking and automatically mutes all outputs if the signals are invalid.
Table 46. Binary clock loss detection enable
Bit R/W RST Name Description
3RW1BCLE
0: disabled 1: enabled
Detects loss of input MCLK in binary mode and outputs 50% duty cycle to prevent audible noise when input clocking is lost.
48/77
STA323W Register descriptions
Table 47. Auto-EAPD on clock loss enable
Bit R/W RST Name Description
5RW0ECLE
0: disabled 1: enabled
When ECLE is active, it issues a power device power down signal (EAPD) on clock loss detection.
Table 48. Software power down
Bit R/W RST Name Description
Software power down: 0: power down mode: initiates a power-down sequence
6RW1PWDN
Table 49. External amplifier power down
Bit R/W RST Name Description
7 RW 0 EAPD
EAPD is used to actively power down a connected DDX® power device. This register has to be written to 1 at start-up to enable the DDX
which results in a soft mute of all channels and finally asserts EAPD circa 260 ms later
1: normal operation
0: external power stage power down active 1: normal operation
®
power device for normal operation.
49/77
Register descriptions STA323W

7.7 Volume control

7.7.1 Master controls

Master mute register (address 0x06)
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved Reserved Reserved MMUTE
00000000
Master volume register (Address 0x07)
D7 D6 D5 D4 D3 D2 D1 D0
MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0
11111111
Note: The value of volume derived from MV is dependent on the AMV AutoModes™ volume
settings.

7.7.2 Channel controls

Channel 1 volume (address 0x08)
D7 D6 D5 D4 D3 D2 D1 D0
C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0
01100000
Channel 2 volume (address 0x09)
D7 D6 D5 D4 D3 D2 D1 D0
C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0
01100000
Channel 3 volume (address 0x0A)
D7 D6 D5 D4 D3 D2 D1 D0
C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0
01100000

7.7.3 Volume description

The volume structure of the STA323W consists of individual volume registers for each of the three channels and a master volume register, and individual channel volume trim registers. The channel volume settings are normally used to set the maximum allowable digital gain and to hard-set gain differences between certain channels. These values are normally set at the initialization of the IC and not changed. The individual channel volumes are adjustable in
0.5-dB steps from +48 dB to -80 dB. The master volume control is normally mapped to the master volume of the system. The values of these two settings are summed to find the actual gain or volume value for any given channel.
50/77
STA323W Register descriptions
When set to 1, the Master Mute will mute all channels, whereas the individual channel mutes (CxM) will mute only that channel. Both the Master Mute and the Channel Mutes provide a “soft mute”, that is, a gradual muting with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate of circa 96 kHz. A “hard mute” can be obtained by setting a value of 0xFF in any channel volume register or the master volume register. When volume offsets are provided, via the master volume register, any channel whose total volume is less than -100 dB is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (configuration register E) on a per channel basis as this creates the smoothest possible volume transitions. When ZCE = 0, volume updates occur immediately.
The STA323W also features a soft-volume update function. When SVE = 1 (in configuration register E) the volume ramps between intermediate values when the value is updated, This feature can be disabled by setting SVE = 0.
Each channel also contains an individual channel volume bypass. If a particular channel has volume bypassed via the CxVBP = 1 register then only the channel volume setting for that particular channel affects the volume setting, the master volume setting does not affect that channel. Also, master soft-mute does not affect the channel if CxVBP = 1.
Each channel also contains a channel mute. If CxM = 1 a soft mute is performed on that channel.
Table 50. Master volume offset as a function of MV[7:0]
MV[7:0] Volume offset from channel value
00000000 (0x00) 0 dB
00000001 (0x01) -0.5 dB
00000010 (0x02) -1 dB
……
01001100 (0x4C) -38 dB
……
11111110 (0xFE) -127 dB
11111111 (0xFF) Hard Master Mute
Table 51. Channel volume as a function of CxV[7:0]
CxV[7:0] Volume
00000000 (0x00) +48 dB
00000001 (0x01) +47.5 dB
00000010 (0x02) +47 dB
……
01100001 (0x5F) +0.5 dB
01100000 (0x60) 0 dB
01011111 (0x61) -0.5 dB
……
51/77
Register descriptions STA323W
Table 51. Channel volume as a function of CxV[7:0] (continued)
CxV[7:0] Volume
11111110 (0xFE) -79.5 dB
11111111 (0xFF) Hard channel mute

7.8 AutoModes™ registers

7.8.1 AutoModes™ EQ, volume, GC (address 0x0B)

D7 D6 D5 D4 D3 D2 D1 D0
AMPS Reserved AMGC1 AMGC0 AMV1 AMV0 AMEQ1 AMEQ0
10000000
Table 52. AutoModes™ EQ
AMEQ[1,0] Mode (Biquad 1-4)
00 User Programmable
01 Preset EQ - PEQ bits
10 Auto Volume Controlled Loudness Curve
11 Not used
Setting AMEQ to any value, other than 00, enables AutoModes™ EQ. When set, biquads 1­4 are not user programmable. Any coefficient settings for these biquads is ignored. Also when AutoModes™ EQ is used the pre-scale value for channels 1 and 2 becomes hard-set to -18 dB.
Table 53. AutoModes™ volume
AMV[1,0] Mode (MVOL)
00 MVOL 256, 0.5-dB steps (standard)
01 MVOL auto curve 30 steps
10 MVOL auto curve 40 steps
11 MVOL auto curve 50 steps
Table 54. AutoModes™ gain compression/limiters
AMGC[1:0] Mode
00 User programmable GC
01 AC no clipping
10 AC limited clipping (10%)
11 DRC night time listening mode
52/77
STA323W Register descriptions
Table 55. AMPS - AutoModes™ auto pre scale
Bit R/W RST Name Description
AutoMode pre-scale
0 RW 0 AMPS
0: -18 dB used for pre-scale when AMEQ neq 00 1: User defined pre-scale when AMEQ neq 00

7.8.2 AutoModes™ AM/pre-scale/bass management scale (address 0x0C)

D7 D6 D5 D4 D3 D2 D1 D0
XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
00000000
Table 56. AutoModes™ AM switching enable
Bit R/W RST Name Description
0 RW 0 AMAME
0: switching frequency determined by PWMS setting 1: switching frequency determined by AMAM settings
3:1 RW 000 AMAM[2:0] Default: 000
Table 57. AutoModes™ AM switching frequency selection
AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs
000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz
001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz
010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz
011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz
100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz
101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz
110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz
When DDX® is used with an AM radio tuner, it is recommended to use the AMAM bits to automatically adjust the output PWM switching rate so that it depends on the specific radio frequency that the tuner is receiving. The values used in AMAM are also dependent upon the sample rate that is determined by the ADC used.
Table 58. AutoModes™ crossover setting
Bit R/W RST Name Description
000: user defined crossover coefficients are used
7:4 RW 0 XO[3:0]
Otherwise: preset coefficients are used for the required crossover setting
Table 59. Crossover frequency selection
XO[2:0] Bass management - crossover frequency
0000 User
0001 80 Hz
53/77
Register descriptions STA323W
Table 59. Crossover frequency selection (continued)
XO[2:0] Bass management - crossover frequency
0010 100 Hz
0011 120 Hz
0100 140 Hz
0101 160 Hz
0110 180 Hz
0111 200 Hz
1000 220 Hz
1001 240 Hz
1010 260 Hz
1011 280 Hz
1100 300 Hz
1101 320 Hz
1110 340 Hz
1111 360 Hz

7.8.3 Preset EQ settings (address 0x0D)

D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved PEQ4 PEQ3 PEQ2 PEQ1 PEQ0
00000000
Table 60. Preset EQ selection
PEQ[3:0] Setting
00000 Flat
00001 Rock
00010 Soft Rock
00011 Jazz
00100 Classical
00101 Dance
00110 Pop
00111 Soft
01000 Hard
01001 Party
01010 Vocal
01011 Hip-Hop
01100 Dialog
54/77
STA323W Register descriptions
Table 60. Preset EQ selection (continued)
PEQ[3:0] Setting
01101 Bass-boost #1
01110 Bass-boost #2
01111 Bass-boost #3
10000 Loudness 1 (least boost)
10001 Loudness 2
10010 Loudness 3
10011 Loudness 4
10100 Loudness 5
10101 Loudness 6
10110 Loudness 7
10111 Loudness 8
11000 Loudness 9
11001 Loudness 10
11010 Loudness 11
11011 Loudness 12
11100 Loudness 13
11101 Loudness 14
11110 Loudness 15
11111 Loudness 16 (most boost)

7.9 Channel configuration registers

7.9.1 Channel 1 configuration (address 0x0E)

D7 D6 D5 D4 D3 D2 D1 D0
C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB
00000000

7.9.2 Channel 2 configuration (address 0x0F)

D7 D6 D5 D4 D3 D2 D1 D0
C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB
00000000
55/77
Register descriptions STA323W

7.9.3 Channel 3 configuration (address 0x10)

D7 D6 D5 D4 D3 D2 D1 D0
C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP Reserved Reserved
00000000
EQ control can be bypassed on a per channel basis. If EQ control is bypassed on a given channel the prescale and all 9 filters (high-pass, biquads, de-emphasis, bass management cross-over, bass, treble in any combination) are bypassed for that channel.
CxEQBP:
" 0: perform EQ on channel X (normal operation)
" 1: bypass EQ on channel X
Tone control (bass and treble) can be bypassed on a per channel basis. If tone control is bypassed on a given channel the two filters that tone control utilizes are bypassed.
CxTCB:
" 0: perform tone control on channel x - (default operation)
" 1: bypass tone control on channel x
Each channel can be configured to output either the patented DDX PWM data or standard binary PWM encoded data. By setting the CxBO bit to ‘1’, each channel can be individually set to binary operation mode.
It is also possible to map each channel independently to either of the two limiters available within the STA323W. In the default mode the channels are not mapped to a limiter.
Table 61. Channel Limiter Mapping Selection
CxLS[1,0] Channel limiter mapping
00 Channel has limiting disabled
01 Channel is mapped to limiter #1
10 Channel is mapped to limiter #2
Each PWM output channel can receive data from any channel output of the volume block. Which channel a particular PWM output receives depends on the CxOM register bits for that channel.
Table 62. Channel PWM output mapping
CxOM[1:0] PWM output from
00 Channel 1
01 Channel 2
10 Channel 3
11 Not used
56/77
STA323W Register descriptions

7.10 Tone control (address 0x11)

D7 D6 D5 D4 D3 D2 D1 D0
TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
01110111

Table 63. Tone control boost/cut selection

BTC[3:0]/TTC[3:0] Boost/cut
0000 -12 dB
0001 -12 dB
……
0111 -4 dB
0110 -2 dB
0111 0 dB
1000 +2 dB
1001 +4 dB
……
1101 +12 dB
1110 +12 dB
1111 +12 dB

7.11 Dynamics control

7.11.1 Limiter 1 attack/release threshold (address 0x12)

D7 D6 D5 D4 D3 D2 D1 D0
L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
01101010

7.11.2 Limiter 1 attack/release threshold (address 0x13)

D7 D6 D5 D4 D3 D2 D1 D0
L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
01101001

7.11.3 Limiter 2 attack/release rate (address 0x14)

D7 D6 D5 D4 D3 D2 D1 D0
L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
01101010
57/77
Register descriptions STA323W

7.11.4 Limiter 2 attack/release threshold (address 0x15)

D7 D6 D5 D4 D3 D2 D1 D0
L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
01101001

7.11.5 Dynamics control description

The STA323W includes two independent limiter blocks. The purpose of the limiters is to automatically reduce the dynamic range of a recording to prevent the outputs from clipping in anti-clipping mode, or to actively reduce the dynamic range for a better listening environment (such as a night-time listening mode, which is often needed for DVDs.) The two modes are selected via the DRC bit in Configuration Register D, bit 5 address 0x03. Each channel can be mapped to Limiter1 or Limiter2, or not mapped.
If a channel is not mapped, that channel will clip normally when 0 dB FS is exceeded. Each limiter will look at the present value of each channel that is mapped to it, select the maximum absolute value of all these channels, perform the limiting algorithm on that value, and then, if needed, adjust the gain of the mapped channels in unison.
The limiter attack thresholds are determined by the LxAT registers. When the Attack Threshold has been exceeded, the limiter, when active, automatically starts reducing the gain. The rate at which the gain is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. A peak-detect algorithms used to control the gain reduction.
The release of limiter, when the gain is again increased, is dependent on an RMS-detect algorithm. The output of the volume limiter block is passed through an RMS filter. The output of this filter is compared with the release threshold, determined by the Release Threshold register.
When the RMS filter output falls below the release threshold, the gain is increased at a rate dependent upon the release rate register. The gain can never be increased past its set value and therefore the release will only occur if the limiter has already reduced the gain. The release threshold value can be used to set what is effectively a minimum dynamic range. This is helpful as over-limiting can reduce the dynamic range to virtually zero and cause program material to sound “lifeless”.
In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the attack threshold is set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is set relative to the maximum volume setting plus the attack threshold.
Figure 48. Basic limiter and volume flow diagram
Limiter
Gain/volume
RMS
Input
Gain Attenuation Saturation
58/77
Output
STA323W Register descriptions
Table 64. Limiter attack rate selection
LxA[3:0] Attack rate dB/ms
0000 3.1584 Fast
0001 2.7072
0010 2.2560
0011 1.8048
0100 1.3536
0101 0.9024
0110 0.4512
0111 0.2256
1000 0.1504
1001 0.1123
1010 0.0902
1011 0.0752
1100 0.0645
1101 0.0564
1110 0.0501
1111 0.0451 Slow
Table 65. Limiter release rate selection
LxR[3:0] Release rate dB/ms
0000 0.5116 Fast
0001 0.1370
0010 0.0744
0011 0.0499
0100 0.0360
0101 0.0299
0110 0.0264
0111 0.0208
1000 0.0198
1001 0.0172
1010 0.0147
1011 0.0137
1100 0.0134
1101 0.0117
1110 0.0110
1111 0.0104 Slow
59/77
Register descriptions STA323W

7.11.6 Anti-clipping mode

Table 66. Limiter attack - threshold selection (AC-mode)
LxAT[3:0] AC (dB relative to FS)
0000 -12
0001 -10
0010 -8
0011 -6
0100 -4
0101 -2
0110 0
0111 +2
1000 +3
1001 +4
1010 +5
1011 +6
1100 +7
1101 +8
1110 +9
1111 +10
.
Table 67. Limiter release threshold selection (AC-mode)
LxRT[3:0] AC (dB relative to FS)
0000 -
0001 -29dB
0010 -20dB
0011 -16dB
0100 -14dB
0101 -12dB
0110 -10dB
0111 -8dB
1000 -7dB
1001 -6dB
1010 -5dB
1011 -4dB
1100 -3dB
1101 -2dB
60/77
STA323W Register descriptions
Table 67. Limiter release threshold selection (AC-mode) (continued)
LxRT[3:0] AC (dB relative to FS)
1110 -1dB
1111 -0dB

7.11.7 Dynamic range compression mode

Table 68. Limiter attack - threshold selection (DRC-mode)
LxAT[3:0] DRC (dB relative to volume)
0000 -31
0001 -29
0010 -27
0011 -25
0100 -23
0101 -21
0110 -19
0111 -17
1000 -16
1001 -15
1010 -14
1011 -13
1100 -12
1101 -10
1110 -7
1111 -4
61/77
Register descriptions STA323W
.(
Table 69. Limiter release threshold selection (DRC-mode)
LxRT[3:0] DRC (db relative to Volume + LxAT)
0000 -
0001 -38 dB
0010 -36 dB
0011 -33 dB
0100 -31 dB
0101 -30 dB
0110 -28 dB
0111 -26 dB
1000 -24 dB
1001 -22 dB
1010 -20 dB
1011 -18 dB
1100 -15 dB
1101 -12 dB
1110 -9 dB
1111 -6 dB
62/77
STA323W User-programmable settings

8 User-programmable settings

8.1 EQ - biquad equation

The biquads use the equation that follows. This is shown in Figure 49.
Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2]
= b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2]
where Y[n] represents the output and X[n] represents the input. Signed, fractional 28-bit multipliers are used, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF (0.9999998808).
Coefficients stored in the user defined coefficient RAM are referenced in the following manner:
" CxHy0 = b1/2
" CxHy1 = b2
" CxHy2 = -a1/2
" CxHy3 = -a2
" CxHy4 = b0/2
The x represents the channel and the y the biquad number. For example C3H41 is the b0/2 coefficient in the fourth biquad for channel 3.

Figure 49. Biquad filter

Z -1
Z -1

8.2 Pre-scale

The pre-scale block, which precedes the first biquad, is used for attenuation when filters are designed that boost frequencies above 0 signed multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default, all pre-scale factors are set to 0x7FFFFF.

8.3 Post-scale

The STA323W provides one additional multiplication after the last interpolation stage and before the distortion compensation on each channel. The post-scale block is a 24-bit signed fractional multiplier. The scale factor for this multiplier is loaded into RAM using the same
2
I
C registers as the biquad coefficients and the mix. All channels can use the same settings
as channel 1 by setting the post-scale link bit.
b0/2
b1/2
2
2
b2 -a2
+
+
+
dBFS. The Pre-Scale block is a single 28-bit
2
Z -1
-a1/2
Z -1
63/77
User-programmable settings STA323W

8.4 Mix/bass management

The STA323W provides one post-EQ mixing block per channel. Each channel has two mixing coefficients, which are each 24-bit signed fractional multipliers, that correspond to the two channels of input to the mixing block. These coefficients are accessible via the User Controlled Coefficient RAM described below. The mix coefficients expressed as 24-bit signed, fractional numbers in the range +1.0 (8388607) to -1.0 (-8388608), are used to provide three channels of output from two channels of filtered input.

Figure 50. Mix/bass management block diagram

Channel #1
from EQ
Channel #2 from EQ
C1MX1
.
C1MX2
C2MX1
.
C2MX2
C3MX1
.
C3MX2
User defined mix coefficients
High pass
XO
filter
High pass
XO
filter
Low pass
XO
filter
Crossover frequency determined by XO setting. User defined when XO = 000
Channel #1
to GC/vol
Channel #2
to GC/vol
Channel #3 to GC/vol
After mixing, STA323W also permits the implementation of crossover filters on all channels corresponding to 2.1 bass management operation. Channels 1 and 2 use a 1st order, high­pass filter and channel 3 uses a 2nd-order low-pass filter corresponding to the setting of the XO bits of I
2
C register 0x0C. If XO = 000, user specified crossover filters are used.
By default these coefficients correspond to pass-through. However, the user can write these coefficients in a similar way as the EQ biquads. When user-defined setting is selected, the user can only write 2nd-order crossover filters. This output is then passed on to the Volume and Limiter block.
64/77
STA323W User-programmable settings

8.5 Calculating 24-bit signed fractional numbers from a dB value

The pre-scale, mixing, and post-scale functions of the STA323W use 24-bit signed fractional multipliers to attenuate signals. These attenuations can also invert the phase and therefore range in value from -1 to +1.
It is possible to calculate the coefficient to use for a given negative dB value (attenuation) using the equations following.
" non-inverting phase numbers 0 to +1:
coefficient = round(8388607 * 10
" inverting phase numbers 0 to -1:
coefficient = 16777216 - round(8388607 * 10
(dB/20)
)
(dB/20)
)
As can be seen by the preceding equations, the value for positive phase 0 dB is 0x7FFFFF and the value for negative phase 0 dB is 0x800000.

8.6 User defined coefficient RAM

8.6.1 Coefficient address register 1 (address 0x16)

D7 D6 D5 D4 D3 D2 D1 D0
CFA7 CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
00000000

8.6.2 Coefficient b1data register bits 23:16 (address 0x17)

D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000

8.6.3 Coefficient b1data register bits 15:8 (address 0x18)

D7 D6 D5 D4 D3 D2 D1 D0
C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
00000000

8.6.4 Coefficient b1data register bits 7:0 (address 0x19)

D7 D6 D5 D4 D3 D2 D1 D0
C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
00000000

8.6.5 Coefficient b2 data register bits 23:16 (address 0x1A)

D7 D6 D5 D4 D3 D2 D1 D0
C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
00000000
65/77
User-programmable settings STA323W

8.6.6 Coefficient b2 data register bits 15:8 (address 0x1B)

D7 D6 D5 D4 D3 D2 D1 D0
C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
00000000

8.6.7 Coefficient b2 data register bits 7:0 (address 0x1C)

D7 D6 D5 D4 D3 D2 D1 D0
C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
00000000

8.6.8 Coefficient a1 data register bits 23:16 (address 0x1D)

D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000

8.6.9 Coefficient a1 data register bits 15:8 (address 0x1E)

D7 D6 D5 D4 D3 D2 D1 D0
C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
00000000

8.6.10 Coefficient a1 data register bits 7:0 (address 0x1F)

D7 D6 D5 D4 D3 D2 D1 D0
C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
00000000

8.6.11 Coefficient a2 data register bits 23:16 (address 0x20)

D7 D6 D5 D4 D3 D2 D1 D0
C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
00000000

8.6.12 Coefficient a2 data register bits 15:8 (address 0x21)

D7 D6 D5 D4 D3 D2 D1 D0
C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
00000000
66/77
STA323W User-programmable settings

8.6.13 Coefficient a2 data register bits 7:0 (address 0x22)

D7 D6 D5 D4 D3 D2 D1 D0
C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
00000000

8.6.14 Coefficient b0 data register bits 23:16 (address 0x23)

D7 D6 D5 D4 D3 D2 D1 D0
C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
00000000

8.6.15 Coefficient b0 data register bits 15:8 (address 0x24)

D7 D6 D5 D4 D3 D2 D1 D0
C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
00000000

8.6.16 Coefficient b0 data register bits 7:0 (address 0x25)

D7 D6 D5 D4 D3 D2 D1 D0
C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
00000000

8.6.17 Coefficient write control register (address 0x26)

D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved RA R1 WA W1
00000000
Coefficients for EQ, Mix and Scaling are handled internally in the STA323W via RAM. Access to this RAM is available to the user via an I registers are dedicated to this function. The first register contains base address of the coefficient: five sets of three registers store the values of the 24-bit coefficients to be written or that were read, and one contains bits used to control the reading or writing of the coefficients to RAM. The following are instructions for reading and writing coefficients.
2
C register interface. A collection of I2C
67/77
User-programmable settings STA323W

8.7 Reading and writing coefficients

8.7.1 Reading a coefficient from RAM

1. Write 8-bits of address to I2C register 0x16.
2. Write 1 to bit R1 (D2) of I
3. Read top 8-bits of coefficient in I
4. Read middle 8-bits of coefficient in I
5. Read bottom 8-bits of coefficient in I

8.7.2 Reading a set of coefficients from RAM

1. Write 8-bits of address to I2C register 0x16.
2. Write 1 to bit RA (D3) of I
3. Read top 8-bits of coefficient in I
4. Read middle 8-bits of coefficient in I
5. Read bottom 8-bits of coefficient in I
6. Read top 8-bits of coefficient b2 in I
7. Read middle 8-bits of coefficient b2 in I
8. Read bottom 8-bits of coefficient b2 in I
9. Read top 8-bits of coefficient a1 in I
10. Read middle 8-bits of coefficient a1 in I
11. Read bottom 8-bits of coefficient a1 in I
12. Read top 8-bits of coefficient a2 in I
13. Read middle 8-bits of coefficient a2 in I
14. Read bottom 8-bits of coefficient a2 in I
15. Read top 8-bits of coefficient b0 in I
16. Read middle 8-bits of coefficient b0 in I
17. Read bottom 8-bits of coefficient b0 in I
2
C register 0x26.
2
C address 0x17.
2
C address 0x18.
2
C address 0x19.
2
C register 0x26.
2
C address 0x17.
2
C address 0x18.
2
C address 0x19.
2
C address 0x1A.
2
C address 0x1D.
2
C address 0x20.
2
C address 0x23.
2
C address 0x1B.
2
C address 0x1C.
2
C address 0x1E.
2
C address 0x1F.
2
C address 0x21.
2
C address 0x22.
2
C address 0x24.
2
C address 0x25.

8.7.3 Writing a single coefficient to RAM

1. Write 8-bits of address to I2C register 0x16.
2. Write top 8-bits of coefficient in I
3. Write middle 8-bits of coefficient in I
4. Write bottom 8-bits of coefficient in I
5. Write 1 to W1 bit in I
68/77
2
C address 0x26.
2
C address 0x17.
2
C address 0x18.
2
C address 0x19.
STA323W User-programmable settings

8.7.4 Writing a set of coefficients to RAM

1. Write 8-bits of starting address to I2C register 0x16.
2. Write top 8-bits of coefficient b1 in I
3. Write middle 8-bits of coefficient b1 in I
4. Write bottom 8-bits of coefficient b1 in I
5. Write top 8-bits of coefficient b2 in I
6. Write middle 8-bits of coefficient b2 in I
7. Write bottom 8-bits of coefficient b2 in I
8. Write top 8-bits of coefficient a1 in I
9. Write middle 8-bits of coefficient a1 in I
10. Write bottom 8-bits of coefficient a1 in I
11. Write top 8-bits of coefficient a2 in I
12. Write middle 8-bits of coefficient a2 in I
13. Write bottom 8-bits of coefficient a2 in I
14. Write top 8-bits of coefficient b0 in I
15. Write middle 8-bits of coefficient b0 in I
16. Write bottom 8-bits of coefficient b0 in I
17. Write 1 to WA bit in I
2
C address 0x26.
2
C address 0x17.
2
C address 0x18.
2
C address 0x19.
2
C address 0x1A.
2
C address 0x1B.
2
C address 0x1C.
2
C address 0x1D.
2
C address 0x1E.
2
C address 0x1F.
2
C address 0x20.
2
C address 0x21.
2
C address 0x22.
2
C address 0x23.
2
C address 0x24.
2
C address 0x25.
The mechanism for writing a set of coefficients to RAM provides a method of simultaneously updating the five coefficients corresponding to a given biquad (filter) to avoid possible unpleasant acoustic side-effects. When using this technique, the 8-bit address specifies the address of the biquad b1 coefficient (for example 0, 5, 10, 15, …, 45 decimal), and the STA323W generates the RAM addresses as an offsets from this base value to write the complete set of coefficient data.
Table 70. RAM block for biquads, mixing, and scaling
Index (decimal) Index (hex) Coefficient Default
0 0x00
1 0x01 C1H11 (b2) 0x000000
2 0x02 C1H12 (a1/2) 0x000000
3 0x03 C1H13 (a2) 0x000000
4 0x04 C1H14 (b0/2) 0x400000
5 0x05 Channel 1 - biquad 2 C1H20 0x000000
... ... ... ... ...
19 0x13 Channel 1 - biquad 4 C1H44 0x400000
20 0x14
21 0x15 C2H11 0x000000
…… ……
39 0x27 Channel 2 - biquad 4 C2H44 0x400000
Channel 1 - biquad 1
Channel 2 - biquad 1
C1H10 (b1/2) 0x000000
C2H10 0x000000
69/77
User-programmable settings STA323W
Table 70. RAM block for biquads, mixing, and scaling (continued)
Index (decimal) Index (hex) Coefficient Default
40 0x28
nd
41 0x29 C12H1 (b2) 0x000000
42 0x2A C12H2 (a1/2) 0x000000
High-pass 2 filter
For XO = 000
-order
C12H0 (b1/2) 0x000000
43 0x2B C12H3 (a2) 0x000000
44 0x2C C12H4 (b0/2) 0x400000
45 0x2D
46 0x2E C12L1 (b2) 0x000000
47 0x2F C12L2 (a1/2) 0x000000
Low-Pass 2 For XO = 000
nd
-order filter
C12L0 (b1/2) 0x000000
48 0x30 C12L3 (a2) 0x000000
49 0x31 C12L4 (b0/2) 0x400000
50 0x32 Channel 1 - post scale C1PreS 0x7FFFFF
51 0x33 Channel 2 - post scale C2PreS 0x7FFFFF
52 0x34 Channel 1 - post scale C1PstS 0x7FFFFF
53 0x35 Channel 2 - post scale C2PstS 0x7FFFFF
54 0x36 Channel 3 - post scale C3PstS 0x7FFFFF
55 0x37
Thermal warning - post scale
TWPstS 0x5A9DF7
56 0x38 Channel 1 - mix 1 C1MX1 0x7FFFFF
57 0x39 Channel 1 - mix 2 C1MX2 0x000000
58 0x3A Channel 2 - mix 1 C2MX1 0x000000
59 0x3B Channel 2 - mix 2 C2MX2 0x7FFFFF
60 0x3C Channel 3 - mix 1 C3MX1 0x400000
61 0x3D Channel 3 - mix 2 C3MX2 0x400000
62 0x3E Unused
63 0x3F Unused

8.8 Variable max power correction (address 0x27-0x28)

The MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1.
D7 D6 D5 D4 D3 D2 D1 D0
MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
00101101
MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
11000000
70/77
STA323W User-programmable settings

8.9 Fault detect recovery (address 0x2B - 0x2C)

FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is active, the TRISTATE output immediately goes low and is held low for the time period specified by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The default value of 0x000C specifies approximately 0.1 ms.
D7 D6 D5 D4 D3 D2 D1 D0
FRDC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
00000000
FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
00001100

8.10 Status indicator register (address 0x2D)

D7 D6 D5 D4 D3 D2 D1 D0
PLULL Reserved Reserved Reserved Reserved Reserved FAULT TWARN
00000011
STATUS register bits serve the purpose of communicating the detected error or warning condition to the user. This is a read-only register and writing to this register would not be of any consequence.

8.10.1 Thermal warning indicator

Table 71. Thermal warning indicator
Bit R/W RST Name Description
0RO1RWRAN
If the power stage thermal operating conditions are exceeded, the thermal warning indicator transmits a signal to the digital logic block to initiate a corrective procedure. This register bit is set to 0 to indicate a thermal warning and it reverts back to its default state as soon as the cause of the thermal warning has been corrected.

8.10.2 Fault detect indicator

Table 72. Fault detect indicator
Bit R/W RST Name Description
1RO1FAULT
As soon as the power stage issues a Fault error signal, thereby initiating the Fault recovery procedure described in Section 8.9, this register bit is set to 0 to indicate the error to the user. As soon as the fault condition (over-current or thermal) is corrected, this bit is reset back to its default state.
0: thermal warning detected 1: normal operation (no thermal warning)
0: fault issued from the power stage 1: normal operation (no fault)
71/77
User-programmable settings STA323W

8.10.3 PLL unlock indicator

Table 73. PLL unlock indicator
Bit R/W RST Name Description
7RO0PLLUL
0: normal operation (PLL is in a locked state) 1: PLL unlock is detected (due to probable clock loss)
Under normal conditions (with the correct clock) the PLL is locked into an internal clocking frequency. However, if the clock is insufficient or if it is abruptly lost, the PLL lock state is lost and this information is relayed to the user via setting the PLLUL bit of the Status register to 1. As soon as the PLL reverts back to a locked state, this bit is set to 0.
72/77
STA323W Package information

9 Package information

Figure 51. PowerSO-36 slug down outline drawing

0096119 rev D
RE 1:
73/77
Package information STA323W

Table 74. PowerSO-36 slug down dimensions

mm inch
Symbol
Min Typ Max Min Typ Max
A--3.60--0.142
a1 0.10 - 0.30 .004 - .012
a2--3.30--0.130
a3 0 - 0.10 0 - .004
b 0.22 - 0.38 0.009 - 0.015
c 0.23 - 0.32 0.009 - 0.013
D 15.80 - 16.00 0.622 - 0.630
D1 9.40 - 9.80 0.370 - 0.386
E 13.90 - 14.50 0.547 - 0.571
E1 10.90 - 11.10 0.429 - 0.437
E2--2.90--0.114
E3 5.80 - 6.20 0.228 - 0.244
e - 0.65 - - 0.026 -
e3 - 11.05 - - 0.435 -
G0-0.100-0.004
H 15.50 - 15.90 0.610 - 0.626
h--1.10--0.043
L 0.80 - 1.10 0.031 - 0.043
M 2.25 - 2.60 0.089 - 0.102
N - - 10 degrees - - 10 degrees
R - 0.30 - - 0.012 -
s--8 degrees--8 degrees
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
74/77
STA323W Trademarks and other acknowledgements

10 Trademarks and other acknowledgements

DDX is a registered trademark of Apogee Technology Inc.
AutoModes is a trademark of Apogee Technology Inc.
ECOPACK is a registered trademark of STMicroelectronics.
75/77
Revision history STA323W

11 Revision history

Table 75. Document revision history

Date Revision Changes
01-Jul-2005 1.0 Initial release.
02-Jan-2006 2.0 Modified Configuration Register A (addr 0x00).
02-Feb-2006 3.0 Modified the ordering part numbers.
Added new chapters.
08-Jun-2006 4.0
15-Nov-2006 5.0 Update into latest template.
22-May-2008 6
Updated Electrical characteristics curves . Modified the minimum value of Vcc paramter.
Updated pin 1 connection. General presentation revision.
76/77
STA323W
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
77/77
Loading...