ST ST7MC1, ST7MC2 User Manual

查询ST7FMC1K2B6供应商
ST7MC1/ST7MC2
8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC , BR USHLESS MO T OR CONTROL , FIVE TIMERS , SPI, LINSCI
PRODUCT PREVIEW
– 8K to 60K dual voltage FLASH Program mem-
ory or ROM with read-out protection capabili­ty. In-Application Programming and In-Circuit
Programming. – 384 to 1.5K RAM – HDFlash endurance: 100 cycles, data reten-
TQFP80
14 x 14
tion: 20 years
Clock, Re set And Supply Manag em ent
– Enhanced reset system – Enhanced low voltage supervisor (LVD) for
main supply and auxiliary voltage detector
(AVD) with interrupt capability – Clock sources: crystal/ceramic resonat or os-
cillators an d by- pass for ext erna l cl ock, c lock
security system. – Four power saving modes: Halt, Active-Halt,
Wait and Slow
Interrupt Management
– Nested interrupt controller – 14 interrupt vectors plus TRAP and RESET – MCES top level interrupt pin – 16 external interrupt lines (on 3 vectors)
Up to 60 I/O Ports
– up to 60 multifunctional bidirectional I/O lines – up to 41 alternate function lines – up to 11 high sink outputs
5 Timers
– Main Clock Controller with: Real time base,
Beep and Clock-out capabilit ies – Configurable window watchdog timer – Two 16-bit timers with: 2 input captures, 2 out-
put compares, external clock input, PWM and
pulse generator modes – 8-bit PWM Auto-Reload timer with: 2 input
captures, 4 PWM outputs, output compare
and time base interrupt, external clock with
event detector
TQFP32
7 x 7
2 Communication Interfaces
– SPI synchronous serial interface –
LIN
SCI asynchronous serial interface
Brushless Motor Control Periphe ral
– 6 high sink PWM output channels for sine-
wave or trapezoidal inverter control
– Motor safety including asynchronous emer-
gency stop and write-once registers
– 4 analog inputs for rotor position detection
(sensorless/hall/tacho/encoder)
– Permanent magnet motor coprocessor includ-
ing multiplier, programmable f ilters, blanking windows and event counters
– Operational amplifier and comparator for c ur-
rent/voltage mode regulation and limitation
Analog peripheral
– 10-bit ADC with 16 input pins
In-circuit Debug Instruction Set
– 8- bit D ata Ma nipulation – 63 Basic Instruct ion s – 17 main Addressing Modes – 8 x 8 Unsigned Multiply Instruction – True Bit Manipulation
Development Tools
– Full hardware/software development package
Device Summary
Features ST7MC1 ST7MC2
Progra m m emo ry - by tes 8K 16K 24K 32K 48K 60K RAM (stac k) - bytes 384 (256) 768 (256) 1024 (256 ) 1024 (256) 1536 (256 ) 1536 (256)
Peripherals Operating
Supply vs. Frequency Temperature Range Package SDIP32/TQFP32 TQFP44 SDIP56/TQFP64 TQFP64 TQFP80
Watchdog, 16-bit Ti m er A, LINSCI
-
-40°C to + 85°C
/ -40°C to +125°C
, 10-bit ADC, MTC, 8-bit PWM ART, ICD
SPI, 16-bi t Timer B
4.5 to 5.5V with f
CPU
TQFP64
14 x 14
SDIP56
8MHz
-40°C to +85 °C
TQFP44
10 x 10
SDIP32
Rev. 2.1
April 2004 1/294
This is preliminary information on a new product now in development. Details are subject to change without notice.
1
Table of Contents
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 ICP (IN-CIRCUIT PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 IAP (IN-APPLICATION PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 RELATED DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 OSCILLATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 SYSTEM INTEGRITY MANAGEMENT (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) . 32
6 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 MASKING AND PROCESSI NG FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 INTERRUPT REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) . . . . . . . . . . . . . . . . . . . . . . . 43
7 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7
7.4 ACTI VE-HA L T AND H ALT MO DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.3 I/O PORT IMPLEMENTAT IO N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4 LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6
9.1 WINDOW WATCHDOG (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2 PWM AU T O-RELOA D T I M E R (ART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.3 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.4 SERIAL PERIPHERAL INTERFACE ( SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.5 LINSCI SERIAL COMMUNICATION IN TERFACE ( LIN MAST ER/SL AVE) . . . . . . . . . 10 3
294
2/294
Table of Contents
9.6 MOTOR CONTROLLER (MTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.7 OPERATIONAL AMPLIFIER (OA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.8 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2
10 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 7
10.1 CPU ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
11 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 4
11.3 6OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
11.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
11.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
11.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
11.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.11 COMMUNICATION INTERFA CE CHARACTERIS TI CS . . . . . . . . . . . . . . . . . . . . . . . . 266
11.12 MOTOR CONTROL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
11.13 OPERATIO NAL AMPLIF IER CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.14 10-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
12 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
12.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
12.2 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
12.3 SOLDERING AND GLUEABILITY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
13 ST7MC DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . . 284
13.1 FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
13.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 286
13.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
13.4 ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
14 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
3/294
ST7MC1/ST7MC2
1 INTRODUCTION
The ST7MCx device is member of the ST7 micro­controller family designed for mid-range applica­tions with a Motor Control dedicated peripheral.
All devices are based on a common industry­standard 8-bit core, featuring an enhanced instruc­tion set and are available with FLASH, ROM or FASTROM program memory.
Under software control, all devices can b e placed in WAIT, SLOW, ACTIVE-HALT or HALT mode, reducing power consumption when the application is in idle or stand-by state.
Figure 1. Device Block Diagram
8-BIT CO RE
RESET
V
PP
V
SS
V
DD
OSC1 OSC2
ALU
CONTROL
LVD
AVD
OSC
SCI/LIN
The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 micro­controllers feature true bit manipulation, 8x8 un­signed multiplication and indirect addressing modes.
The devices feature an on-chip Debug Module (DM) to support in-circuit debugging (ICD). For a description of the DM registers, refer to the ST7 ICC Protocol Reference Manual.
PROGRAM
MEMORY
(8K - 60K Bytes)
RAM
(384 - 15 36 B ytes)
1)
PORT H
ADDRESS AND DATA BUS
PORT G
WATCHDOG
1)
1)
PH7:0
(8-bits)
PG7:0
(8-bits)
1)
PORT D
PD7:0
(8-bits)
V
AREF
V
SSA
PE5:0
(6-bits)
PF5:0
(6-bits)
On some devices only, see Table 1, ST 7MC Devi ce Pin De scription, on page 11
TIME R A
10-BIT ADC
1
PORT E
PORT F
1
1
TIMER B
MCC/RTC/BEEP
1
PWM ART
PORT A
PORT B
MTC VOLT INPUT
1
SPI
PORT C
MOTOR CONTROL
DEBUG MODULE
PA7:0
(8-bits)
PB7:0
(8-bits)
PC7:0 (8-bits)
MCES
1)
4/294
1
2 PIN DESCRI PTION
Figure 2. 80-Pin TQFP 14x14 Package Pinout
VPP/ICCSEL
PE5
77
76
25
PE4 / EX T CLK_B
PE3 / ICAP1_B
75
ei2
262827
PE2 / ICAP2_B
(HS) MCO3 (HS) MCO4 (HS) MCO5
MCES
PG0 PG1 PG2
PG3 OSC1 OSC2
VSS_1 VDD_1
PWM3 / PA0
PWM2 / (HS) PA1
PWM1 / PA2
AIN0 / PWM0 / PA3
ARTCLK / (HS) PA4
AIN1 / ARTIC1 / PA5
ARTIC2 / PA6
AIN2 / PA7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ei1
MCO2 (HS)
80
ei1
21
MCO1 (HS)
MCO0 (HS)
78
79
222423
ST7MC1/ST7MC2
PH7
PH6
70
31
69
32
PH5
PH4
ei2
33
67
34
VDD_2
666865
35
PD7 (HS) / TDO
PD6 (HS) / RDI
36
64
37
63
38
ei0
PD5 / AIN15 / ICCDATA
PD4 /EXTCLK_A / AIN14 / ICCCLK
61
62
39
40
PD3 / ICAP1_A / AIN13
60
PD2 / ICAP2_A / AIN12
59
PD1 (HS) / OCMP1_A
58
PD0 / OCMP2_A / AIN11
57
PH3
56
PH2
55
PH1
54
PH0
53 52
PF5 (HS)
PF4 (HS)
51
PF3 (HS) / BEEP
50
PF2 / MCO / AIN10
49
PF1 / M CZEM / AIN 9
48
PF0 / MCDEM / AIN8
47
RESET
46 45
V
DD_0
VSS_0
44
VSSA
43
VAREF
42
PC7 / MCPWMW / AIN7
41
VSS_2
PE1 / OCMP1_B
PE0 (HS) / OCMP2_B
71
727473
30
29
PG7
PG4
PG5
PG6
(HS) PC0
MCIA / PB1
MCIB / PB2
MISO / PB4
MCIC / PB3
MCVREF / PB0
(HS) 20mA high sink cap ability eix associated external interrupt vector * Once the MTC peripheral i s ON , the pin PC4 is con figured to an alternate function. PC4 is no l onger usable as a digita l I/ O
AIN3 / MOSI / PB5
SCK / (HS) PB6
AIN4 /SS /(HS) PB7
OAP / PC2
OAN / PC3
MCPWMV/ PC6
MCPWMU/ PC5
* MCCREF / PC4
AIN5 / MCCFI 0/ PC1
AIN6 / MCCFI 1/ OAZ
5/294
1
ST7MC1/ST7MC2
Figure 3. 64-Pin TQFP 14x14 Package Pinout
(HS) MCO3 (HS) MCO4 (HS) MCO5
MCES
OSC1 OSC2 V
SS
_1
V
DD
PWM3 / PA0
PWM2 / (HS) PA1
PWM1 / PA2
AIN0 / PWM0 / PA3
ARTCLK / (HS) PA4
AIN1 / ARTIC1 / PA5
ARTIC2 / PA6
AIN2 / PA7
ICCSEL
PP /
PE5 /
PE4 / EXTCLK_B
PE3 / ICAP1_B
MCO2 (HS)
MCO1 (HS)
MCO0 (HS)
V
PE2 / ICAP2_B
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
1 2 3 4 5 6
_1
7 8 9 10 11 12
ei1
13 14
ei1
15 16
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
AIN3 / MOSI / PB5
/(HS) PB7
SCK / (HS) PB6
AIN4 / SS
MCVREF / PB0
MCIA / PB1
MCIB / PB2
MCIC / PB3
MISO / PB4
ei2
_2
_2
DD
PE1 / OCMP1_B
(HS) PC0
SS
PE0 (HS) / OCMP2_B
V
V
PD7 (HS) / TDO
PD6 (HS) / RDI
PD5 / AIN15 / ICCDATA
PD4 /EXTCLK_A / AIN14 / ICCCLK
PD3 / ICAP1_A / AIN13
48
PD2 / ICAP2_A / AIN12
47
PD1 (HS) / OCMP1_A
46
ei0
OAP / PC2
OAN / PC3
MCPWMU / PC5
* MCCREF / PC4
AIN5 / MCCFI0 / PC1
AIN6 / MCCFI1 / OAZ
PD0 / OCMP2_A / AIN11
45
PF5 (HS)
44
PF4 (HS)
43
PF3 (HS) / BEEP
42
PF2 / MCO / AIN10
41
PF1 / MCZEM / AIN9
40
PF0 / MCDEM / AIN8
39
RESET
38
V
37
DD_0
V
SS_0
36
V
35
SSA
V
AREF
34
PC7 / MCPWMW / AIN7
33
MCPWMV/ PC6
(HS) 20mA high sink capability eix associated external interrupt vector
* Once the MTC peripheral is ON, the pin PC4 is configured to an alte rnate function. PC4 is no lo nger usable as a digital I/O
6/294
1
Figure 4. 32-Pin SDIP Package Pinouts
ST7MC1/ST7MC2
ICCSEL / V
MCO0 MCO1 MCO2 MCO3 MCO4 MCO5 MCES OSC1 OSC2
AIN0 / PWM0 / PA3
AIN1 / ARTIC1 / PA5
MCVREF / PB0
MCIA / PB1 MCIB / PB2 MCIC / PB3
PP
1 2 3 4 5 6 7 8 9 10 11
ei1
12 13 14 15 16
ei0
ei2
32
PD7 (HS) / TDO
31
PD6 (HS) / RDI
30
PD5 / AIN15 / ICCDATA
29
PD4 / EX TCLK_A / AIN14 / ICCCLK
28
PD3 / ICAP1_A / AIN13
27
PD2 / ICAP2_A / MCZEM / A IN12
26
PD1 (HS) / OCMP1_A / MCPWMV / MCDEM
25
PD0 / OCMP2_A / MCPWMW / AIN11
24
RESET
23
V
DD_0
22
V
SS_0
21
V
AREF
20
PC4 / MCCREF *
19
OAZ / MCCFI1 / AIN6
18
PC3 / OAN
17
PC2 / OAP
(HS) 20mA high sink capability eix associated external interrupt vector * Once the MTC peripheral i s ON , the pin PC4 is con figured to an alternate function. PC4 is no l onger usable as a digita l I/ O
7/294
1
ST7MC1/ST7MC2
Figure 5. 56-Pin SDIP Package Pinouts
OCMP1_B / PE1
ICAP2_B / PE2
ICAP1_B / PE3
/ICCSEL
V
PP
(HS) MCO0 (HS) MCO1 (HS) MCO2 (HS) MCO3 (HS) MCO4 (HS) MCO5
MCES
OSC1 OSC2
Vss_1
Vdd_1
PWM2 / (HS) PA1
AIN0 / PWM0 / PA3
ARTCLK / (HS) PA4
AIN1 / ARTIC1 / PA5
ARTIC2 / PA6
MCVREF / PB0
MCIA / PB1
MCIB / PB2 MCIC / PB3 MISO / PB4
AIN3 / MOSI / PB5
SCK / (HS) PB6
AIN4 / SS
/(HS) PB7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
ei1
ei1
ei2
ei0
ei2
56
PE0 (HS) / OCMP2_B 55 54 53 52 51 50 49 48 47
46
45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
_2
V
DD
_2
V
SS
PD7 (HS) / TDO
PD6 (HS) / RDI
PD5 / AIN15 / ICCDATA
PD4 /EXTCLK_A / AIN14 / ICCCLK
PD3 / ICAP1_A / AIN13
PD2 / ICAP2_A / AIN12
PD1 (HS ) / OC M P 1_A
PD0 / OCMP2_A / AIN11
PF3 (HS) / BEEP
PF1 / MCZEM / AIN9 PF0 / M CDEM / AIN8 RESET V
DD_0
V
SS_0
V
SSA
V
AREF
PC7 / MCPWMW / AIN7 PC6 / MCPWMV
PC5 / MCPWMU
PC4 / MCCREF * OAZ / MCCFI 1 / AI N6
PC3 / OAN PC2 / OAP PC1 / MCCFI0/AIN5 PC0(HS)
(HS) 20mA high sink capability eix associated external interrupt vector
* Once the MTC peripheral is ON, the pin PC4 is configured to an alte rnate function. PC4 is no lo nger usable as a digital I/O
8/294
1
Figure 6. 44-Pin TQFP Package Pinouts
MCO2 (HS)
MCO1 (HS)
(HS) MCO3 (HS) MCO4 (HS) MCO5
MCES
OSC1 OSC2
V
SS
V
DD
AIN0 / PWM0 / PA3
AIN1 / ARTIC1 / PA5
MCVREF / PB0
44 43 42 41 40 39 38 37 36 35 34
1 2 3 4 5 6
_1
7
_1
8 9
ei1
10 11
12 13 14 15 16 17 18 19 20 21 22
ST7MC1/ST7MC2
ICCSEL
/
PP
PE3 / ICAP1_B
MCO0 (HS)
PE2 / ICAP2_B
V
PE1 / OCMP1_B
ei2
PE0 (HS) / OC M P 2_B
PD7 (HS) / TDO
PD6 (HS) / RDI
PD5 / AIN15 / ICCDATA
PD4 /EXTCLK_A / AIN14 / ICCCLK
33
ei0
PD3 / ICAP1_A / AIN13
32
PD2 / ICAP2_A / MCZEM / AIN12
31
PD1 (HS) / OCMP1_A / MCPWMV/MCDEM
30
PD0 / OCMP 2_A / A I N11
29
RESET
28
V
27
DD_0
V
26
SS_0
V
25
SSA
V
24
AREF
PC7 / MCPWMW / AIN7
23
/(HS) PB7
OAP / PC2
MCIA / PB1
MCIB / PB2
MISO / PB4
MCIC / PB3
SCK / (HS) PB6
(HS) 20mA high sink capability eix associatedexternal interrupt vector
* Once the MTC peripheral i s ON , the pin PC4 is con figured to an alternate function. PC4 is no l onger usable as a digital I/ O
AIN3 / MOSI / PB5
OAN / PC3
* MCCREF / PC4
AIN4 / SS
AIN6 / MCC FI1 / OA Z
9/294
1
ST7MC1/ST7MC2
Figure 7. 32-Pin TQFP 7x7 Package Pinout
MCO2 (HS)
MCO1 (HS)
(HS) MCO3 (HS) MCO4 (HS) MCO5
MCES
OSC1 OSC2
AIN0 / PWM0 / PA3
AIN1 / ARTIC1 / PA5
32 31 30 29 28 27 26 25
1 2 3 4 5 6 7
ei1
8
9 10111213141516
/ICCSEL
PP
MCO0 (HS)
PD7 (HS) / TDO
V
ei2
ei0
PD4 /EXTCLK_A / AIN14 / ICCCLK
PD6 (HS) / RDI
PD5 / AIN15 / ICCDATA
24
PD3 / ICAP1_A / AIN13
23
PD2 / ICAP2_A / MCZEM / AIN12
22
PD1 (HS) / OCMP1_A / MCPWMV / MCDEM
21
PD0 / OCMP2_A / MCPWMW /AIN11
20
RESET
19
V
DD_0
18
V
SS_0
17
V
AREF
OAP / PC2
MCIA / PB1
MCIB / PB2
MCVREF / PB0
(HS) 20mA high sink capability eix associated external interrupt vector
* Once the MTC peripheral i s ON, the pin PC4 is configur ed to an alternate function. PC4 is no lo nger usable as a digital I/O
OAN / PC3
MCIC / PB3
* MCCREF / PC4
AIN6 / MCCFI1 / OAZ
10/294
1
ST7MC1/ST7MC2
PIN DESCRIPTION (Contd)
For external pin connection guidelines, See ELECTRICAL CHARACTERISTICS on page 243.
Legend / Abbreviations for Tab le 1 :
Type: I = input, O = output, S = supply Input level: A = Dedicated analog input In/Output le v el: C
Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration:
Input: float = floating, wpu = weak pull-up, wpd = weak pull-down, int = interrupt Output: OD = open drain, PP = push-pull
Refer to I/O PORTS on page 50 for more details on the software configuration of the I/O ports. The RESET con figur atio n of each pin is shown i n bol d wh ich i s val id as long as the devi ce is i n re set stat e.
Table 1. ST7MC Device Pin Description
= CMOS 0.3VDD/0.7VDD with Schmitt trigger
T
T
= Refer to the G&H ports Characteristics in section 11.8.1 on page 260
T
1)
, ana = analog
Pin n°
Level Port
Main
Outp
ut
OD
function
(after
reset)
PP
Alternate function
TQFP80
TQFP64
SDIP56
TQFP44
SDIP32
TQFP32
Pin Name
Input
Type
Input
Output
int
wpu
float
ana
118151MCO3 (HS) O HS XMotor Control Output 3 229262MCO4 (HS) O HS XMotor Control Output 4 3 3 10 3 7 3 MCO5 (HS) O HS X Motor Control Output 5 4411484MCES 5-----PG0 I/OT 6-----PG1 I/OT 7-----PG2 I/OT 8-----PG3 I/OT
9512595OSC1
106136106OSC2 11 7 14 7 - - V 12 8 15 8 - - V 139----PA0/PWM3 I/OC 14 10 16 - - - PA1/PWM2 I/O C 1511----PA2PWM1 I/OC
16 12 17 9 11 7
17 13 18 - - -
18 14 19 10 12 8
19 15 20 - - - PA6 / ARTIC2 I/O C 2016----PA7/AIN2 I/OC
3)
4)
4)
ss_1 dd_1
PA3/PWM0/ AIN0
PA4 (HS)/ART­CLK
PA5 / ARTIC1/ AIN1
IC
I
T T T T T
input wpd + int MTC Emergency Stop
X XXXPort G0 X XXXPort G1 X XXXPort G2 X XXXPort G3
External clock input or Resonator os­cillator inverter input
I/O Resonator oscillator inverter output
S Digital Ground Voltage
S Digital Main Supply Voltage
X X X X Port A0 PWM Output 3
HS X X X X Port A1 PWM Output 2
X X X X Port A2 PWM Output 1 X ei1 X X X Port A3
PWM Out­put 0
HS X X X X Port A4 PWM-ART External Clock
I/O C
I/O C
T T T
T
T
PWM-ART
I/O C
T
X ei1 X X X Port A5
Input Cap­ture 1
T T
X ei1 X X Port A6 PWM-ART Input Capture 2 X ei1 X X X Port A7 ADC Analog Input 2
2)
ADC Ana­log Input 0
ADC Analog
Input 1
11/294
1
ST7MC1/ST7MC2
Pin n°
Level Port
Pin Name
Type
TQFP80
TQFP64
SDIP56
TQFP44
SDIP32
TQFP32
21 17 21 11 13 9 PB0/MCVREF I/O C 22 18 22 12 14 10 PB1/MCIA I/O C 23 19 23 13 15 11 PB2/MCIB I/O C 24 20 24 14 16 12 PB3/MCIC I/O C
25 21 25 15 - - PB4/MISO I/O C
26 22 26 16 - -
PB5/MOSI/ AIN3
27 23 27 17 - - PB6/SCK I/O C
28 24 28 18 - - PB7/SS
/AIN4 I/O CTHS X ei2 X X Port B7
29-----PG4 I/OT 30-----PG5 I/OT 31-----PG6 I/OT 32-----PG7 I/OT 33 25 29 - - - PC0 I/O C
5)
34 26 30 - - -
PC1/MCCFI0 /AIN5
35 27 31 19 17 13 PC2/OAP I/O C 36 28 32 20 18 14 PC3/OAN I/O C
37 29 33 21 19 15
OAZ/ MCCFI1
5)
/
Input
T T T T
T
I/O C
T
T
T T T T T
I/O C
T
T T
I/O X
AIN6
38 30 34 22 20 16 PC4/MCCREF I/O C
39 31 35 - - -
40 32 36 - - -
PC5/MCPW­MU
PC6/ MCPWMV
7)
I/O C
I/O C
T
T
T
PC7/
41 33 37 23 - -
MCPWMW7)/
I/O C
T
AIN7 42 34 38 24 21 17 V 43 35 39 25 - - V 44 36 40 26 22 18 V 45 37 41 27 23 19 V
AREF SSA SS_0 DD_0
46 38 42 28 24 20 RESET
I Analog Reference Voltage for ADC S Analog Ground Voltage S Digital Ground Voltage S Digital Main Supply Voltage
I/O C
T
Outp
ut
OD
function
(after
reset)
PP
Alternate function
Output
float
Input
wpu
int
ana
X X X X X Port B0 MTC Voltage Reference X X X X X Port B1 MTC Input A X X X X X Port B2 MTC Input B X X X X X Port B3 MTC Input C
Main
X XXXPort B4
X XXXPort B5
SPI Master In / Slave Out Data
SPI Master Out / Slave In Data
ADC Ana­log Input 3
HS X ei2 X X Port B6 SPI Serial Clock
SPI Slave Select (ac­tive low)
ADC Ana­log Input 4
X XXXPort G4 X XXXPort G5 X XXXPort G6 X XXXPort G7
HS X ei2 X X Port C0
MTC Cur-
X ei2 XXXPort C1
rent Feed­back Input
5)
0
ADC Ana­log Input 5
X ei2 X X X Port C2 OPAMP Positive Input X ei2 X X X Port C3 OPAMP Negative Input
MTC Cur­Opamp Output
X X XXXPort C4
rent Feed-
back Input
5)
1
MTC Current Feedback
Reference
ADC analog Input 6
9)
X X X X Port C5 MTC PWM Output U
X X X X Port C6 MTC PWM Output V
X X XXXPort C7
MTC PWM
Output W
ADC Analog
7)
Input 7
Top priority non maskable interrupt
2)
7)
12/294
1
ST7MC1/ST7MC2
Pin n°
Level Port
Pin Name
Type
TQFP80
TQFP64
SDIP56
TQFP44
SDIP32
TQFP32
Input
PF0/
47 39 43 - - -
MCDEM6)/
I/O C
T
AIN8
6)
48 40 44 - - -
4941----
PF1/MCZEM AIN9
PF2/MCO/
AIN10 50 42 45 - - - PF3/BEEP I/O C 5143----PF4 I/OC 5244----PF5 I/OC 53-----PH0 I/OT 54-----PH1 I/OT 55-----PH2 I/OT 56-----PH3 I/OT
/
I/O C
I/O C
T
T
T T T T T T T
PD0/ 57 45 46 29 25 21
OCMP2_A/
MCPWMW
I/O C
7)
/
T
AIN11
PD1 (HS)/ 58 46 47 30 26 22
OCMP1_A/
MCPWMV
MCDEM
6)
I/O CTHS X ei0 X X Port D1
7)
/
PD2/ICAP2_A/ 59 47 48 31 27 23
MCZEM5) /
I/O C
T
AIN12
60 48 49 32 28 24
PD3/ICAP1_A/
AIN13
I/O C
T
PD4/ 61 49 50 33 29 25
EXTCLK_A/IC-
I/O C
T
CCLK/AIN14
62 50 51 34 30 26 63 51 52 35 31 27 PD6/RDI I/O C
64 52 53 36 32 28 PD7/TDO I/O C 65 53 54 - - - V 66 54 55 - - - V 67-----PH4 I/OT 68-----PH5 I/OT 69-----PH6 I/OT 70-----PH7 I/OT
PD5/ICCDA-
TA/AIN15
SS_2 DD_2
I/O C
T
T T
S Digital Ground Voltage S Digital Main Supply Voltage
T T T T
Outp
Output
float
Input
wpu
ut
int
PP
OD
ana
X X X X X Port F0
X X X X X Port F1
X X X X X Port F2
function
(after
reset)
Alternate function
MTC De­magnetiza­tion Output
MTC BEMF Output
Main Clock Out (f
osc
6)
/2)
ADC Ana­log Input 8
6)
ADC Ana­log Input 9
ADC Ana­log Input 10
2)
HS X X X X Port F3 Beep Signal Output HS X XXXPort F4 HS X XXXPort F5
X XXXPort H0 X XXXPort H1 X XXXPort H2 X XXXPort H3
Timer A Output Compare 2
Main
X XXXPort D0
MTC PWM Output W
7)
ADC Analog Input 11 Timer A Output Compare 1
MTC PWM Output V
7)
MTC Demagnetization6) Timer A Input Capture 2
X ei0 XXXPort D2
MTC BEMF
6)
ADC Analog Input 12
X ei0XXXPort D3
Timer A In­put Capture 1
ADC Analog Input 13
Timer A External Clock source
X ei0 XXXPort D4
ICC Clock Output ADC Analog Input 14
X ei0 XXXPort D5
ICC Data Input
ADC Analog Input 15 HS X ei0 X X Port D6 SCI Receive Data In HS X X X X Port D7 SCI Transmit Data Output
X XXXPort H0 X XXXPort H10 X XXXPort H2 X XXXPort H3
13/294
1
ST7MC1/ST7MC2
Pin n°
Pin Name
TQFP64
SDIP56
TQFP80
71 55 56 37 - -
7256138- ­73 57 2 39 - - PE2/ICAP2_B I/O C
74 58 3 40 - - PE3/ICAP1_B/ I/O C 7559---­7660----PE5 I/OC
77 61 4 41 1 29
78 62 5 42 2 30 MCO0 (HS) O HS X MTC Output Channel 0 79 63 6 43 3 31 MCO1 (HS) O HS X MTC Output Channel 1 80 64 7 44 4 32 MCO2 (HS) O HS X MTC Output Channel 2
TQFP44
SDIP32
TQFP32
PE0/ OCMP2_B
PE1/ OCMP1_B
PE4/ EXTCLK_B
V
/ICCSEL
PP
Level Port
Input
Type
Input
Output
I/O CTHS X X X X Port E0 Tim er B Ou t p ut C om p a r e 2
I/O C
T
T T
I/O C
T
T
I
wpu
float
X X X X X Port E1 Timer B Output Compare 1 X X X X Port E2 Timer B Input Capture 2
X X X X X Port E3 Timer B Input Capture 1 X XXXPort E4 X X X X X Port E5
Outp
int
ana
Main
function
ut
(after
reset)
PP
OD
Must be tied low. In the programming mode when available, this pin acts as the programming voltage input V ICC mode pin. See section 11.9.2 on
page 264
Alternate function
Timer B External Clock
source
2)
PP
./
Notes:
1. In the interrupt input column, “eiX ” defines the associated ex ternal in terrupt vecto r. If the weak pul l-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.
2. If two alternate func tion output s are enabled at the sa me time on a given pin (for instance, MCP WMV and MCDEM on PD1 on TQFP32), the two signals will be ORed on the output pin.
4. OSC1 and OSC2 pins connect a crystal/ceramic resonator or an external source to the on-chip oscilla­tor; se e Section 1 INTRODUCTION and Section 11.5 CLOCK AND TIMING CHARACTERISTICS for more details.
5. MCCFI can be mapped on 2 different pins on 80 ,64 and 56-pin packages. This allows:
- either to use PC1 as a standard I/O and m ap M CCFI on AOZ with or without using the operational am­plifier (selected case after reset),
- or to map MCCFI on PC1 and use the amplifier for another function. The mapping can be selected in MREF register of motor control cell. See section MOTOR CONTROL for
more details.
6. MCZEM is mapped on PF1 on 80, 64 and 56-pin packages and on PD2 on 44 and 32-pins. MCDEM is mapped on PF0 on 80, 64 and 56-pin packages and on PD1 on 44 and 32-pin packages.
7. MCPWMV is mappe d on PC 6 on 8 0 and 64 -pin p ackages an d on P D1 on 44 ,and 32-p ins packag es. MCPWMW is mapped on PC7 on 80, 64 and 44-pin packages and on PD0 on 32-pins package .
8. On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be k ept at reset state to avoi d added cur­rent consumption.
9. Once the MTC peripheral is ON (bits CKE=1 or DAC=1 in the regist er MCRA), the pin PC4 i s configured to an alternate function. PC4 is no longer usable as a digital I/O.
14/294
1
3 REGISTER & MEMORY MAP
ST7MC1/ST7MC2
As sho wn in Figure 8, the MCU is capable of ad­dressing 64K bytes of memories and I/O registers.
The available memory locations consist of 128 bytes of register locations, up to 2Kbytes of RAM and up to 60Kbytes of user program memory. The RAM space includes up to 256 byt es fo r the stack from 0100h to 01FFh.
Figure 8. Me m ory Map
0000h
007Fh 0080h
067Fh 0680h
0FFFh
1000h
FFDFh FFE0h
FFFFh
HW Registers
(see Table 2)
RAM
(1536/1024
768/384 Bytes)
Reserved
Program Memory
(60K, 48K, 32K, 24K, 8K)
Interrupt & Reset Vectors
(see Table 8)
0080h
00FFh
0100h
01FFh
0200h
01FFh or 037Fh or 047Fh or 067Fh
The highest address by tes contain the user reset and interrupt vectors.
IMPORTANT: Memory locations marked as “Re- served must never be ac ces sed. A ccessi ng a re­seved area can have unpredictable e ffects on the device.
Short Addressing RAM (zero page)
256 Bytes Stack
16-bit Addressing
RAM
1000h
4000h
8000h
A000h
E000h
FFFFh
60 KBytes
48 KBytes
32 KBytes 24 KBytes
8 KBytes
As sho wn in Figure 9, the MCU is capable of ad­dressing 64K bytes of memories and I/O registers.
The available memory locations consist of 128 bytes of register locations, up to 1536 bytes of RAM and up to 60 Kbytes of user program memo-
ry. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.
The highest address by tes contain the user reset and interrupt vectors.
15/294
1
ST7MC1/ST7MC2
Table 2. Hardware Register Map
Address Block
0000h 0001h
Port A
0002h 0003h
0004h
Port B
0005h
0006h 0007h
Port C
0008h 0009h
000Ah
Port D
000Bh
000Ch 000Dh
Port E
000Eh 000Fh
0010h
Port F
0011h
0012h 0013h
Port G
0014h
Register
Label
PADR PADDR PAOR
PBDR PBDDR PBOR
PCDR PCDDR PCOR
PDDR PDDDR PDOR
PEDR PEDDR PEOR
PFDR PFDDR PFOR
PGDR PGDDR PGOR
Register Name
Port A Data Register Port A Data Direction Register Port A Option Register
Port B Data Register Port B Data Direction Register Port B Option Register
Port C Data Register Port C Data Direction Register Port C Option Register
Port D Data Register Port D Data Direction Register Port D Option Register
Port E Data Register Port E Data Direction Register Port E Option Register
Port F Data Register Port F Data Direction Register Port F Option Register
Port G Data Register Port G Data Direction Register Port G Option Register
Reset
Status
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
Remarks
R/W R/W
2)
R/W R/W
R/W R/W
R/W R/W R/W
R/W R/W R/W
R/W
2)
R/W
2)
R/W R/W
R/W R/W
R/W R/W R/W
0015h 0016h 0017h
0018h
0019h 001Ah 001Bh 001Ch 001Dh 001Eh 001Fh
Port H
LIN
SCI
PHDR PHDDR PHOR
SCISR SCIDR SCIBRR SCICR1 SCICR2 SCICR3 SCIERPR SCIETPR
Port H Data Register Port H Data Direction Register Port H Option Register
SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Control Register 3 SCI Extended Receive Prescaler Register SCI Extended Transmit Prescaler Register
0020h Reserved Area (1 Byte)
0021h
0022h
0023h
0024h
0025h
0026h
0027h
0028h
SPI
ITC
SPIDR SPICR SPICSR
ITSPR0 ITSPR1 ITSPR2 ITSPR3 EICR
SPI Data I/O Register SPI Control Register SPI Control/Status Register
Interrupt Software Priority Register 0 Interrupt Software Priority Register 1 Interrupt Software Priority Register 2 Interrupt Software Priority Register 3 External Interrupt Control Register
00h
00h 00h
C0h
xxh 00h xxh 00h 00h 00h 00h
xxh 0xh 00h
FFh FFh FFh FFh
00h
1)
R/W R/W R/W
Read Only R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W
R/W R/W R/W R/W R/W
16/294
1
ST7MC1/ST7MC2
Address Block
0029h FLASH FSCR Flash Control/Status Register 00h R/W
002Ah 002Bh
002Ch 002Dh
002Eh 002Fh
0030h
0031h
0032h
0033h
0034h
0035h
0036h
0037h
0038h
0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh
WATCHDOG
MCC
ADC
TIMER A
Register
Label
WWDGCR Window Watchdog Control Register 7Fh R/W WWDGWR Window Watchdog Window Register 7Fh R/W
MCCSR MCCBCR
ADCCSR ADCDRMSB ADCDRLSB
TACR2 TACR1 TACSR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR
Main Clock Control / Status Register Main Clock Controller: Beep Control Register
Control/Status Register Data Register MSB Data Register LSB
Timer A Control Register 2 Timer A Control Register 1 Timer A Control/Status Register Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register Timer A Input Capture 2 Low Register Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register
Register Name
Reset
Status
00h 00h
00h 00h 00h
00h 00h xxh xxh xxh 80h
00h FFh FCh FFh FCh
xxh
xxh
80h
00h
Remarks
R/W R/W
R/W Read Only Read Only
R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W
0040h SIM SICSR System Integrity Control/Status Register 000x000x b R/W
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h
0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh
TIMER B
TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR
Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register
00h 00h xxh xxh xxh 80h
00h FFh FCh FFh FCh
xxh
xxh
80h
00h
R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W
17/294
1
ST7MC1/ST7MC2
Address Block
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h 0058h
0059h 005Ah 005Bh 005Ch 005Dh 005Eh
MTC
(page 0)
005Fh
0060h
0061h
0062h
0063h
0064h
0065h
0066h
0067h
0068h
0069h 006Ah
Register
Label
MTIM MTIML MZPRV MZREG MCOMP MDREG MWGHT MPRSR MIMR MISR MCRA MCRB MCRC MPHST MDFR MCFR MREF MPCR MREP MCPWH MCPWL MCPVH MCPVL MCPUH MCPUL MCP0H MCP0L
Register Name
Timer Counter High Register Timer Counter Low Register Capture Z Capture Z Compare C
Register
n-1
Register
n
Register
n+1
Demagnetization Register A
Weight Register
n
Prescaler & Sampling Register Interrupt Mask Register Interrupt Status Register Control Register A Control Register B Control Register C Phase State Register D event Filter Register Current feedback Filter Register Reference Register PWM Control Register Repetition Counter Register Compare Phase W Preload Register High Compare Phase W Preload Register Low Compare Phase V Preload Register High Compare Phase V Preload Register Low Compare Phase U Preload Register High Compare Phase U Preload Register Low Compare Phase 0 Preload Register High Compare Phase 0 Preload Register Low
Reset
Status
00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h
0Fh
00h 00h 00h 00h 00h 00h 00h 00h 00h
00h 0Fh FFh
Remarks
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
0050h 0051h 0052h 0053h 0054h 0055h 0056h
0057h to
006Ah
006Bh 006Ch 006Dh 006Eh 006Fh
0070h
MTC
(page 1)
DM
MDTG MPOL MPWME MCONF MPAR MZRF MSCR
DMCR DMSR DMBK1H DMBK1L DMBK2H DMBK2L
Dead Time Generator Enable Polarity Register PWM Register Configuration Register Parity Register Z event Filter Register Sampling Clock Register
Reserved Area (4 Bytes)
Debug Control Register Debug Status Register Debug Breakpoint 1 MSB Register Debug Breakpoint 1 LSB Register Debug Breakpoint 2 MSB Register Debug Breakpoint 2 LSB Register
FFh 3Fh
00h
02h
00h 0Fh
00h
00h
10h FFh FFh FFh FFh
see MTC description
R/W Read Only R/W R/W R/W R/W
18/294
1
ST7MC1/ST7MC2
Address Block
0074h 0075h 0076h 0077h 0078h
0079h 007Ah 007Bh
007Ch 007Dh 007Eh
007Fh OPAMP OACSR OPAMP Control/Status Registe r 00h R/W
PWM ART
Register
Label
PWMDCR3 PWMDCR2 PWMDCR1 PWMDCR0 PWMCR
ARTCSR ARTCAR ARTARR
ARTICCSR ARTICR1 ARTICR2
Register Name
PWM AR Timer Duty Cycle Register 3 PWM AR Timer Duty Cycle Register 2 PWM AR Timer Duty Cycle Register 1 PWM AR Timer Duty Cycle Register 0 PWM AR Timer Control Register
Auto-Reload Timer Control/Status Register Auto-Reload Timer Counter Access Register Auto-Reload Timer Auto-Reload Register
AR Timer Input Capture Control/Status Reg. AR Timer Input Capture Register 1 AR Timer Input Capture Register 2
Reset
Status
00h 00h 00h 00h 00h
00h 00h 00h
00h 00h 00h
Remarks
R/W R/W R/W R/W R/W
R/W R/W R/W
R/W Read Only Read Only
Legend: x=unde fined, R/W=rea d/write Notes:
1. The contents of the I/O p ort D R registers are read able only i n out put conf iguration. In input configura­tion, the values of the I/O pins are returned instead of the DR register contents.
2. The bits associated with unavailable pins must always keep their reset value.
19/294
1
ST7MC1/ST7MC2
4 FLASH PROGRAM MEMORY
4.1 Introduc tion
The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individu­al sectors and programmed on a Byte-by-Byte ba­sis using an external V
supply.
PP
The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming).
The array matrix organ isation allows each sector to be erased and reprogrammed wi thout affecting other sectors.
4.2 Main Features
Three Flash programming modes: – Insertion in a programming tool. In this mode,
all sectors including option bytes can be pro­grammed or erased.
– ICP (In-Circuit Programming). In this mode, all
sectors including option bytes can be pro­grammed or erased without removing the de­vice from the application board.
– IAP (In-Application Programming) In this
mode, all sectors except Sector 0, can be pro­grammed or erased without removing the de­vice from the appli cation board a nd wh ile the application is running.
ICT (In-Circuit Testing) for downloading and
executing user application test patterns in RAM
Read-out protection against piracy
Register Access Security System (RASS) to
prevent accidental programming or erasing
4.3 S tructure
Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see Table 3). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flas h memory when only a partial erasing is required.
The first two sectors have a fixed siz e of 4 K bytes (see Figure 9). They are mapped in the upper part of the ST7 addressing space so the reset and in­terrupt vectors are located in Sector 0 (F000h­FFFFh).
Table 3. Sectors available in Flash devices
Flash Size (bytes) Available Sectors
4K Sector 0 8K Sectors 0,1
> 8K Sectors 0,1, 2
4.3.1 Read-out Protection
Read-out protection, when selected, provides a protection against Program Memory content ex­traction and against write access to Flash memo­ry.
In Flash devices, this protection is removed by re­programming the option. In this case, the entire program memory is first automatically erased and the device can be reprogrammed.
Read-out protection selection depends on the de­vice type:
– In Flash devices it is enabled and removed
through the FMP_R bit in the option byte.
– In ROM devices it is enabled by mask option
specified in the Option List.
The Flash memory is organised in sectors and can be used for both code and data storage.
Figure 9. Me m ory Map and Sec t or Address
4K 10K 24K 48K
1000h 3FFFh 7FFFh 9FFFh BFFFh D7FFh DFFFh EFFFh FFFFh
20/294
8K 16K 32K 60K
2Kbytes
8Kbytes 40 Kbytes
16 Kbytes 4 Kbytes 4 Kbytes
1
24 Kbytes
FLASH MEMORY SIZE
SECTOR 2
52 Kbytes
SECTOR 1 SECTOR 0
FLASH PROGRAM MEMORY (Contd)
ST7MC1/ST7MC2
4.4 ICC Interface
ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see Figure
10). These pins are:
RESETV
: device reset
: device power supply ground
SS
Figure 10. Ty pi c al IC C Interface
PROGRAMMING TOOL
APPLICATION POWER SUPPLY
(See Note 3)
C
L2
DD
V
OSC2
OPTIONAL (See Note 4)
C
L1
OSC1
ST7
Notes:
1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal i solation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented i n case another de­vice forces the signal. Refer to the Programming Tool documentation for recommended resistor val­ues.
2. During the ICC session, the programming tool must control the RESET flicts between the programming tool and the appli­cation reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to isolate th e appli­cation RESET circuit in this case. When using a classical RC network with R>1K or a reset man-
pin. This can lead to con-
ICCCLK: ICC output serial clock pinICCDATA: ICC input/output serial data pinICCSEL/V
: programming voltage
PP
– OSC1(or OSCIN): main clock input for exter-
nal source (optional)
– V
: application board power supply (option-
DD
al, see Figure 10, Note 3)
ICC CONNECTOR
975 3
10k
SS
V
ICCSEL/VPP
ICC Cabl e
1 246810
RESET
ICCCLK
HE10 CONNECTOR TYPE
ICCDATA
APPLICATION BOARD
ICC CONNECTOR
APPLICATION RESET SOURCE
See Note 2
See Note 1
APPLICATION
I/O
agement IC with open drain outpu t and pull-up re­sistor>1K, no additional com ponents are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.
3. The use of Pin 7 of the ICC con nector de pends on the Programming Tool architecture. This pin must be connected when using most ST Program­ming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.
4. Pin 9 has to be connecte d to the OSC1 or OS ­CIN pin of the ST7 when the clock is not available in the application or if the selec ted clock option is not programmed in the opt ion byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case.
21/294
1
ST7MC1/ST7MC2
FLASH PROGRAM MEMORY (Contd)
4.5 ICP (In-Circuit Programming)
To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool.
Depending on the ICP code dow nloaded in RAM, Flash memory programming can be fully custom­ized (number of bytes to prog ram, program loca­tions, or selection serial communication interface for downloading).
When using an STMicroelect ronics or third-party programming tool that supp orts ICP and the spe­cific microcontroller device, the user needs only to implement the ICP hardware interface on the ap­plication board (see Figure 10). For more details on the pin locations, refer to the device pinout de­scription.
4.6 IAP (In-Application Pr ogrammi ng)
This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool).
This mode is fully controlled by user software. This allows it to be adapted to the user application, (us­er-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is possible to download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase pro­tected to allow recovery in case errors occur dur­ing the programming operation.
4.7 Related Documentation
For details on Flash program ming and I CC proto­col, refer to the ST7 Flash Programming Refer­ence Manual and to th e ST7 ICC Protocol Refer­ence Manual
.
4.8 Register Description FLASH CONTROL/STATUS REGISTER (FCSR)
Read/Write Reset Value: 0000 0000 (00h)
70
00000000
This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations.
22/294
1
5 SUPPLY, RESET AND CLOCK MANAGEMENT
ST7MC1/ST7MC2
The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and re­ducing the number of external components. An overview is shown in Figure 11.
For more details, refer to dedicated parametric section.
Main features Figure 11. Clock, Reset and Supply Block Diagram
CLOCK SECURITY SYSTEM
OSC2
OSCILLATOR
OSC1
f
1/2
OSC
Reset Sequence Manager (RSM)
1 Crystal/ C e ra m ic res o nator osc illat o r
System Integrity Management (SI)
Main supply Low voltage detection (LVD)Auxiliary Voltage detector (AVD) with interrupt
capability for mon ito ring the ma in supply
– Clock Security System (CSS) wit h the VCO of
the PLL, providing a backup safe oscillator
Clock DetectorPLL which can be used to multiply the fre-
quency by 2 if the clock frequency input is 8MHz
8Mhz
SYSTEM
PLL
Safeosc
INTEGRITY MANAGEMENT
f
OSC
f
MAIN CLOCK
CLK
CONTROLLER
16Mhz
lock
WITH REALTIME
CLOCK (MCC/RTC)
CKSELDIV2 OPT
f
f
CPU
MTC
RESET
V
SS
V
DD
RESETSEQUENCE
MANAGER
(RSM)
Clock Detector
SICSR, page 0
PA
AVD AVD
GE
SICSR, page 1
PA
0
GE
AVD Interrupt Request
LVD
F
IE
AUXILIARY VOLTAGE
0
RF
LOW VOLTAG E
DETECTOR
(LVD)
DETECTOR
(AVD)
VCO
LOCKPLL
EN
CSS
CSSDWDG
IE
CSS Interrupt Request
EN
RF
0
CK
0
SEL
WATCHDOG
TIMER (WDG)
23/294
1
ST7MC1/ST7MC2
5.1 OSCILLATOR
The main clock of t he ST7 can be gene rated by a crystal or ce ramic reso nato r oscilla tor o r an exter ­nal source.
The associated hardware configurations are shown in Table 4. Refer to the electrical character­istics section for more details.
External Clock Source
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin wh ile the O SC2 pin is not connect­ed.
Crystal/Ceramic Oscillators
This family of oscillators has the advantage of pro­ducing a very accurate rate on the main clock of the ST7. In this mode, the reson ator and the load capacitors have to be placed as clo se as pos sibl e to the oscillator pins in order to minimize output distortion and start-up stabilization time.
This oscillator is not stopped during the RESET phase to avoid losing time in its start-up phase.
See Electrical Characteristics for more details.
Table 4. ST7 Clock Sources
Hardware Configuration
ST7
OSC1 OSC2
External ClockCrystal/Ceramic Resonators
EXTERNAL
SOURCE
OSC1 OSC2
C
L1
CAPACITORS
ST7
LOAD
NC
C
L2
24/294
1
5.2 RESET SEQUENCE MANAGER (RSM)
ST7MC1/ST7MC2
5.2.1 Introd uc ti on
The reset sequence manager in cludes three RE­SET sources as shown in Figure 13:
External RESET source pulse
Internal LVD RESET (Low Voltage Detection)
Internal WATCHDOG RESET
These sources act on the RESET
pin and it is al-
ways kept low during the delay phase. The RESET service routine vector is fixed at ad-
dresses FFFEh-FFFFh in the ST7 memory map. The basic RESET sequence consists o f 3 p has es
as shown in F igure 12:
Active Phase depending on the RESET source
256 or 4096 CPU clock cycle delay (selected by opti on by t e)
RESET vector fetch
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset st ate. T he short er or longer clock cycle delay should be selected by option byte to correspond to the stabilizat ion time of the external oscillator used in the application.
Figure 13. Reset Block Diagram
The RESET vector fetch phase duration is 2 clock cycles.
Figure 12. RESET Sequence Phases
RESET
Active Phase
INTERNAL RE SE T
256 or 4096 CLOCK CYCLES
5.2.2 Async hronous External R ESET
The RESET output with integrated R
pin is both an input and an open-drain
weak pull-up resistor.
ON
FETCH
VECTOR
pin
This pull-up has no fixed value but varies in ac­cordance with the input voltage. It
can be pulled low by external circuitry to reset the dev ice. See Electrical Characteristic section for more details.
A RESET signal originating from an external source must have a duration of at least t
h(RSTL)in
in order to be recognized (see Figure 14). This de­tection is asynchronous and therefore the MCU can enter reset state even in HALT mode.
RESET
V
DD
R
ON
Filter
PULSE
GENERATOR
INTERNAL RESET
WATCHDOG RESET LVD RESET
25/294
1
ST7MC1/ST7MC2
RESET SEQUENCE MANAGER (Contd)
The RESET plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical charact eris­tics section.
5.2.3 External Power-On RESET
If the LVD is disabled by option byte, to s tart up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V level specified for the selected f
A proper reset signal for a slow rising V can generally be provided by an ext ernal RC net ­work connected to the RESET
Figure 14. RESET Sequences
pin is an asynchronous signal which
is over the m inimum
DD
frequency.
OSC
supply
DD
pin.
V
DD
5.2.4 Internal Low Voltage Detector (LVD) RESET
Two differen t RESET sequences caused by the in­ternal LVD circuitry can be distinguished:
Power-On RESET
Voltage Drop RESET
The device RESET pulled low when V V
DD<VIT-
(falling edge) as shown in Figure 14.
The LVD filters spikes on V
pin acts as an output that is
DD<VIT+
(rising edge) or
larger than t
DD
g(VDD)
to
avoid parasitic resets.
5.2.5 Internal Watchdog RESET
The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 14.
Starting from the Watchdog counter underflow, the device RESET low during at least t
pin acts as an output that is pulled
w(RSTL)out
.
V
IT+(LVD)
V
IT-(LVD)
EXTERNAL RESET SOURCE
RESET PIN
WATCHDOG RESET
RUN
LVD
RESET
ACTIVE PHASE
RUN
t
h(RSTL)in
EXTERNAL
RESET
ACTIVE PHASE
WATCHDOG UNDERFLOW
RUN RUN
INTERNAL RESET (256 or 4096 T VECTOR FETCH
WATCHDOG
RESET
ACTIVE
PHASE
t
w(RSTL)out
CPU
)
26/294
1
5.3 SYSTEM INTEGRITY MANAGEMENT (SI)
ST7MC1/ST7MC2
The System Integrity Managem ent block contains the Low Voltage Detector (LVD), Auxiliary Voltage Detector (AVD) and Clock Security System (CSS) functions. It is managed by the SICSR register.
5.3.1 Low Voltage Detector (LVD)
The Low Voltage Detector funct ion (LVD) gener­ates a static reset when the V below a V
reference value. This m eans that it
IT-
supply voltage is
DD
secures the power-up as well as the power-dow n keeping the ST7 in reset.
The V than the V to avoid a parasitic reset when the MCU starts run-
reference value for a voltage drop is lower
IT-
reference value for power-on in order
IT+
ning and sinks current on the supply (hysteresis). The LVD Reset circuitry generates a res et when
is below:
V
DD
– V
when VDD is rising
IT+
when VDD is falling
– V
IT-
Figure 15. Low Voltage Detector vs Reset
V
DD
The LVD function is illustrated in Figure 15. Provided the minimum V
the oscillator frequency) is above V
value (guaranteed for
DD
, the MCU
IT-
can only be in two modes:
under full software controlin static safe reset
In these conditions, secure operation is always en­sured for the application without the need for ex­ternal reset hardware.
During a Low Voltage Detector Reset, the RESET pin is held low, thus p ermitting the MCU to reset other devices.
Notes: The LVD allows the device to be used without any
external RESET circuitry. The LVD is an optional func tion which can be se-
lected by option byte.
V V
RESET
IT+ IT-
V
hys
27/294
1
ST7MC1/ST7MC2
SYSTEM INTEGRITY MANAGEMENT (Contd)
5.3.2 Auxiliary Voltage Detector (AVD)
The Voltage Detector function (AVD) i s based on an analog comparison between a V V
IT+(AVD)
ply. The V lower than the V
reference value and the VDD main sup-
reference value for f alling voltage is
IT-
reference value for rising volt-
IT+
IT-(AVD)
age in order to avoid parasitic detection (hystere­sis).
The output of the AVD comparator is directly read­able by the application software through a real time status bit (AVDF) in t he SI CSR register. This bit is read only.
Caution: The AVD function is active only if the LVD is enabled through the option byte (see sec-
tion 13.1 on page 284).
5.3.2.1 Monitoring the V
Main Su pply
DD
If the AVD interrupt is enabled, an interrupt is gen­erated when the voltage crosses the V V
IT-(AVD)
threshold (AVDF bit toggles).
and
IT+(AVD)
or
In the case of a drop i n v oltage, t he A VD i nterrupt acts as an early warning, allowing software to shut down safely before the LVD re sets the microcon­troller. See Fi gure 16.
The interrupt on the rising edge is used to inform the application that the V
If the voltage rise time t
warning state is over.
DD
is less than 256 or 4096
rv
CPU cycles (depending on the reset delay select­ed by option byte), no AVD interrupt will be gener­ated when V
If t
is greater than 256 or 4096 cycles then:
rv
IT+(AVD)
is reached.
– If the AVD interrupt is enabled before the
V
IT+(AVD)
threshold is reached, then 2 AVD inter­rupts will be received: the first when the AVDIE bit is set, and the second when the threshold is reached.
– If the AVD interrupt is enabled after the V
IT+(AVD)
threshold is reached then only one AVD interrupt will occur.
Figure 16. Using the AVD to Monitor V
V
DD
DD
Early Warning Interr upt
(Power has dropped, MCU not not yet in reset)
V
V
IT+(AVD)
V
IT-(AVD)
V
IT+(LVD)
V
IT-(LVD)
AVDF bit 0 01
AVD INTERRUPT REQUEST
IF AVDIE bit = 1
LVD RESET
hyst
INTERRUPT PROCESS
t
VOLTAGE RISE TIME
rv
INTERRUPT PROCESS
28/294
1
SYSTEM INTEGRITY MANAGEMENT (Contd)
5.3.3 Clock Security System (CSS)
The Clock Security System (CSS) protects the ST7 against main clock problems. To allow the in­tegration of the security features in the applica­tions, it is based on a PLL which can provide a backup clock. The PLL can be enabled or disabled by option byte or by software. It requires an 8-MHz input clock and provides a 16-MHz output clock.
5.3.3.1 Safe Oscillator Control
The safe oscillator of the CSS block is made of a PLL.
If the clock signal disappears (due to a broken or disconnected resonator...) the PLL continues to provide a lower frequency, which allows the ST7 to perform some rescue operations.
Automatically, the ST7 clock source switches back from the saf e os cilla tor if the orig inal c lock sou rce recovers.
5.3.3.2 Limitation detection
The automatic safe oscillator selection is notified by hardware setting the CSSD bit of the SICSR register. An interrupt can be gen erated if the CS­SIE bit has been previously set. These two bits are described in the SICSR register description.
ST7MC1/ST7MC2
5.3.4 Low Power Modes
Mode Description
WAIT
HALT
5.3.4.1 Interrupts
The CSS or AVD i nterrupt events generat e an in­terrupt if the corresponding Enable Control Bit (CSSIE or AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).
Interrupt Event
CSS event detection (safe oscillator acti­vated as main clock)
AVD event AVDF AVDIE Yes Yes
No effect on SI. CSS and AVD interrupts cause the device to exit from Wait mode.
The CRSR register is frozen. The CSS (including the safe oscillator) is disabled until HALT mode is exited. The previous CSS configuration resumes when the MCU is woken up by an interrupt with exit from HALT mode capability or from the counter reset value when the MCU is woken up by a RESET. The AVD remains active, and an AVD interrupt can be used to exit from Halt mode.
Flag
Enable
Control
Bit
Event
CSSD CSSIE Yes No
Exit from Wait
Exit
from
Halt
1)
Note 1: This interrupt a llows to exit fro m active­halt mode.
29/294
1
ST7MC1/ST7MC2
SYSTEM INTEGRITY MANAGEMENT (Contd)
5.3.5 Register Description SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR, pa g e 0)
Read/Write Reset Value: 000x 000x (00h)
70
AVD
PAG
E
IE
AVDFLVD
RF
CSSIECSSDWDG
0
RF
Bit 7 = PAGE SICSR Register Page Selection This bit selects the SICSR regi ster page. It is set and cleared by software 0: Access to SICSR register mapped in page 0. 1: Access to SICSR register mapped in page 1.
Bit 6 = AVDIE Voltage Detector interrupt enable This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt informa­tion is automatically cleared when software enters the AVD interrupt routine. 0: AVD interrupt disabled 1: AVD interrupt enabled
Bit 5 = AVDF Voltage Detector flag This read-only bit is set and cleared by hardware. If the VDIE bit is set, an interrupt request is gener­ated when the AVDF bit changes value. 0: V 1: V
DD DD
over V
under V
IT+ (AVD)
IT-(AVD)
threshold
threshold
Bit 4 = L VDRF LVD reset flag This bit indicates that the last Reset was generat­ed by the LVD block. It is set by hardware (LVD re­set) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined.
Bit 3 = Reserved, must be kept cleared.
is detected by the Clock Security System (CSSD bit set). It is set and cleared by software. 0: Clock security system interrupt disabled 1: Clock security system interrupt enabled When the PLL is disabled (PLLE N=0), the CSS IE bit has no effect.
Bit 1 = CSSD Clock security system detection This bit indicates a disturbance on t he main clock signal (f
): the clock stops (at least for a few c y-
OSC
cles). It is set by hardware and cleared by reading the SICSR register when the original oscillator re­covers. 0: Safe oscillator is not active 1: Safe oscillator has been activated When the PLL is d isabled (PLLEN=0), t he CSSD bit value is forced to 0.
Bit 0 = WDGRF Watchdog reset flag This bit indicates that the last Reset was generat­ed by the Watchdog p eripheral. It is set by hard­ware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts). Combined with the LVDRF flag information, the flag description is given by the following table.
RESET Sources LVDRF WDGRF
External RESET pin 0 0
Watchdog 0 1
LVD 1 X
Application notes
The LVDRF flag is not cleared when another RE­SET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the origi­nal failure. In this case, a watchdog reset can be detected by software while an external reset can not.
.
Bit 2 = CSSIE Clock security syst
interrupt enable
This bit enables the interrupt when a disturbance
30/294
1
Loading...
+ 264 hidden pages