ST ST7LITE49M User Manual

8-bit MCU with single voltage Flash memory
LQFP32
(7x7mm)
SDIP32
data EEPROM, ADC, 8/12-bit timers, and I²C interface
Features
Memories
– 4 Kbytes single voltage extended Flash
Data retention: 20 years at 55 °C – 384 bytes RAM – 128 bytes data EEPROM with Read-Out
Protection.
300K write/erase cycles guaranteed,
data retention: 20 years at 55 °C.
Clock, reset and supply management
– 3-level low voltage supervisor (LVD) for
main supply and an auxiliary voltage
detector (AVD) for safe power-on/off – Clock sources: Internal trimmable 8 MHz
RC oscillator, auto-wakeup internal low
power - low frequency oscillator,
crystal/ceramic resonator or external clock – Five power saving modes: Halt, Active-halt,
Auto-wakeup from Halt, Wait and Slow
I/O Ports
– Up to 24 multifunctional bidirectional I/Os – 8 high sink outputs

Table 1. Device summary

Features ST7LITE49M
ST7LITE49M
5 timers
– Configurable watchdog timer – Dual 8-bit Lite timers with prescaler,
1 real-time base and 1 input capture
– Dual 12-bit Auto-reload timers with 4 PWM
outputs, input capture, output compare, dead-time generation and enhanced one­pulse mode functions
Communication interface:
– I²C multimaster interface
A/D converter: 10 input channels
Interrupt management
– 13 interrupt vectors plus TRAP and RESET
Instruction set
– 8-bit data manipulation – 63 basic instructions with illegal opcode
detection – 17 main addressing modes – 8 x 8 unsigned multiply instructions
Development tools
– Full HW/SW development package – DM (Debug Module)
Program memory 4 Kbytes
RAM (stack) - bytes 384 (128)
Data EEPROM - bytes 128
Operating supply 2.4 to 5.5 V
CPU frequency Up to 8 MHz
Operating temperature -40 to +125 °C
Packages LQFP32, SDIP32
November 2009 Doc ID 13562 Rev 3 1/188
www.st.com
1
Contents ST7LITE49M
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Register and memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Flash programmable memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Programming modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 In-circuit programming (ICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 In-application programming (IAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.1 Read-out protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.2 Flash write/erase protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Description of Flash control/status register (FCSR) . . . . . . . . . . . . . . . . . 23
5 Data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.1 Read operation (E2LAT=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 Write operation (E2LAT=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.1 Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.2 Active-halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.3 Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Access error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 Data EEPROM read-out protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.7 EEPROM control/status register (EECSR) . . . . . . . . . . . . . . . . . . . . . . . . 27
2/188 Doc ID 13562 Rev 3
ST7LITE49M Contents
6 Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.1 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.2 Index registers (X and Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.3 Program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.4 Condition code register (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.5 Stack pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7 Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1 RC oscillator adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.2 Auto-wakeup RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 Multi-oscillator (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.1 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.2 Crystal/ceramic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.3 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3.2 Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.3 External power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.4 Internal low voltage detector (LVD) reset . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.5 Internal watchdog reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4.1 Low voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4.2 Auxiliary voltage detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4.3 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.5.1 Main clock control/status register (MCCSR) . . . . . . . . . . . . . . . . . . . . . 44
7.5.2 RC control register (RCCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.5.3 System integrity (SI) control/status register (SICSR) . . . . . . . . . . . . . . . 45
7.5.4 AVD threshold selection register (AVDTHCR) . . . . . . . . . . . . . . . . . . . . 46
7.5.5 Clock controller control/status register (CKCNTCSR) . . . . . . . . . . . . . . 47
8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Doc ID 13562 Rev 3 3/188
Contents ST7LITE49M
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 Masking and processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2.1 Servicing pending interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.2 Interrupt vector sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.3 Interrupts and low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.4 Concurrent and nested management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.5 Description of interrupt registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.5.1 CPU CC register interrupt bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.5.2 Interrupt software priority registers (ISPRx) . . . . . . . . . . . . . . . . . . . . . . 53
8.5.3 External interrupt control register (EICR) . . . . . . . . . . . . . . . . . . . . . . . . 56
9 Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2 Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.3 Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.4 Active-halt and Halt modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.4.1 Active-halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.4.2 Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.5 Auto-wakeup from Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.5.1 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.5.2 AWUFH control/status register (AWUCSR) . . . . . . . . . . . . . . . . . . . . . . 66
9.5.3 AWUFH prescaler register (AWUPR) . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10 I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.2.1 Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.2.2 Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.2.3 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.2.4 Analog alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.3 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.4 Unused I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.7 Device-specific I/O port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4/188 Doc ID 13562 Rev 3
ST7LITE49M Contents
10.7.1 Standard ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.7.2 Other ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.1 Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.1.4 Hardware watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11.1.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11.1.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
11.2 Dual 12-bit autoreload timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
11.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
11.2.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
11.2.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
11.2.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11.2.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11.2.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11.3 Lite timer 2 (LT2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
11.3.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.3.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.4 I2C bus interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.4.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.4.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.4.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.4.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.4.7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.5 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Doc ID 13562 Rev 3 5/188
Contents ST7LITE49M
11.5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.5.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.5.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.5.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
12 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.1 ST7 addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.1.1 Inherent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.1.2 Immediate mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12.1.3 Direct modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12.1.4 Indexed modes (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . . . . 132
12.1.5 Indirect modes (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.1.6 Indirect indexed modes (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.1.7 Relative modes (direct, indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
12.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
12.2.1 Illegal opcode reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
13 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
13.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
13.3.2 Operating conditions with low voltage detector (LVD) . . . . . . . . . . . . . 142
13.3.3 Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . 143
13.3.4 Voltage drop between AVD flag setting and LVD reset generation . . . 143
13.3.5 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.4.1 Supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.4.2 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.5 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 150
6/188 Doc ID 13562 Rev 3
ST7LITE49M Contents
13.5.1 I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.6 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
13.6.1 Auto-wakeup from Halt oscillator (AWU) . . . . . . . . . . . . . . . . . . . . . . . 152
13.6.2 Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . 153
13.7 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
13.8 EMC (electromagnetic compatibility) characteristics . . . . . . . . . . . . . . . 156
13.8.1 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . 156
13.8.2 EMI (electromagnetic interference) . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
13.8.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 157
13.9 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
13.9.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
13.9.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
13.10 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
13.10.1 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
13.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
14 Device configuration and ordering information . . . . . . . . . . . . . . . . . 173
14.1 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
14.1.1 Option byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
14.1.2 Option byte 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
14.2 Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
14.3 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
14.3.1 Starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.3.2 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.3.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.3.4 Order codes for development and programming tools . . . . . . . . . . . . . 177
14.4 ST7 application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.1 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Doc ID 13562 Rev 3 7/188
List of tables ST7LITE49M
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Device pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Interrupt software priority truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 5. Predefined RC oscillator calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6. ST7 clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 7. CPU clock delay during reset sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 8. Low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 9. Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 10. Reset source selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 11. Internal RC prescaler selection bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 12. AVD threshold selection bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 13. Clock register mapping and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 14. Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 15. Setting the interrupt software priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 16. Interrupt vector vs. ISPRx bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 17. Dedicated interrupt instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 18. ST7LITE49M interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 19. Interrupt sensitivity bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 20. Enabling/disabling Active-halt and Halt modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 21. Configuring the dividing factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 22. AWU register mapping and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 23. DR value and output pin status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 24. I/O port mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 25. I/O port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 26. Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 27. Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 28. PA5:0, PB7:0, PC7:4 and PC2:0 pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 29. PA7:6 pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 30. PC3 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 31. Port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 32. I/O port register mapping and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 33. Watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 34. Watchdog timer register mapping and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 35. Effect of low power modes on autoreload timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 36. Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 37. Counter clock selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 38. Register mapping and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 39. Effect of low power modes on Lite timer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 40. Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 41. Lite timer register mapping and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 42. Effect of low power modes on the I
Table 43. Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 44. Configuration of I Table 45. I
Table 46. Effect of low power modes on the A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 47. Channel selection using CH[3:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 48. Configuring the ADC clock speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2
C register mapping and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2
C delay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2
C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8/188 Doc ID 13562 Rev 3
ST7LITE49M List of tables
Table 49. ADC register mapping and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 50. Description of addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 51. ST7 addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 52. Instructions supporting inherent addressing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 53. Instructions supporting inherent immediate addressing mode . . . . . . . . . . . . . . . . . . . . . 132
Table 54. Instructions supporting direct, indexed, indirect and indirect indexed addressing modes 133
Table 55. Instructions supporting relative modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 56. ST7 instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 57. Illegal opcode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 58. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 59. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 60. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 61. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 62. Operating characteristics with LVD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 63. Operating characteristics with AVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 64. Voltage drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 65. Internal RC oscillator characteristics (5.0 V calibration) . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 66. Internal RC oscillator characteristics (3.3 V calibration) . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 67. Supply current characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 68. On-chip peripheral characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 69. I Table 70. SCL frequency (multimaster I
2
C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2
C interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 71. General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 72. External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 73. AWU from Halt characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 74. Crystal/ceramic resonator oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 75. Typical ceramic resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 76. RAM and hardware registers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 77. Flash program memory characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 78. Data EEPROM memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 79. EMS test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 80. EMI emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 81. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 82. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 83. General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 84. Output driving current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 85. Asynchronous RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 86. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 87. ADC accuracy with VDD = 3.3 to 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 88. ADC accuracy with VDD = 2.7 to 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 89. ADC accuracy with VDD = 2.4 to 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 90. Startup clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 91. LVD threshold configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 92. Selection of the resonator oscillator range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 93. Configuration of sector size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 94. Development tool order codes for the ST7LITE49M family . . . . . . . . . . . . . . . . . . . . . . . 177
Table 95. ST7 application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 96. 32-pin plastic dual in-line package, shrink 400-mil width,
(mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 97. 32-pin low profile quad flat package (7x7), package mechanical data . . . . . . . . . . . . . . . 183
Table 98. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 99. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Doc ID 13562 Rev 3 9/188
List of figures ST7LITE49M
List of figures
Figure 1. ST7LITE49M general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2. 32-pin SDIP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3. 32-pin LQFP 7x7 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. ST7LITE49M memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. Typical ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. EEPROM block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7. Data EEPROM programming flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. Data EEPROM write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 9. Data EEPROM programming cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 10. CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 11. Stack manipulation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12. Clock switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 13. Clock management block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. Reset sequence phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 15. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 16. Reset sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 17. Low voltage detector vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 18. Reset and supply management block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 19. Using the AVD to monitor VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 20. Interrupt processing flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 21. Priority decision process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 22. Concurrent interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 23. Nested interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 24. Power saving mode transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 25. Slow mode clock transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 26. Wait mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 27. Active-halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 28. Active-halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 29. Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 30. Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 31. AWUFH mode block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 32. AWUF Halt timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 33. AWUFH mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 34. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 35. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 36. Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 37. Single timer mode (ENCNTR2=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 38. Dual timer mode (ENCNTR2=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 39. PWM polarity inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 40. PWM function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 41. PWM signal from 0% to 100% duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 42. Dead time generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 43. ST7LITE49M block diagram of break function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 44. Block diagram of output compare mode (single timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 45. Block diagram of input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 46. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 47. Long range input capture block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 48. Long range input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10/188 Doc ID 13562 Rev 3
ST7LITE49M List of figures
Figure 49. Block diagram of One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 50. One-pulse mode and PWM timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 51. Dynamic DCR2/3 update in One-pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 52. Force overflow timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 53. Lite timer 2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 54. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 55. I Figure 56. I
2
C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2
C interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 57. Transfer sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 58. Event flags and interrupt generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 59. ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 60. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 61. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 62. fCPU maximum operating frequency versus VDD
supply voltage . . . . . . . . . . . . . . . . . . 142
Figure 63. Frequency vs voltage at four different ambient temperatures (RC at 5 V) . . . . . . . . . . . . 145
Figure 64. Frequency vs voltage at four different ambient temperatures (RC at 3.3 V). . . . . . . . . . . 145
Figure 65. Accuracy in % vs voltage at 4 different ambient temperatures (RC at 5 V) . . . . . . . . . . . 146
Figure 66. Accuracy in % vs voltage at 4 different ambient temperatures
(RC at 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 67. Typical IDD in Run mode vs. fCPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 68. Typical IDD in WFI vs. fCPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 69. Typical IDD in slow mode vs. fCPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 70. Typical IDD in Slow-wait mode vs. fCPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 71. Typical IDD vs. temperature at VDD = 5 V and fCPU = 8 MHz . . . . . . . . . . . . . . . . . . . . 149
Figure 72. Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 73. Typical application with a crystal or ceramic resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 74. Two typical applications with unused I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 75. R Figure 76. I
resistance versus voltage at four different temperatures . . . . . . . . . . . . . . . . . . . . . . 159
pu
current versus voltage at four different temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 159
pu
Figure 77. Typical VOL at VDD = 2.4 V (standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 78. Typical VOL at VDD = 3 V (standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 79. Typical VOL at VDD = 5 V (standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 80. Typical VOL at VDD = 2.4 V (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 81. Typical VOL at VDD = 3 V (high sink). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 82. Typical VOL at VDD = 5 V (high sink). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 83. Typical VOL vs. VDD at I Figure 84. Typical VOL vs. VDD at I Figure 85. Typical VOL vs VDD at I Figure 86. Typical VOL vs VDD at Figure 87. Typical VOL vs VDD at I
= 2 mA (standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
IO
= 4 mA (standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
IO
= 2 mA (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
IO
= 8 mA (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
IO
= 12 mA (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
IO
Figure 88. Typical VDD-VOH vs. IIO at VDD = 2.4 V (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 89. Typical VDD-VOH vs. IIO at VDD = 3 V (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 90. Typical VDD-VOH vs. IIO at VDD = 5 V (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 91. Typical VDD-VOH vs. IIO at VDD = 2.4 V (standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 92. Typical VDD-VOH vs. IIO at VDD = 3 V (standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 93. Typical VDD-VOH vs. IIO at VDD = 5 V (standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 94. Typical VDD-VOH vs. V
at IIO = 2 mA (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
DD
Figure 95. Typical VDD-VOH vs. VDD at IIO = 4 mA (high sink). . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 96. RESET pin protection when LVD is enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 97. RESET pin protection when LVD is disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 98. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 99. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Doc ID 13562 Rev 3 11/188
List of figures ST7LITE49M
Figure 100. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 101. 32-pin plastic dual in-line package, shrink 400-mil width, package outline. . . . . . . . . . . . 182
Figure 102. 32-pin low profile quad flat package (7x7), package outline . . . . . . . . . . . . . . . . . . . . . . . 183
12/188 Doc ID 13562 Rev 3
ST7LITE49M Description
8-bit core
ALU
ADDRESS AND DATA BUS
OSC1
OSC2
RESET
Port A
Internal clock
Control
RAM
(384 bytes)
PA7:0
(8 bits)
V
SS
V
DD
Power
Supply
Flash
(4K bytes)
LVD, AVD
memory
Ext.
1MHz
Int.
RC OSC
8-bit
dual Lite timer
Port B
PB7:0
(8 bits)
I2C
8 MHz
OSC
to
16MHz
10-bit ADC
12-bit
Auto-reload
CLKIN
/ 2
Watchdog
Debug module
Port C
PC7:0
(8 bits)
Data EEPROM
(128 bytes)
program
/ 2
Int.
32 kHz
dual timer
RC OSC

1 Description

The ST7LITE49M is a member of the ST7 microcontroller family. All ST7 devices are based
on a common industry-standard 8-bit core, featuring an enhanced instruction set.
The ST7LITE49M features Flash memory with byte-by-byte in-circuit programming (ICP)
and in-application programming (IAP) capability.
Under software control, the ST7LITE49M device can be placed in Wait, Slow, or Halt mode,
reducing power consumption when the application is in idle or standby state.
The enhanced instruction set and addressing modes of the ST7 offer both power and
flexibility to software developers, enabling the design of highly efficient and compact
application code. In addition to standard 8-bit data management, all ST7 microcontrollers
feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.
The ST7LITE49M features an on-chip Debug Module (DM) to support in-circuit debugging
(ICD). For a description of the DM registers, refer to the ST7 ICC protocol reference manual.

Figure 1. ST7LITE49M general block diagram

Doc ID 13562 Rev 3 13/188
Pin description ST7LITE49M
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
29
30
31
32
ei1
eix associated external interrupt vector
(HS) 20 mA high sink capability
ATPWM0/PA2(HS)
BREAK/PC7
PA 0( HS )
ATIC/PA1(HS)
ATPWM1/PA3(HS)
I2CCLK/PA7(HS)
RESET
ATPWM3/PA5(HS)
ATPWM2/MCO/PA4(HS)
I 2 CD ATA /PA 6 ( HS )
V
DDA
PB0/AIN0
PB1/AIN1/CLKIN
V
SS
OSC1/CLKIN
OSC2
V
SSA
PB2/AIN2
V
DD
PB3/AIN3
PC1/AIN9 PC0/AIN8 PB7/AIN7
PB6/AIN6 PB5/AIN5 PB4/AIN4
PC6 PC5 PC4/LTIC PC3/ICCCLK PC2/ICCDATA
NC
ei2
ei0
ei2
ei2
Note 1: Available on 8 Kbytes version only
V
SSA
V
DDA
AIN0/PB0
CLKIN/AIN1/PB1
AIN2/PB2
V
SS
OSC1/CLKIN
OSC2
32 31 30 29 28 27 26 25
24 23 22 21 20 19 18 17
9 10111213141516
1 2 3 4 5 6 7 8
PB6/AIN6 PB5/AIN5 PB4/AIN4 PB3/AIN3
PC2/ICCDATA PC1/AIN9 PC0/AIN8 PB7/AIN7
PC6
PC5
PC4/LTIC
PC3/ICCCLK
PA 2( HS )/ ATP W M 0
PA 1( HS )/ ATI C
PA 0( HS )
PC7/BREAK
eix associated external interrupt vector
(HS) 20 mA high sink capability
I2CCLK/PA7(HS)
RESET
ATPWM2/MCO/PA4(HS)
I2CDATA/PA6(HS)
V
DD
NC
ATPWM3/PA5(HS)
ATPWM1/PA3(HS)
ei0
ei2
ei1

2 Pin description

Figure 2. 32-pin SDIP package pinout

Figure 3. 32-pin LQFP 7x7 package pinout

14/188 Doc ID 13562 Rev 3
ST7LITE49M Pin description
Legend / Abbreviations for Tab le 2 :
Type: I = input, O = output, S = supply
In/Output level: C
= CMOS 0.3VDD/0.7VDD with input trigger
T
Output level: HS = 20 mA high sink (on N-buffer only)
Port and control configuration:
Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog
Output: OD = open-drain, PP = push-pull
The RESET configuration of each pin is shown in bold which is valid as long as the device is
in reset state.

Table 2. Device pin description

Pin
number
LQFP32
1 5 PA3 ( H S ) / AT P W M 1 I / O CTHS x
26
SDIP32
AT P WM 2 / MC O
Pin name
PA 4( HS )/
Level Port/control
Type
Input
I/O C
HS x xx
T
Main
Input Output
Output
float
int
wpu
ana
(1)
OD
xx
ei0
function
(after
reset)
PP
Port A3
(HS)
Port A4
(HS)
Alternate
function
AT PW M1
AT PW M2 /
MCO
3 7 PA5 ( H S ) AT P W M 3 I / O C
48
PA 6( HS )/ I2CDATA
I/O C
HS x xx
T
T
HS x
T
Port A5
(HS)
Port A6
(HS)
AT PW M3
I2CDATA
ei0
5 9 PA7(HS)/I2CCLK I/O C
HS x T
T
Port A7
(HS)
I2CCLK
6 10 RESET x x Reset
812 V
913 V
DD
SS
(2)
(2)
S Digital supply voltage
S Digital ground voltage
Resonator oscillator
10 14 OSC1/CLKIN I
inverter input or external
clock input
11 15 OSC2 O Resonator oscillator output
12 16 V
13 17 V
SSA
DDA
(2)
(2)
S Analog ground voltage
S Analog supply voltage
Doc ID 13562 Rev 3 15/188
Pin description ST7LITE49M
Table 2. Device pin description
Pin
number
Pin name
SDIP32
LQFP32
14 18 PB0/AIN0 I/O C
15 19 PB1/AIN1/CLKIN I/O C
16 20 PB2/AIN2 I/O C
17 21 PB3/AIN3 I/O C
18 22 PB4/AIN4 I/O C
19 23 PB5/AIN5 I/O C
20 24 PB6/AIN6 I/O C
21 25 PB7/AIN7 I/O C
22 26 PC0/AIN8 I/O C
23 27 PC1/AIN9 I/O C
24 28 PC2/ICCDATA I/O C
25 29 PC3/ICCCLK I/O C
26 30 PC4/LTIC I/O C
27 31 PC5 I/O C
28 32 PC6 I/O C
29 1 PC7/BREAK I/O C
30 2 PA0 (HS) I/O C
31 3 PA1 (HS)/ATIC I/O C
32 4 PA2 (HS)/ATPWM0 I/O C
1. In the open-drain output column, T defines a true open-drain I/O (P-Buffer and protection diode to VDD are not
implemented).
2. It is mandatory to connect all available V
Level Port/control
Type
DD
Input
Output
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HS x
T
HS x xx
T
HS x xx
T
and V
pins to the supply voltage and all VSS and V
DDA
Input Output
wpu
float
x
x xxx Port B1
x xxx Port B2 AIN2
x xxx Port B3 AIN3
ei1
x xxx Port B4 AIN4
x xxx Port B5 AIN5
x xxx Port B6 AIN6
x xxx Port B7 AIN7
x
x xxx Port C1 AIN9
ei2
x xxPor t C2 ICCDATA
x x xx Port C3 ICCCLK
x
x xx Port C5
x xx Port C6
ei2
x xxPor t C7 BREAK
ei0
Main
function
(after
reset)
PP
int
ana
(1)
OD
xxx Port B0 AIN0
xxx Port C0 AIN8
xx Port C4 LTI C
xx Port A0 (HS)
Port A1
(HS)
Port A2
(HS)
pins to ground.
SSA
Alternate
function
AIN1/
External
clock source
AT I C
AT PW M0
16/188 Doc ID 13562 Rev 3
ST7LITE49M Register and memory mapping
0000h
Flash memory
(4K)
Interrupt & reset vectors
HW registers
0080h
007Fh
0FFFh
(seeTa bl e 3)
1000h
107Fh
FFE0h
FFFFh
(see Table 16)
Reserved
Short addressing RAM (zero page)
0080h
00FFh
Data EEPROM
(128 bytes)
F000h
1080h
EFFFh
Reserved
FFDFh
128 bytes Stack
0100h
017Fh
1 Kbytes
3 Kbytes
(SECTOR 1)
(SECTOR 0)
4K Flash
program memory
DEE0h
RCCRH1
RCCRL1
see Section 7.1.1
01FFh 0200h
RAM
RAM
(384 bytes)
0180h
01FFh
DEE1h
DEE2h
RCCRH0
RCCRL0
DEE3h
FFFFh
F000h

3 Register and memory mapping

As shown in Figure 4, the MCU is capable of addressing 64 Kbytes of memories and I/O
registers.
The available memory locations consist of 128 bytes of register locations, 384 bytes of
RAM, 128 bytes of data EEPROM and 4 Kbytes of Flash program memory. The RAM space
includes up to 128 bytes for the stack from 180h to 1FFh.
The highest address bytes contain the user reset and interrupt vectors.
The Flash memory contains two sectors (see Figure 4) mapped in the upper part of the ST7
addressing space so the reset and interrupt vectors are located in Sector 0 (FFE0h-FFFFh).
The size of Flash Sector 0 and other device options are configurable by option bytes (refer
to Section 14.1 on page 173).
Caution: Memory locations marked as “Reserved” must never be accessed. Accessing a reserved
area can have unpredictable effects on the device.

Figure 4. ST7LITE49M memory map

Doc ID 13562 Rev 3 17/188
Register and memory mapping ST7LITE49M

Table 3. Hardware register map

(1)
Address Block Register label Register name Reset status Remarks
0000h 0001h 0002h
0003h 0004h 0005h
0006h 0007h 0008h
0009h to
000Bh
000Ch 000Dh 000Eh 000Fh
0010h
0011h 0012h 0013h 0014h 0015h 0016h 0017h 0018h
0019h 001Ah 001Bh 001Ch 001Dh 001Eh 001Fh
0020h
0021h
0022h
0023h
0024h
0025h
0026h
0027h
0028h
0029h 002Ah
002Bh to
002Ch
Por t A
Por t B
Por t C
LITE
TIMER
AUTO-
RELOAD
TIMER
PA DR
PA DD R
PA OR
PBDR
PBDDR
PBOR
PCDR
PCDDR
PCOR
LTCSR2
LTA RR LTCNTR LTCSR1
LT IC R
AT CS R
CNTR1H
CNTR1L
AT R1 H
AT R1 L
PWMCR PWM0CSR PWM1CSR PWM2CSR PWM3CSR
DCR0H
DCR0L
DCR1H
DCR1L
DCR2H
DCR2L
DCR3H
DCR3L
ATICRH
AT IC RL
ATCSR2
BREAKCR
AT R2 H AT R2 L
DTGR
BREAKEN
Port A data register
Port A Data direction register
Port A option register
Port B data register
Port B data direction register
Port B option register
Port C data register
Port C data direction register
Port C option register
Reserved area (3 bytes)
Lite timer control/status register 2
Lite timer auto-reload register
Lite timer counter register
Lite timer control/status register 1
Lite timer input capture register
Timer control/status register
Counter register 1 High
Counter register 1 Low
Auto-reload register 1 High
Auto-reload register 1 Low
PWM output control register PWM 0 control/status register PWM 1 control/status register PWM 2 control/status register PWM 3 control/status register
PWM 0 duty cycle register High
PWM 0 duty cycle register Low
PWM 1 duty cycle register High
PWM 1 duty cycle register Low
PWM 2 duty cycle register High
PWM 2 duty cycle register Low
PWM 3 duty cycle register High
PWM 3 duty cycle register Low
Input capture register High Input capture register Low
Timer control/status register 2
Break control register
Auto-reload register 2 High
Auto-reload register 2 Low
Dead time generation register
Break enable register
Reserved area (2 bytes)
00h 00h 00h
00h 00h 00h
00h 00h 08h
0Fh 00h 00h
0x00 0000b
xxh
0x00 0000b
00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 03h 00h 00h 00h 00h 03h
R/W R/W R/W
R/W R/W R/W
R/W R/W R/W
R/W R/W
Read Only
R/W
Read Only
R/W Read Only Read Only
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W Read Only Read Only
R/W
R/W
R/W
R/W
R/W
R/W
002Dh 002Eh 002Fh
0030h 0031h
ITC
ISPR0 ISPR1 ISPR2 ISPR3
EICR
Interrupt software priority register 0 Interrupt software priority register 1 Interrupt software priority register 2 Interrupt software priority register 3
External interrupt control register
18/188 Doc ID 13562 Rev 3
FFh FFh FFh FFh 00h
R/W
R/W
R/W
R/W
R/W
ST7LITE49M Register and memory mapping
Table 3. Hardware register map
(1)
(continued)
Address Block Register label Register name Reset status Remarks
0032h Reserved area (1 byte)
0033h WDG WDGCR Watchdog control register 7Fh R/W
0034h FLASH FCSR Flash control/status register 00h R/W
0035h EEPROM EECSR Data EEPROM control/status register 00h R/W
0036h 0037h 0038h
ADC
ADCCSR ADCDRH ADCDRL
A/D control status register
A/D data register high
00h xxh 0xh
R/W Read Only
R/W
0039h Reserved area (1 byte)
003Ah MCC MCCSR Main Clock Control/Status register 00h R/W
003Bh 003Ch
Clock and
reset
003Dh AVDTHCR
003Eh to
0047h
0048h 0049h
AWU
004Ah 004Bh 004Ch 004Dh
DM
(2)
004Eh 004Fh
0050h
RCCR
SICSR
AWUCSR
AWUPR
DMCR DMSR
DMBK1H
DMBK1L
DMBK2H
DMBK2L
DMCR2
RC oscillator control register
System integrity control/status register
AVD threshold selection register / RC
prescaler
Reserved area (10 bytes)
AWU control/status register
AWU Preload register
DM control register
DM status register
DM breakpoint register 1 High
DM breakpoint register 1 Low
DM breakpoint register 2 High
DM breakpoint register 2 Low
DM control register 2
FFh
011x 0x00b
00h R/W
FFh 00h
00h 00h 00h 00h 00h 00h 00h
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0051h
0052h to
0063h
0064h 0065h 0066h 0067h 0068h 0069h
006Ah
1. Legend: x=undefined, R/W=read/write.
2. For a description of the debug module registers, see ICC protocol reference manual.
Clock
Controller
I2C
CKCNTCSR Clock controller status register 09h R/W
Reserved area (18 bytes)
2
I2CCR I2CSR1 I2CSR2
I2CCCR I2COAR1 I2COAR2
I2CDR
C control register
I
2
C status register 1
I
2
I
C status register 2
2
C clock control register
I
2
C own address register 1
I I2C own address register 2
I2C data register
Doc ID 13562 Rev 3 19/188
00h 00h 00h 00h 00h 40h 00h
R/W Read only Read only
R/W
R/W
R/W
R/W
Flash programmable memory ST7LITE49M

4 Flash programmable memory

4.1 Introduction

The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in parallel.
The XFlash devices can be programmed off-board (plugged in a programming tool) or on­board using in-circuit programming or in-application programming.
The array matrix organization allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main features

ICP (in-circuit programming)
IAP (in-application programming)
ICt (in-circuit testing) for downloading and executing user application test patterns in
RAM
Sector 0 size configurable by option byte
Read-out and write protection

4.3 Programming modes

The ST7 can be programmed in three different ways:
Insertion in a programming tool. In this mode, Flash sectors 0 and 1, option byte row
and data EEPROM (if present) can be programmed or erased.
In-circuit programming. In this mode, Flash sectors 0 and 1, option byte row and data
EEPROM (if present) can be programmed or erased without removing the device from the application board.
In-application programming. In this mode, sector 1 and data EEPROM (if present) can
be programmed or erased without removing the device from the application board and while the application is running.

4.3.1 In-circuit programming (ICP)

ICP uses a protocol called ICC (in-circuit communication) which allows an ST7 plugged on a printed circuit board (PCB) to communicate with an external programming device connected via cable. ICP is performed in three steps:
Switch the ST7 to ICC mode (in-circuit communications). This is done by driving a specific signal sequence on the ICCCLK/DATA pins while the RESET ST7 enters ICC mode, it fetches a specific reset vector which points to the ST7 System Memory containing the ICC protocol routine. This routine enables the ST7 to receive bytes from the ICC interface.
Download ICP Driver code in RAM from the ICCDATA pin
Execute ICP Driver code in RAM to program the Flash memory
pin is pulled low. When the
20/188 Doc ID 13562 Rev 3
ST7LITE49M Flash programmable memory
Depending on the ICP Driver code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection of the serial communication interface for downloading).

4.3.2 In-application programming (IAP)

This mode uses an IAP Driver program previously programmed in Sector 0 by the user (in ICP mode).
This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored etc.) IAP mode can be used to program any memory areas except Sector 0, which is Write/Erase protected to allow recovery in case errors occur during the programming operation.

4.4 ICC interface

ICP needs a minimum of 4 and up to 6 pins to be connected to the programming tool. These pins are:
RESET: device reset
V
ICCCLK: ICC output serial clock pin
ICCDATA: ICC input serial data pin
OSC1: main clock input for external source
V
Note: 1 If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal
isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values.
2 During the ICP session, the programming tool must control the RESET
conflicts between the programming tool and the application reset circuit if it drives more than 5 mA at high level (push pull output or pull-up resistor<1 k to isolate the application RESET circuit in this case. When using a classical RC network with R>1 k additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.
3 The use of pin 7 of the ICC connector depends on the Programming Tool architecture. This
pin must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.
4 In “enabled option byte” mode (38-pulse ICC mode), the internal RC oscillator is forced as a
clock source, regardless of the selection in the option byte. In “disabled option byte” mode (35-pulse ICC mode), pin 9 has to be connected to the PB1/CLKIN pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte.
: device power supply ground
SS
: application board power supply (optional, see Note 3)
DD
pin. This can lead to
Ω
.). A schottky diode can be used
Ω
or a reset management IC with open-drain output and pull-up resistor>1 kΩ, no
Caution: During normal operation the ICCCLK pin must be internally or externally pulled- up (external
pull-up of 10 kΩ mandatory in noisy environment) to avoid entering ICC mode unexpectedly
Doc ID 13562 Rev 3 21/188
Flash programmable memory ST7LITE49M
PROGRAMMING TOOL
ICC CONNECTOR
ICCDATA
ICCCLK
RESET
VDD
HE10 CONNECTOR TYPE
APPLICATION POWER SUPPLY
1
246810
97 5 3
ICC CONNECTOR
APPLICATION BOARD
ICC Cable
(See Note 3)
ST7
PB1/CLKIN
OPTIONAL
See Note 1
See Note 1 and Caution
See Note 2
APPLICATION RESET SOURCE
APPLICATION
I/O
(See Note 4)
during a reset. In the application, even if the pin is configured as output, any reset will put it back in input pull-up.

Figure 5. Typical ICC interface

22/188 Doc ID 13562 Rev 3
ST7LITE49M Flash programmable memory

4.5 Memory protection

There are two different types of memory protection: Read-out protection and Write/Erase Protection which can be applied individually.

4.5.1 Read-out protection

Read-out protection, when selected provides a protection against program memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller. Both program and data EEPROM memory are protected.
In Flash devices, this protection is removed by reprogramming the option. In this case, both program and data EEPROM memory are automatically erased and the device can be reprogrammed.
Read-Out Protection selection depends on the device type:
In Flash devices it is enabled and removed through the FMP_R bit in the option byte.
In ROM devices it is enabled by mask option specified in the option list.

4.5.2 Flash write/erase protection

Write/erase protection, when set, makes it impossible to both overwrite and erase program memory. It does not apply to EEPROM data. Its purpose is to provide advanced security to applications and prevent any change being made to the memory content. Write/erase protection is enabled through the FMP_W bit in the option byte.
Caution: Once set, write/erase protection can never be removed. A write-protected Flash
device is no longer reprogrammable.

4.6 Related documentation

For details on Flash programming and ICC protocol, refer to the ST7 Flash programming reference manual and to the ST7 ICC protocol reference manual
.

4.7 Description of Flash control/status register (FCSR)

This register controls the XFlash erasing and programming using ICP, IAP or other programming methods.
1st RASS Key: 0101 0110 (56h)
2nd RASS Key: 1010 1110 (AEh)
When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys are sent automatically.
Reset value: 000 0000 (00h)
7 0
00000OPTLATPGM
Read/write
Doc ID 13562 Rev 3 23/188
Data EEPROM ST7LITE49M
DATA
MULTIPLEXER
EECSR
HIGH VOLTAGE
PUMP
0 E2LAT00 0 0 0 E2PGM
EEPROM
MEMORY MATRIX
(1 ROW = 32 x 8 BITS)
ADDRESS
DECODER
32 x 8 BITS
DATA LATCHES
ROW
DECODER
DATA BUS
4
4
4
128128
ADDRESS BUS

5 Data EEPROM

5.1 Introduction

The electrically erasable programmable read only memory can be used as a non volatile back-up for storing data. Using the EEPROM requires a basic access protocol described in this chapter.

5.2 Main features

Up to 32 bytes programmed in the same cycle
EEPROM mono-voltage (charge pump)
Chained erase and programming cycles
Internal control of the global programming cycle duration
Wait mode management
Read-out protection

Figure 6. EEPROM block diagram

24/188 Doc ID 13562 Rev 3
ST7LITE49M Data EEPROM
READ MODE
E2LAT=0
E2PGM=0
WRITE MODE
E2LAT=1
E2PGM=0
READ BYTES
IN EEPROM AREA
WRITE UP TO 32 BYTES
IN EEPROM AREA
(with the same 11 MSB of the address)
START PROGRAMMING CYCLE
E2LAT=1
E2PGM=1 (set by software)
E2LAT
01
CLEARED BY HARDWARE

5.3 Memory access

The data EEPROM memory read/write access modes are controlled by the E2LAT bit of the EEPROM Control/Status register (EECSR). The flowchart in Figure 7 describes these different memory access modes.

5.3.1 Read operation (E2LAT=0)

The EEPROM can be read as a normal ROM location when the E2LAT bit of the EECSR register is cleared.
On this device, data EEPROM can also be used to execute machine code. Take care not to write to the data EEPROM while executing from it. This would result in an unexpected code being executed.

5.3.2 Write operation (E2LAT=1)

To access the write mode, the E2LAT bit has to be set by software (the E2PGM bit remains cleared). When a write access to the EEPROM area occurs, the value is latched inside the 32 data latches according to its address.
When PGM bit is set by the software, all the previous bytes written in the data latches (up to
32) are programmed in the EEPROM cells. The effective high address (row) is determined by the last EEPROM write sequence. To avoid wrong programming, the user must take care that all the bytes written between two programming sequences have the same high address: only the five Least Significant Bits of the address can change.
At the end of the programming cycle, the PGM and LAT bits are cleared simultaneously.
Note: Care should be taken during the programming cycle. Writing to the same memory location
will over-program the memory (logical AND between the two write access data result) because the data latches are only cleared at the end of the programming cycle and by the falling edge of the E2LAT bit. It is not possible to read the latched data (see Figure 9).
Figure 7. Data EEPROM programming flowchart
Doc ID 13562 Rev 3 25/188
Data EEPROM ST7LITE49M
Byte 1 Byte 2 Byte 32
PHASE 1
Programming cycle
Read operation impossible
PHASE 2
Read operation possible
E2LAT bit
E2PGM bit
Writing data latches Waiting E2PGM and E2LAT to fall
Set by USER application
Cleared by hardware
Row / byte 0123 ... 30 31 Physical Address
0 00h...1Fh
1 20h...3Fh
...
N Nx20h...Nx20h+1Fh
ROW
DEFINITION
Figure 8. Data EEPROM write operation
1. If a programming cycle is interrupted (by a reset action), the integrity of the data in memory is not guaranteed.

5.4 Power saving modes

5.4.1 Wait mode

The data EEPROM can enter Wait mode on execution of the WFI instruction of the microcontroller or when the microcontroller enters Active-halt mode.The data EEPROM will immediately enter this mode if there is no programming in progress, otherwise the data EEPROM will finish the cycle and then enter Wait mode.

5.4.2 Active-halt mode

Refer to Wait mode.

5.4.3 Halt mode

The data EEPROM immediately enters Halt mode if the microcontroller executes the Halt instruction. Therefore the EEPROM will stop the function in progress, and data may be corrupted.

5.5 Access error handling

If a read access occurs while E2LAT=1, then the data bus will not be driven.
If a write access occurs while E2LAT=0, then the data on the bus will not be latched.
If a programming cycle is interrupted (by a RESET action), the integrity of the data in memory will not be guaranteed.
26/188 Doc ID 13562 Rev 3
ST7LITE49M Data EEPROM
LAT
ERASE CYCLE
WRITE CYCLE
PGM
t
PROG
READ OPERATION NOT POSSIBLE
WRITE OF
DATA LATCHES
READ OPERATION POSSIBLE
Internal Programming
voltage

5.6 Data EEPROM read-out protection

The read-out protection is enabled through an option bit (see Section 14.1: Option bytes). When this option is selected, the programs and data stored in the EEPROM memory are protected against Read-out (including a re-write protection). In Flash devices, when this protection is removed by reprogramming the option byte, the entire Program memory and EEPROM is first automatically erased.
Note: Both program memory and data EEPROM are protected using the same option bit.

Figure 9. Data EEPROM programming cycle

5.7 EEPROM control/status register (EECSR)

Address: 0035h
Reset value: 0000 0000 (00h)
7 0
000000E2LATE2PGM
Read/write
Bits 7:2 = Reserved, forced by hardware to 0
0: Read mode 1: Write mode
Bit 1 = E2LAT Latch access transfer bit: this bit is set by software.
It is cleared by hardware at the end of the programming cycle. It can only be cleared by software if the E2PGM bit is cleared
Bit 0 = E2PGM Programming control and status bit
This bit is set by software to begin the programming cycle. At the end of the programming cycle, this bit is cleared by hardware.
0: Programming finished or not yet started 1: Programming cycle is in progress
Note: If the E2PGM bit is cleared during the programming cycle, the memory data is not
guaranteed.
Doc ID 13562 Rev 3 27/188
Central processing unit ST7LITE49M
ACCUMULATOR
X INDEX REGISTER
Y INDEX REGISTER
STACK POINTER
CONDITION CODE REGISTER
PROGRAM COUNTER
70
1C1 1 HI NZ
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
70
70
70
0
7
15 8
PCH
PCL
15
8
70
RESET VALUE = STACK HIGHER ADDRESS
RESET VALUE =
1X11X1XX
RESET VALUE = XXh
RESET VALUE = XXh
RESET VALUE = XXh
X = Undefined Value

6 Central processing unit

6.1 Introduction

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8­bit data manipulation.

6.2 Main features

63 basic instructions
Fast 8-bit by 8-bit multiply
17 main addressing modes
Two 8-bit index registers
16-bit stack pointer
Low power modes
Maskable hardware interrupts
Non-maskable software interrupt

6.3 CPU registers

The six CPU registers shown in Figure 10. They are not present in the memory mapping and are accessed by specific instructions.

Figure 10. CPU registers

28/188 Doc ID 13562 Rev 3
ST7LITE49M Central processing unit

6.3.1 Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

6.3.2 Index registers (X and Y)

In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)
The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack).

6.3.3 Program counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (program counter low which is the LSB) and PCH (program counter high which is the MSB).

6.3.4 Condition code register (CC)

The 8-bit condition code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.
Reset value: 111x 1xxx
7 0
11I1HI0NZC
Read/write
These bits can be individually tested and/or controlled by specific instructions.
Arithmetic management bits
Bit 4 = H Half carry bit
This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions.
0: No half carry has occurred. 1: A half carry has occurred.
This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.
Doc ID 13562 Rev 3 29/188
Central processing unit ST7LITE49M
Bit 3 = I Interrupt mask
bit
This bit is set by hardware when entering in interrupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software.
0: Interrupts are enabled. 1: Interrupts are disabled. This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM
and JRNM instructions.
Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By
default an interrupt routine is not interruptible because the I bit is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the current interrupt routine.
Bit 2 = N Negative bit
This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It is a copy of the 7
th
bit of the result. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative (that is, the most significant bit is a logic
1). This bit is accessed by the JRMI and JRPL instructions.
Bit 1 = Z Zero bit
This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.
0: The result of the last operation is different from zero. 1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test instructions.
Bit 0 = C Carry/borrow
bit
This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.
0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred. This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC
instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.
Interrupt management bits
Bits 5,3 = I1, I0 Interrupt bits
The combination of the I1 and I0 bits gives the current interrupt software priority. These two bits are set/cleared by hardware when entering in interrupt. The loaded
value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions. See Section 10.6: Interrupts for more details.
30/188 Doc ID 13562 Rev 3
ST7LITE49M Central processing unit
*
Table 4. Interrupt software priority truth table
Interrupt software priority I1 I0
Level 0 (main) 1 0
Level 1 0 1
Level 2 0 0
Level 3 (= interrupt disable) 1 1

6.3.5 Stack pointer (SP)

Reset value: 01FFh
15 8 7 0
0 0 0 0 0 0 0 1 1 SP6 SP5 SP4 SP3 SP2 SP1 SP0
Read/write
The stack pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 11).
Since the stack is 128 bytes deep, the 9 most significant bits are forced by hardware. Following an MCU reset, or after a reset stack pointer instruction (RSP), the stack pointer contains its reset value (the SP6 to SP0 bits are set) which is the stack higher address.
The least significant byte of the stack pointer (called S) can be directly accessed by a LD instruction.
Note: When the lower limit is exceeded, the stack pointer wraps around to the stack upper limit,
without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.
The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in
Figure 11.
When an interrupt is received, the SP is decremented and the context is pushed on the
stack.
On return from interrupt, the SP is incremented and the context is popped from the
stack.
A subroutine call occupies two locations and an interrupt five locations in the stack area.
Doc ID 13562 Rev 3 31/188
Central processing unit ST7LITE49M
PCH PCL
SP
PCH
PCL
SP
PCL
PCH
X
A
CC
PCH
PCL
SP
PCL
PCH
X
A
CC
PCH PCL
SP
PCL
PCH
X
A
CC
PCH
PCL
SP
SP
Y
CALL
Subroutine
Interrupt
Event
PUSH Y POP Y IRET
RET
or RSP
@ 01FFh
@ 0180h
Stack Higher Address = 01FFh Stack Lower Address =
0180h
Figure 11. Stack manipulation example
32/188 Doc ID 13562 Rev 3
ST7LITE49M Supply, reset and clock management

7 Supply, reset and clock management

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. The main features are the following:
Clock management
8 MHz internal RC oscillator (enabled by option byte) – Auto-wakeup RC oscillator (enabled by option byte) – 1 to 16 MHz or 32 kHz External crystal/ceramic resonator (selected by option byte) – External clock input (enabled by option byte)
Reset sequence manager (RSM)
System integrity management (SI)
Main supply low voltage detection (LVD) with reset generation (enabled by option
byte)
Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main
supply (enabled by option byte)

7.1 RC oscillator adjustment

7.1.1 Internal RC oscillator

The device contains an internal RC oscillator with a specific accuracy for a given device, temperature and voltage range (4.5 V - 5.5 V). It must be calibrated to obtain the frequency required in the application. This is done by software writing a 10-bit calibration value in the RCCR (RC control register) and in the bits 6:5 in the SICSR (SI control status register).
Whenever the microcontroller is reset, the RCCR returns to its default value (FFh), i.e. each time the device is reset, the calibration value must be loaded in the RCCR. Predefined calibration values are stored in EEPROM for 3 and 5 V V
Ta bl e 5 ).
Table 5. Predefined RC oscillator calibration values
RCCR Conditions
RCCRH0 V
RCCRL0 DEE1h
RCCRH1 V
RCCRL1 DEE3h
1. The DEE0h, DEE1h, DEE2h and DEE3h addresses are located in a reserved area in non-volatile memory. They are read-only bytes for the application code. This area cannot be erased or programmed by any ICC operations. For compatibility reasons with the SICSR register, CR[1:0] bits are stored in the 5th and 6th position of DEE1 and DEE3 addresses.
= 5V
DD
TA= 25°C
fRC = 8 MHz
= 3.3 V
DD
TA= 25°C
f
= 8 MHz
RC
supply voltages at 25 °C (see
DD
ST7LITE49M
Address
(1)
DEE0h
DEE2h
(CR[9:2])
(1)
(CR[1:0])
(1)
(CR[9:2])
(1)
(CR[1:0])
Doc ID 13562 Rev 3 33/188
Supply, reset and clock management ST7LITE49M
In 38-pulse ICC mode, the internal RC oscillator is forced as a clock source, regardless of the selection in the option byte.
Section 13: Electrical characteristics on page 139 for more information on the frequency
and accuracy of the RC oscillator.
To improve clock stability and frequency accuracy, it is recommended to place a decoupling capacitor, typically 100 nF, between the V V
pins as close as possible to the ST7 device.
SSA
DD
and V
pins and also between the V
SS
DDA
and
These bytes are systematically programmed by ST, including on FASTROM devices.
Caution: If the voltage or temperature conditions change in the application, the frequency may need
to be recalibrated. Refer to application note AN1324 for information on how to calibrate the RC frequency using an external reference signal.

7.1.2 Auto-wakeup RC oscillator

The ST7LITE49M also contains an Auto-wakeup RC oscillator. This RC oscillator should be enabled to enter auto-wakeup from halt mode.
The auto-wakeup (AWU) RC oscillator can also be configured as the startup clock through the CKSEL[1:0] option bits (see Section 14.1: Option bytes on page 173).
This is recommended for applications where very low power consumption is required.
Switching from one startup clock to another can be done in run mode as follows (see
Figure 12):
Case 1 Switching from internal RC to AWU
1. Set the RC/AWU bit in the CKCNTCSR register to enable the AWU RC oscillator
2. The RC_FLAG is cleared and the clock output is at 1.
3. Wait 3 AWU RC cycles till the AWU_FLAG is set
4. The switch to the AWU clock is made at the positive edge of the AWU clock signal
5. Once the switch is made, the internal RC is stopped
Case 2 Switching from AWU RC to internal RC
1. Reset the RC/AWU bit to enable the internal RC oscillator
2. Using a 4-bit counter, wait until 8 internal RC cycles have elapsed. The counter is
running on internal RC clock.
3. Wait till the AWU_FLAG is cleared (1AWU RC cycle) and the RC_FLAG is set (2 RC
cycles)
4. The switch to the internal RC clock is made at the positive edge of the internal RC clock
signal
5. Once the switch is made, the AWU RC is stopped
Note: 1 When the internal RC is not selected, it is stopped so as to save power consumption.
2 When the internal RC is selected, the AWU RC is turned on by hardware when entering
Auto-wakeup from Halt mode.
3 When the external clock is selected, the AWU RC oscillator is always on.
34/188 Doc ID 13562 Rev 3
ST7LITE49M Supply, reset and clock management
Internal RC AWU RC
Set RC/AWU
Poll AWU_FLAG until set
Internal RC
Reset RC/AWU
Poll RC_FLAG until set
AWU RC
CR6CR9 CR2CR3CR4CR5CR8 CR7
f
OSC
MCCSR
SMS
MCO
MCO
f
CPU
f
CPU
TO CPU AND PERIPHERALS
(1ms timebase @ 8 MHz f
OSC
)
/32 DIVIDER
f
OSC
f
OSC
/32
f
OSC
f
LTIMER
1
0
LITE TIMER 2 COUNTER
8-BIT
AT TIMER 2
12-BIT
CLKIN
OSC2
CLKIN
Tunable
OscillatorRC
/2
DIVIDER
Option bits
CLKSEL[1:0]
OSC
1-16 MHz
CLKIN
CLKIN
/OSC1
OSC
/2
DIVIDER
OSC/2
CLKIN/2
CLKIN/2
Option bits
CLKSEL[1:0]
CR1 CR0
or 32kHz
CKCNTCSR
RC/AWU
Clock controller
f
CPU
AWU RC OSC
8 MHz
2 MHz 1 MHz
4 MHz
Prescaler
8 MHz (f
RC
)
RC OSC
500 kHz
CK2 CK1 CK0
RCCR
Figure 12. Clock switching
Figure 13. Clock management block diagram
Doc ID 13562 Rev 3 35/188
Supply, reset and clock management ST7LITE49M

7.2 Multi-oscillator (MO)

The main clock of the ST7 can be generated by four different source types coming from the multi-oscillator block (1 to 16 MHz):
An external source
5 different configurations for crystal or ceramic resonator oscillators
An internal high frequency RC oscillator
Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in
Ta bl e 6 . Refer to the electrical characteristics section for more details.

7.2.1 External clock source

In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.
Note: When the Multi-Oscillator is not used OSCI1 and OSCI2 must be tied to ground, and PB1 is
selected by default as the external clock.

7.2.2 Crystal/ceramic oscillators

In this mode, with a self-controlled gain feature, oscillator of any frequency from 1 to 16 MHz can be placed on OSC1 and OSC2 pins. This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. In this mode of the multi­oscillator, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator.
These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.

7.2.3 Internal RC oscillator

In this mode, the tunable 1% RC oscillator is used as main clock source. The two oscillator pins have to be tied to ground.
The calibration is done through the RCCR[7:0] and SICSR[6:5] registers.
36/188 Doc ID 13562 Rev 3
ST7LITE49M Supply, reset and clock management
OSC1 OSC2
EXTERNAL
ST7
SOURCE
OSC1 OSC2
LOAD
CAPACITORS
ST7
C
L2
C
L1
OSC1 OSC2
ST7
Table 6. ST7 clock sources
Hardware configuration
External ClockCrystal/Ceramic ResonatorsInternal RC Oscillator

7.3 Reset sequence manager (RSM)

7.3.1 Introduction

The reset sequence manager includes three RESET sources as shown in Figure 15:
External RESET source pulse
Internal LVD RESET (low voltage detection)
Internal WATCHDOG RESET
Note: A reset can also be triggered following the detection of an illegal opcode or prebyte code.
Refer to Section 12.2.1 on page 136 for further details.
These sources act on the RESET
The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory mapping.
The basic RESET sequence consists of 3 phases as shown in Figure 14:
Active phase depending on the RESET source
256 CPU clock cycle delay (see Tab le 7 )
pin and it is always kept low during the delay phase.
Doc ID 13562 Rev 3 37/188
Supply, reset and clock management ST7LITE49M
RESET
active phase
Internal reset
256 or 4096 clock cycles
Fetch vector
Caution: When the ST7 is unprogrammed or fully erased, the Flash is blank and the reset vector is
not programmed. For this reason, it is recommended to keep the RESET
pin in low state
until programming mode is entered, in order to avoid unwanted behavior.
The 256 CPU clock cycle delay allows the oscillator to stabilize and ensures that recovery has taken place from the reset state. The shorter or longer clock cycle delay is automatically selected depending on the clock source chosen by option byte.
The reset vector fetch phase duration is 2 clock cycles.
Table 7. CPU clock delay during reset sequence
Clock source CPU clock cycle delay
Internal RC 8 MHz oscillator 4096
Internal RC 32 kHz oscillator 256
External clock (connected to CLKIN/PB1 pin) 4096
External crystal/ceramic oscillator (connected to OSC1/OSC2 pins) 4096
External crystal/ceramic 1-16 MHz oscillator 4096
External crystal/ceramic 32 kHz oscillator 256
Figure 14. Reset sequence phases
38/188 Doc ID 13562 Rev 3
ST7LITE49M Supply, reset and clock management
RESET
R
ON
V
DD
INTERNAL RESET
PULSE
GENERATOR
Filter
LVD RESET
___
WATCHDOG RESET
___
ILLEGAL OPCODE RESET
1)
___

7.3.2 Asynchronous external RESET pin

The RESET pin is both an input and an open-drain output with integrated RON weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristics section for more details.
A RESET signal originating from an external source must have a duration of at least t
h(RSTL)in
in order to be recognized (see Figure 16: Reset sequences). This detection is
asynchronous and therefore the MCU can enter reset state even in Halt mode.
The RESET
pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.
Figure 15. Reset block diagram
1. See Section 12.2.1: Illegal opcode reset on page 136 for more details on illegal opcode reset conditions.

7.3.3 External power-on reset

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V the minimum level specified for the selected f
A proper reset signal for a slow rising V RC network connected to the RESET
frequency.
OSC
supply can generally be provided by an external
DD
pin.
is over
DD

7.3.4 Internal low voltage detector (LVD) reset

Two different reset sequences caused by the internal LVD circuitry can be distinguished:
Power-on reset
Voltage drop reset
The device RESET (rising edge) or V
The LVD filters spikes on V
pin acts as an output that is pulled low when V
lower than V
DD
DD
(falling edge) as shown in Figure 16.
IT-
larger than t
Doc ID 13562 Rev 3 39/188
to avoid parasitic resets.
g(VDD)
is lower than V
DD
IT+
Supply, reset and clock management ST7LITE49M
t
w(RSTL)out
RUN RUN
WATCHDOG
RESET
INTERNAL RESET (256 or 4096 T
CPU
)
VECTOR FETCH
ACTIVE PHASE
V
DD
RUN
RESET PIN
EXTERNAL
WATCHDOG
ACTIVE PHASE
V
IT+(LVD)
V
IT-(LVD)
t
h(RSTL)in
RUN
WATCHDOG UNDERFLOW
RESET
RESET SOURCE
EXTERNAL
RESET
LVD
RESET
ACTIVE PHASE

7.3.5 Internal watchdog reset

The reset sequence generated by an internal watchdog counter overflow is shown in
Figure 16: Reset sequences
Starting from the watchdog counter underflow, the device RESET is pulled low during at least t
w(RSTL)out
.
Figure 16. Reset sequences
pin acts as an output that
40/188 Doc ID 13562 Rev 3
ST7LITE49M Supply, reset and clock management

7.4 System integrity management (SI)

The system integrity management block contains the low voltage detector (LVD) and auxiliary voltage detector (AVD) functions. It is managed by the SICSR register.
Note: A reset can also be triggered following the detection of an illegal opcode or prebyte code.
Refer to Section 12.2.1 on page 136 for further details.

7.4.1 Low voltage detector (LVD)

The low voltage detector function (LVD) generates a static reset when the VDD supply voltage is below a V as the power-down keeping the ST7 in reset.
reference value. This means that it secures the power-up as well
IT-(LVD)
The V
reference value for a voltage drop is lower than the V
IT-(LVD)
IT+(LVD)
reference value for power-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).
The LVD reset circuitry generates a reset when V
V
V
IT+(LVD)
IT-(LVD)
when VDD is rising
when VDD is falling
is below:
DD
The LVD function is illustrated in Figure 17.
The voltage threshold can be configured by option byte to be low, medium or high. See
Section 14.1 on page 173.
Provided the minimum V
value (guaranteed for the oscillator frequency) is above V
DD
IT-(LVD)
the MCU can only be in two modes:
Under full software control
In static safe reset
In these conditions, secure operation is always ensured for the application without the need for external reset hardware.
During a low voltage detector reset, the RESET
pin is held low, thus permitting the MCU to
reset other devices.
Note: Use of LVD with capacitive power supply: with this type of power supply, if power cuts occur
in the application, it is recommended to pull V
down to 0 V to ensure optimum restart
DD
conditions. Refer to circuit example in Figure 96 on page 169 and note 4.
The LVD is an optional function which can be selected by option byte. See Section 14.1 on
page 173.
It allows the device to be used without any external RESET circuitry.
If the LVD is disabled, an external circuitry must be used to ensure a proper power-on reset.
It is recommended to make sure that the V
supply voltage rises monotonously when the
DD
device is exiting from reset, to ensure the application functions properly.
Make sure that the right combination of LVD and AVD thresholds is used as LVD and AVD levels are not correlated. Refer to section Section 13.3.2 on page 142 and Section 13.3.3 on
page 143 for more details.
,
Caution: If an LVD reset occurs after a watchdog reset has occurred, the LVD will take priority and will
clear the watchdog flag.
Doc ID 13562 Rev 3 41/188
Supply, reset and clock management ST7LITE49M
V
DD
V
IT+(LVD)
RESET
V
IT-(LVD)
V
hys
LOW VOLTAGE
DETECTOR
(LVD)
AUXILIARY VOLTAGE
DETECTOR
(AVD)
RESET
V
SS
V
DD
RESET SEQUENCE
MANAGER
(RSM)
AVD Interrupt Request
SYSTEM INTEGRITY MANAGEMENT
WATCHDOG
SICSR
TIMER (WDG)
AVDIEAVDF
STATUS FLAG
CR0CR1
LVDRF
0WDGF
0
Figure 17. Low voltage detector vs reset
Figure 18. Reset and supply management block diagram

7.4.2 Auxiliary voltage detector (AVD)

The voltage detector function (AVD) is based on an analog comparison between a V and V
IT+(AVD)
reference value for falling voltage is lower than the V voltage in order to avoid parasitic detection (hysteresis).
The output of the AVD comparator is directly readable by the application software through a real-time status bit (AVDF) in the SICSR register. This bit is read only.
Monitoring the VDD main supply
The AVD threshold is selected by the AVD[1:0] bits in the AVDTHCR register.
If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the V
IT+(AVD)
In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing
42/188 Doc ID 13562 Rev 3
software to shut down safely before the LVD resets the microcontroller. See Figure 19.
The interrupt on the rising edge is used to inform the application that the V is over.
reference value and the VDD main supply voltage (V
or V
IT-(AVD)
threshold (AVDF bit is set).
IT+(AVD)
). The V
AVD
IT-(AVD)
reference value for rising
warning state
DD
IT-(AVD)
ST7LITE49M Supply, reset and clock management
V
DD
V
IT+(AVD)
V
IT-(AVD)
AVDF bit
0 1RESET
IF AVDIE bit = 1
V
hyst
AVD INTERRUPT REQUEST
INTERRUPT Cleared by
V
IT+(LVD)
V
IT-(LVD)
LVD RESET
Early Warning Interrupt
(Power has dropped, MCU not not yet in reset)
01
hardware
INTERRUPT Cleared by
reset
Note: Make sure that the right combination of LVD and AVD thresholds is used as LVD and AVD
levels are not correlated. Refer to Section 13.3.2 on page 142 and Section 13.3.3 on page
143 for more details.
Figure 19. Using the AVD to monitor V

7.4.3 Low power modes

DD
Table 8. Low power modes
Mode Description
Wait No effect on SI. AVD interrupts cause the device to exit from Wait mode.
Halt
Interrupts
The AVD interrupt event generates an interrupt if the corresponding Enable Control Bit (AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).
Table 9. Description of interrupt events
Interrupt event Event flag
AVD event AVDF AVDIE Yes No
The SICSR register is frozen. The AVD remains active but the AVD interrupt cannot be used to exit from Halt mode.
Enable
Control
bit
Exit from
Wait
Exit from
Halt
Doc ID 13562 Rev 3 43/188
Supply, reset and clock management ST7LITE49M

7.5 Register description

7.5.1 Main clock control/status register (MCCSR)

Reset value: 0000 0000 (00h)
7 0
000000MCOSMS
Read/write
Bits 7:2 = Reserved, must be kept cleared.
Bit 1 = MCO Main clock out enable
This bit is read/write by software and cleared by hardware after a reset. This bit allows to enable the MCO output clock.
0: MCO clock disabled, I/O port free for general purpose I/O. 1: MCO clock enabled.
Bit 0 = SMS Slow mode selection
This bit is read/write by software and cleared by hardware after a reset. This bit selects the input clock f
0: Normal mode (f 1: Slow mode (f
or f
OSC
CPU = fOSC
OSC
CPU = fOSC
/32.
/32)

7.5.2 RC control register (RCCR)

Reset value: 1111 1111 (FFh)
7 0
CR9 CR8 CR7 CR6 CR5 CR4 CR3 CR2
Bits 7:0 = CR[9:2] RC oscillator frequency adjustment bits
These bits must be written immediately after reset to adjust the RC oscillator frequency and to obtain an accuracy of 1%. The application can store the correct value for each voltage range in Flash memory and write it to this register at start-up.
00h = maximum available frequency FFh = lowest available frequency These bits are used with the CR[1:0] bits in the SICSR register. Refer to Chapter 7.5.3.
bit
bit
Read/write
Note: To tune the oscillator, write a series of different values in the register until the correct
frequency is reached. The fastest method is to use a dichotomy starting with 80h.
44/188 Doc ID 13562 Rev 3
ST7LITE49M Supply, reset and clock management

7.5.3 System integrity (SI) control/status register (SICSR)

Reset value: 011x 0x00 (xxh)
7 0
0 CR1 CR0 WDGRF 0 LVDRF AVDF AVDIE
Read/write
Bit 7 = Reserved, must be kept cleared
Bits 6:5 = CR[1:0] RC oscillator frequency adjustment bits
These bits, as well as CR[9:2] bits in the RCCR register must be written immediately after reset to adjust the RC oscillator frequency and to obtain an accuracy of 1%. Refer to Section 7.1.1: Internal RC oscillator on page 33.
Bit 4 = WDGRF Watchdog reset flag
This bit indicates that the last reset was generated by the watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD reset (to ensure a stable cleared state of the WDGRF flag when CPU starts). The WDGRF and the LVDRF flags areis used to select the reset source (see Table 10: Reset source selection on
page 45).
Table 10. Reset source selection
RESET source LVDRF WDGRF
External RESET
Watchdog 0 1
LV D 1 X
pin 0 0
Bit 3 = Reserved, must be kept cleared
Bit 2 = LVDRF LVD reset flag
This bit indicates that the last reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (by reading). When the LVD is disabled by option byte, the LVDRF bit value is undefined.
The LVDRF flag is not cleared when another RESET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure. In this case, a watchdog reset can be detected by software while an external reset can not.
Bit 1 = AVDF Voltage detector flag
This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit is set. Refer to Figure 19 and to Section for additional details.
0: V
over AVD threshold
DD
1: V
under AVD threshold
DD
Doc ID 13562 Rev 3 45/188
Supply, reset and clock management ST7LITE49M
Bit 0 = AVDIE Voltage detector interrupt enable
bit
This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag is set. The pending interrupt information is automatically cleared when software enters the AVD interrupt routine.
0: AVD interrupt disabled 1: AVD interrupt enabled

7.5.4 AVD threshold selection register (AVDTHCR)

Reset value: 0000 0000 (00h)
7 0
CK2 CK1 CK0 0 0 0 AVD1 AVD0
Read/write
Bits 7:5 = CK[2:0] internal RC prescaler selection
These bits are set by software and cleared by hardware after a reset. These bits select the prescaler of the internal RC oscillator. See Figure 13: Clock management block
diagram on page 35 and Tab l e 1 1.
If the internal RC is used with a supply operating range below 3.3 V, a division ratio of at least 2 must be enabled in the RC prescaler.
Table 11. Internal RC prescaler selection bits
CK2 CK1 CK0 f
001 f
010 f
011 f
100 f
others f
OSC
RC/2
RC/4
RC/8
RC/16
RC
Bits 4:2 = Reserved, must be cleared.
Bits 1:0 = AVD[1:0] AVD threshold selection. These bits are used to select the AVD threshold. They are set and cleared by software. They are set by hardware after a reset.
Table 12. AVD threshold selection bits
AVD1 AVD0 Func ti o nality
00 Low
0 1 Medium
1 0 High
11 AVD off
46/188 Doc ID 13562 Rev 3
ST7LITE49M Supply, reset and clock management

7.5.5 Clock controller control/status register (CKCNTCSR)

Reset value: 0000 1001 (09h)
7 0
0000AWU_FLAGRC_FLAG0RC/AWU
Read/write
Bits 7:4 = Reserved, must be kept cleared.
Bit 3 = AWU_FLAG AWU selection
bit
This bit is set and cleared by hardware. 0: No switch from AWU to RC requested 1: AWU clock activated and temporization completed
Bit 2 = RC_FLAG RC selection
bit
This bit is set and cleared by hardware. 0: No switch from RC to AWU requested 1: RC clock activated and temporization completed
Bit 1 = Reserved, must be kept cleared.
Bit 0 = RC/AWU RC/AWU selection
bit
0: RC enabled 1: AWU enabled (default value)
Table 13. Clock register mapping and reset values
Address
(Hex.)
003Ah
Register
label
MCCSR
Reset value
765 4 32 1 0
-
0
-
0
-
0
-
0
-
0
-
0
MCO
0
SMS
0
003Bh
003Ch
003Dh
0051h
RCCR
Reset value
SICSR
Reset value
AVDTHCR
Reset value
CKCNTCSR
Reset value
CR9
1
-
0
CK2
0
-
0
CR8
1
CR1
1
CK1
0
-
0
CR7
1
CR01WDGRF
CK0
0
-
0
Doc ID 13562 Rev 3 47/188
CR6
1
0
-
0
-
0
CR5
1
-
0
-
0
AWU_
FLAG
1
CR4
1
LVDRFxAVD F
-
0
RC_FLA
G 0
CR3
AVD 1
CR2
1
x
0
-
0
1
AVD IE
x
AVD 0
0
RC/AWU
1
Interrupts ST7LITE49M

8 Interrupts

8.1 Introduction

The ST7 enhanced interrupt management provides the following features:
Hardware interrupts
Software interrupt (TRAP)
Nested or concurrent interrupt management with flexible interrupt priority and level
management: – Up to 4 software programmable nesting levels – 13 interrupt vectors fixed by hardware – 2 non maskable events: RESET, TRAP
This interrupt management is based on:
Bit 5 and bit 3 of the CPU CC register (I1:0),
Interrupt software priority registers (ISPRx),
Fixed interrupt vector addresses located at the high addresses of the memory mapping
(FFE0h to FFFFh) sorted by hardware priority order.
This enhanced interrupt controller guarantees full upward compatibility with the standard (not nested) ST7 interrupt controller.

8.2 Masking and processing flow

The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see
Ta bl e 1 4 ). The processing flow is shown in Figure 20.
When an interrupt request has to be serviced:
Normal processing is suspended at the end of the current instruction execution.
The PC, X, A and CC registers are saved onto the stack.
I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx
registers of the serviced interrupt vector.
The PC is then loaded with the interrupt vector of the interrupt to service and the first
instruction of the interrupt service routine is fetched (refer to interrupt mapping table for vector addresses).
The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.
Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack
and the program in the previous level will resume.
48/188 Doc ID 13562 Rev 3
ST7LITE49M Interrupts
“IRET”
RESTORE PC, X, A, CC
STACK PC, X, A, CC
LOAD I1:0 FROM INTERRUPT SW REG.
FETCH NEXT
RESET
TLI
PENDING
INSTRUCTION
I1:0
FROM STACK
LOAD PC FROM INTERRUPT VECTOR
Y
N
Y
N
Y
N
Interrupt has the same or a
lower software priority
THE INTERRUPT
STAYS PENDING
than current one
Interrupt has a higher
software priority
than current one
EXECUTE
INSTRUCTION
INTERRUPT

Table 14. Interrupt software priority levels

Interrupt software priority Level I1 I0
Level 0 (main)
Level 1
Level 2 0
Level 3 (= interrupt disable) 1 1

Figure 20. Interrupt processing flowchart

Low
High
10
1
0
Doc ID 13562 Rev 3 49/188
Interrupts ST7LITE49M
PENDING
SOFTWARE
Different
INTERRUPTS
Same
HIGHEST HARDWARE
PRIORITY SERVICED
PRIORITY
HIGHEST SOFTWARE
PRIORITY SERVICED

8.2.1 Servicing pending interrupts

As several interrupts can be pending at the same time, the interrupt to be taken into account is determined by the following two-step process:
The highest software priority interrupt is serviced,
If several interrupts have the same software priority then the interrupt with the highest
hardware priority is serviced first.
Figure 21 describes this decision process.
Figure 21. Priority decision process
When an interrupt request is not serviced immediately, it is latched and then processed when its software priority combined with the hardware priority becomes the highest one.
Note: 1 The hardware priority is exclusive while the software one is not. This allows the previous
process to succeed with only one interrupt.
2 RESET and TRAP can be considered as having the highest software priority in the decision
process.

8.2.2 Interrupt vector sources

Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (RESET, TRAP) and the maskable type (external or from internal peripherals).
Non-maskable sources
These sources are processed regardless of the state of the I1 and I0 bits of the CC register (see Figure 20). After stacking the PC, X, A and CC registers (except for RESET), the corresponding vector is loaded in the PC register and the I1 and I0 bits of the CC are set to disable interrupts (level 3). These sources allow the processor to exit Halt mode.
TRAP (non maskable software interrupt)
This software interrupt is serviced when the TRAP instruction is executed. It will be serviced according to the flowchart in Figure 20.
RESET
The RESET source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and the highest hardware priority. See the RESET chapter for more details.
50/188 Doc ID 13562 Rev 3
ST7LITE49M Interrupts
Maskable sources
Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt is latched and thus remains pending.
External interrupts
External interrupts allow the processor to exit from Halt low power mode. External interrupt sensitivity is software selectable through the external interrupt control register (EICR). External interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine. If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed.
Peripheral interrupts
Usually the peripheral interrupts cause the MCU to exit from Halt mode except those mentioned in Table 18: ST7LITE49M interrupt mapping. A peripheral interrupt occurs when a specific flag is set in the peripheral status registers and if the corresponding enable bit is set in the peripheral control register. The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register.
Note: The clearing sequence resets the internal latch. A pending interrupt (that is, waiting for
being serviced) will therefore be lost if the clear sequence is executed.

8.3 Interrupts and low power modes

All interrupts allow the processor to exit the Wait low power mode. On the contrary, only external and other specified interrupts allow the processor to exit from the Halt modes (see column “Exit from Halt” in Table 18: ST7LITE49M interrupt mapping). When several pending interrupts are present while exiting Halt mode, the first one serviced can only be an interrupt with exit from Halt mode capability and it is selected through the same decision process shown in Figure 21.
Note: If an interrupt, that is not able to Exit from Halt mode, is pending with the highest priority
when exiting Halt mode, this interrupt is serviced after the first one serviced.
Doc ID 13562 Rev 3 51/188
Interrupts ST7LITE49M
MAIN
IT5
IT3
IT2
IT0
IT2
MAIN
IT1
I1
HARDWARE PRIORITY
SOFTWARE
3
3
3
3
3
3/0
3
11
11
11
11
11
11 / 10
11
RIM
IT3
IT2
IT5
IT0
IT4
IT1
IT4
I0
10
PRIORITY LEVEL
USED STACK = 10 BYTES
MAIN
IT2
TLI
MAIN
IT0
IT3
IT2
IT5
IT0
IT4
IT1
HARDWARE PRIORITY
3
2
1
3
3
3/0
3
11
00
01
11
11
11
RIM
IT1
IT4
IT4
IT1
IT2
IT3
I1 I0
11 / 10
10
SOFTWARE PRIORITY LEVEL
USED STACK = 20 BYTES

8.4 Concurrent and nested management

The following Figure 22 and Figure 23 show two different interrupt management modes. The first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode in Figure 23. The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT5, IT4, IT3, IT2, IT1, IT0. The software priority is given for each interrupt.
Caution: A stack overflow may occur without notifying the software of the failure.

Figure 22. Concurrent interrupt management

Figure 23. Nested interrupt management

52/188 Doc ID 13562 Rev 3
ST7LITE49M Interrupts

8.5 Description of interrupt registers

8.5.1 CPU CC register interrupt bits

Reset value: 111x 1010(xAh)
7 0
11I1HI0NZC
Read/write
Bits 5, 3 = I1, I0 Software interrupt priority
bits
These two bits indicate the current interrupt software priority (see Ta bl e 1 5). These two bits are set/cleared by hardware when entering in interrupt. The loaded
value is given by the corresponding bits in the interrupt software priority registers (ISPRx).
They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP instructions (see Table 17: Dedicated interrupt instruction set).
TRAP and RESET events can interrupt a level 3 program.
Table 15. Setting the interrupt software priority
Interrupt software priority Level I1 I0
Level 0 (main)
Level 1
Level 2 0
Level 3 (= interrupt disable*) 1 1

8.5.2 Interrupt software priority registers (ISPRx)

All ISPRx register bits are read/write except bit 7:4 of ISPR3 which are read only.
Reset value: 1111 1111 (FFh)
70
Low
High
10
1
0
ISPR0 I1_3 I0_3 I1_2 I0_2 I1_1 I0_1 I1_0 I0_0
ISPR1 I1_7 I0_7 I1_6 I0_6 I1_5 I0_5 I1_4 I0_4
ISPR2 I1_11 I0_11 I1_10 I0_10 I1_9 I0_9 I1_8 I0_8
ISPR3 1 1 1 1 1 1 I1_12 I0_12
ISPRx registers contain the interrupt software priority of each interrupt vector. Each interrupt vector (except RESET and TRAP) has corresponding bits in these registers to define its software priority. This correspondence is shown in Ta bl e 1 6 .
Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1 and I0 bits in the CC register.
Doc ID 13562 Rev 3 53/188
Interrupts ST7LITE49M
The RESET and TRAP vectors have no software priorities. When one is serviced, the I1 and I0 bits of the CC register are both set.
Level 0 cannot be written (I1_x = 1, I0_x = 0). In this case, the previously stored value is kept (Example: previous = CFh, write = 64h, result = 44h).
Table 16. Interrupt vector vs. ISPRx bits
Vector address ISPRx bits
FFFBh-FFFAh I1_0 and I0_0 bits
(1)
FFF9h-FFF8h I1_1 and I0_1 bits
... ...
FFE1h-FFE0h I1_13 and I0_13 bits
1. Bits in the ISPRx registers can be read and written but they are not significant in the interrupt process
management.
Caution: If the I1_x and I0_x bits are modified while the interrupt x is executed the following behavior
has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and the new software priority is higher than the previous one, the interrupt x is re-entered. Otherwise, the software priority stays unchanged up to the next interrupt request (after the IRET of the interrupt x).
Table 17. Dedicated interrupt instruction set
(1)
Instruction New description Function/example I1 H I0 N Z C
HALT Entering Halt mode 1 0
IRET Interrupt routine return Pop CC, A, X, PC I1 H I0 N Z C
JRM Jump if I1:0 = 11 (level 3) I1:0 = 11
JRNM Jump if I1:0 <> 11 I1:0 <> 11
POP CC Pop CC from the stack Mem => CC I1 H I0 N Z C
RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CC 1 0
SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CC 1 1
TRAP Software trap Software NMI 1 1
WFI Wait for interrupt 1 0
1. During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI instructions change the
current software priority up to the next IRET instruction or one of the previously mentioned instructions.
54/188 Doc ID 13562 Rev 3
ST7LITE49M Interrupts
Table 18. ST7LITE49M interrupt mapping
Exit
from
Number
Source
block
Description
RESET Reset
Register
label
Priority
order
HALT
or
AWU FH
(1)
Address
vector
yes FFFEh-FFFFh
N/A
TRAP Software interrupt no FFFCh-FFFDh
0 AWU Auto-wakeup interrupt AWUCSR yes
(2)
FFFAh-FFFBh
Highest
1 AVD Auxiliary voltage detector interrupt N/A no FFF8h-FFF9h
2 ei0 External interrupt 0 (Port A)
3 ei1 External interrupt 1 (Port B) FFF4h-FFF5h
N/A
Priority
FFF6h-FFF7
yes
4 ei2 External interrupt 2 (Port C) FFF2h-FFF3h
5
AT timer output compare interrupt
no FFF0h-FFF1h
6 AT timer input capture interrupt no FFEEh-FFEFh
(3)
7
AT T I M E R
AT timer overflow 1 interrupt no FFECh-FFEDh
AT CS R
8 AT timer Overflow 2 interrupt no FFEAh-FFEBh
2
9I
(3)
10
CI
2
C interrupt N/A no FFE8h-FFE9h
Lite timer RTC interrupt
Lowest
yes FFE6h-FFE7h
Priority
LITE TIMER
11 Lite timer Input Capture interrupt no FFE4h-FFE5h
LT CS R 2
12 Lite timer RTC2 interrupt no FFE2h-FFE3h
1. For an interrupt, all events do not have the same capability to wake up the MCU from Halt, Active-halt or Auto-wakeup from Halt modes. Refer to the description of interrupt events for more details.
2. This interrupt exits the MCU from Auto Wake-up from Halt mode only.
3. These interrupts exit the MCU from Active-halt mode only.
Doc ID 13562 Rev 3 55/188
Interrupts ST7LITE49M

8.5.3 External interrupt control register (EICR)

Reset value: 0000 0000 (00h)
7 0
0 0 IS21 IS20 IS11 IS10 IS01 IS00
Read/write
Bits 7:6 = Reserved, must be kept cleared.
Bits 5:4 = IS2[1:0] ei2 sensitivity
bits
These bits define the interrupt sensitivity for ei2 (Port C) according to Ta b l e 1 9 .
Bits 3:2 = IS1[1:0] ei1 sensitivity
bits
These bits define the interrupt sensitivity for ei1 (Port B) according to Ta b le 1 9 .
Bits 1:0 = IS0[1:0] ei0 sensitivity
bits
These bits define the interrupt sensitivity for ei0 (Port A) according to Ta b le 1 9 .
Note: 1 These 8 bits can be written only when the I bit in the CC register is set.
2 Changing the sensitivity of a particular external interrupt clears this pending interrupt. This
can be used to clear unwanted pending interrupts. Refer to Section : External interrupt
function.
Table 19. Interrupt sensitivity bits
ISx1 ISx0 External interrupt sensitivity
0 0 Falling edge & low level
0 1 Rising edge only
1 0 Falling edge only
1 1 Rising and falling edge
56/188 Doc ID 13562 Rev 3
ST7LITE49M Power saving modes
POWER CONSUMPTION
Wait
Slow
Run
Active Halt
High
Low
Slow Wait
Halt

9 Power saving modes

9.1 Introduction

To give a large measure of flexibility to the application in terms of power consumption, four main power saving modes are implemented in the ST7 (see Figure 24):
Slow
Wait (and Slow-wait)
Active-halt
Auto-wakeup from Halt (AWUFH)
Halt
After a reset the normal operating mode is selected by default (Run mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency (f
From Run mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

Figure 24. Power saving mode transitions

OSC
).
Doc ID 13562 Rev 3 57/188
Power saving modes ST7LITE49M
SMS
f
CPU
NORMAL RUN MODE
REQUEST
f
OSC
f
OSC
/32 f
OSC

9.2 Slow mode

This mode has two targets:
To reduce power consumption by decreasing the internal clock in the device,
To adapt the internal clock frequency (f
Slow mode is controlled by the SMS bit in the MCCSR register which enables or disables Slow mode.
In this mode, the oscillator frequency is divided by 32. The CPU and peripherals are clocked at this lower frequency.
Note: Slow-wait mode is activated when entering Wait mode while the device is already in Slow
mode.

Figure 25. Slow mode clock transition

) to the available supply voltage.
CPU

9.3 Wait mode

Wait mode places the MCU in a low power consumption mode by stopping the CPU.
This power saving mode is selected by calling the ‘WFI’ instruction.
All peripherals remain active. During Wait mode, the I bit of the CC register is cleared, to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in Wait mode until an interrupt or reset occurs, whereupon the program counter branches to the starting address of the interrupt or reset service routine.
The MCU will remain in Wait mode until a reset or an interrupt occurs, causing it to wake up.
Refer to Figure 26 for a description of the Wait mode flowchart.
58/188 Doc ID 13562 Rev 3
ST7LITE49M Power saving modes
WFI INSTRUCTION
RESET
INTERRUPT
Y
N
N
Y
CPU
OSCILLATOR PERIPHERALS
IBIT
ON ON
0
OFF
FETCH RESET VECTOR
OR SERVICE INTERRUPT
CPU
OSCILLATOR PERIPHERALS
IBIT
ON
OFF
0
ON
CPU
OSCILLATOR PERIPHERALS
IBIT
ON ON
X
1)
ON
256 CPU CLOCK CYCLE
DELAY

Figure 26. Wait mode flowchart

1. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set during the interrupt routine and cleared when the CC register is popped.

9.4 Active-halt and Halt modes

Active-halt and Halt modes are the two lowest power consumption modes of the MCU. They are both entered by executing the ‘HALT’ instruction. The decision to enter either in Active­halt or Halt mode is given by the LTCSR/ATCSR register status as shown in the following table:

Table 20. Enabling/disabling Active-halt and Halt modes

LTCSR TBIE
bit
0xx0
0111
1xxx
x101
ATCSR OVFIE
bit
ATCSRCK1 bit ATCSRCK0 bit Meaning
Active-halt mode disabled00xx
Active-halt mode enabled
Doc ID 13562 Rev 3 59/188
Power saving modes ST7LITE49M
HALTRUN RUN
256 CPU
CYCLE DELAY
1)
RESET
OR
INTERRUPT
HALT
INSTRUCTION
FETCH
VECTOR
ACTIVE
[Active-halt Enabled]

9.4.1 Active-halt mode

Active-halt mode is the lowest power consumption mode of the MCU with a real-time clock available. It is entered by executing the ‘HALT’ instruction when Active-halt mode is enabled.
The MCU can exit Active-halt mode on reception of a Lite timer/ AT timer interrupt or a reset.
When exiting Active-halt mode by means of a reset, a 256 CPU cycle delay occurs.
After the start up delay, the CPU resumes operation by fetching the reset vector which woke it up (see Figure 28).
When exiting Active-halt mode by means of an interrupt, the CPU immediately resumes
operation by servicing the interrupt vector which woke it up (see Figure 28).
When entering Active-halt mode, the I bit in the CC register is cleared to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.
In Active-halt mode, only the main oscillator and the selected timer counter (LT/AT) are running to keep a wakeup time base. All other peripherals are not clocked except those which get their clock supply from another clock generator (such as external or auxiliary oscillator).
Caution: As soon as Active-halt is enabled, executing a HALT instruction while the watchdog is active
does not generate a reset if the WDGHALT bit is reset. This means that the device cannot spend more than a defined delay in this power saving mode.
Figure 27. Active-halt timing overview
1. This delay occurs only if the MCU exits Active-halt mode by means of a RESET.
60/188 Doc ID 13562 Rev 3
ST7LITE49M Power saving modes
HALT INSTRUCTION
RESET
INTERRUPT
3)
Y
N
N
Y
CPU
OSCILLATOR PERIPHERALS
2)
IBIT
ON
OFF
0
OFF
FETCH RESET VECTOR
OR SERVICE INTERRUPT
CPU
OSCILLATOR PERIPHERALS
2)
IBIT
ON
OFF
X
4)
ON
CPU
OSCILLATOR PERIPHERALS
IBITS
ON ON
X
4)
ON
256 CPU CLOCK CYCLE
DELAY
(Active-halt enabled)
Figure 28. Active-halt mode flowchart
1. This delay occurs only if the MCU exits Active-halt mode by means of a RESET.
2. Peripherals clocked with an external clock source can still be active.
3. Only the Lite timer RTC and AT timer interrupts can exit the MCU from Active-halt mode.
4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set during the interrupt routine and cleared when the CC register is popped.

9.4.2 Halt mode

The Halt mode is the lowest power consumption mode of the MCU. It is entered by executing the HALT instruction when Active-halt mode is disabled.
The MCU can exit Halt mode on reception of either a specific interrupt (see Ta bl e 1 8 :
ST7LITE49M interrupt mapping) or a reset. When exiting Halt mode by means of a reset or
an interrupt, the main oscillator is immediately turned on and the 256 CPU cycle delay is used to stabilize it. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 30).
When entering Halt mode, the I bit in the CC register is forced to 0 to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes immediately.
In Halt mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator).
The compatibility of watchdog operation with Halt mode is configured by the “WDGHALT” option bit of the option byte. The HALT instruction when executed while the watchdog system is enabled, can generate a watchdog reset (see Section 14.1: Option bytes for more details).
Doc ID 13562 Rev 3 61/188
Power saving modes ST7LITE49M
HALTRUN RUN
256 CPU CYCLE
DELAY
RESET
OR
INTERRUPT
HALT
INSTRUCTION
FETCH
VECTOR
[Active-halt disabled]
HALT INSTRUCTION
RESET
INTERRUPT
3)
Y
N
N
Y
CPU
OSCILLATOR PERIPHERALS
2)
IBIT
OFF OFF
0
OFF
FETCH RESET VECTOR
OR SERVICE INTERRUPT
CPU
OSCILLATOR PERIPHERALS
IBIT
ON
OFF
X
4)
ON
CPU
OSCILLATOR PERIPHERALS
IBITS
ON ON
X
4)
ON
256 CPU CLOCK CYCLE
DELAY
5)
WATCHDOG
ENABLE
DISABLE
WDGHALT
1)
0
WATCHDOG
RESET
1
(Active-halt disabled)
Figure 29. Halt timing overview
1. A reset pulse of at least 42 µs must be applied when exiting from Halt mode.
Figure 30. Halt mode flowchart
1. WDGHALT is an option bit. See option byte section for more details.
2. Peripheral clocked with an external clock source can still be active.
3. Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to
Table 18: ST7LITE49M interrupt mappingfor more details.
4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set during the interrupt routine and cleared when the CC register is popped.
5. The CPU clock must be switched to 1 MHz (RC/8) or AWU RC before entering Halt mode.
62/188 Doc ID 13562 Rev 3
ST7LITE49M Power saving modes
AWU RC
AWUFH
f
AWU_RC
AWUFH
(ei0 source)
oscillator
prescaler/1 .. 255
interrupt
/64
divider
to 8-bit timer input capture
Halt mode recommendations
Make sure that an external event is available to wake up the microcontroller from Halt
mode.
When using an external interrupt to wake up the microcontroller, reinitialize the
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT instruction. The main reason for this is that the I/O may be wrongly configured due to external interference or by an unforeseen logical condition.
For the same reason, reinitialize the level sensitiveness of each external interrupt as a
precautionary measure.
The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction
due to a Program Counter failure, it is advised to clear all occurrences of the data value 0x8E from memory. For example, avoid defining a constant in ROM with the value 0x8E.
As the HALT instruction clears the I bit in the CC register to allow interrupts, the user
may choose to clear all pending interrupt bits before executing the HALT instruction. This avoids entering other peripheral interrupt routines after executing the external interrupt routine corresponding to the wakeup event (reset or external interrupt).

9.5 Auto-wakeup from Halt mode

Auto-wakeup from Halt (AWUFH) mode is similar to Halt mode with the addition of a specific internal RC oscillator for wakeup (Auto-wakeup from Halt oscillator) which replaces the main clock which was active before entering Halt mode. Compared to Active-halt mode, AWUFH has lower power consumption (the main clock is not kept running), but there is no accurate real-time clock available.
It is entered by executing the HALT instruction when the AWUEN bit in the AWUCSR register has been set.

Figure 31. AWUFH mode block diagram

Doc ID 13562 Rev 3 63/188
Power saving modes ST7LITE49M
AWUFH interrupt
f
CPU
RUN MODE HALT MODE 256 t
CPU
RUN MODE
f
AWU_RC
Clear by software
t
AWU
As soon as Halt mode is entered, and if the AWUEN bit has been set in the AWUCSR register, the AWU RC oscillator provides a clock signal (f
AWU_RC
). Its frequency is divided by a fixed divider and a programmable prescaler controlled by the AWUPR register. The output of this prescaler provides the delay time. When the delay has elapsed, the following actions are performed:
the AWUF flag is set by hardware,
an interrupt wakes up the MCU from Halt mode,
the main oscillator is immediately turned on and the 256 CPU cycle delay is used to
stabilize it.
After this start-up delay, the CPU resumes operation by servicing the AWUFH interrupt. The AWU flag and its associated interrupt are cleared by software reading the AWUCSR register.
To compensate for any frequency dispersion of the AWU RC oscillator, it can be calibrated by measuring the clock frequency f
AWU_RC
and then calculating the right prescaler value. Measurement mode is enabled by setting the AWUM bit in the AWUCSR register in Run mode. This connects f f
AWU_RC
to be measured using the main oscillator clock as a reference timebase.
AWU_RC
to the input capture of the 8-bit Lite timer, allowing the
Similarities with Halt mode
The following AWUFH mode behavior is the same as normal Halt mode:
The MCU can exit AWUFH mode by means of any interrupt with exit from Halt
capability or a reset (see Section 9.4: Active-halt and Halt modes).
When entering AWUFH mode, the I bit in the CC register is forced to 0 to enable
interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.
In AWUFH mode, the main oscillator is turned off causing all internal processing to be
stopped, including the operation of the on-chip peripherals. None of the peripherals are clocked except those which get their clock supply from another clock generator (such as an external or auxiliary oscillator like the AWU oscillator).
The compatibility of watchdog operation with AWUFH mode is configured by the
WDGHALT option bit in the option byte. Depending on this setting, the HALT instruction when executed while the watchdog system is enabled, can generate a watchdog reset.

Figure 32. AWUF Halt timing diagram

64/188 Doc ID 13562 Rev 3
ST7LITE49M Power saving modes
RESET
INTERRUPT
3)
Y
N
N
Y
CPU
MAIN OSC PERIPHERALS
2)
I[1:0] BITS
OFF OFF
10
OFF
FETCH RESET VECTOR
OR SERVICE INTERRUPT
CPU
MAIN OSC PERIPHERALS
I[1:0] BITS
ON
OFF
XX
4)
ON
CPU
MAIN OSC PERIPHERALS
I[1:0] BITS
ON ON
XX
4)
ON
256 CPU CLOCK
DELAY
WATCHDOG
ENABLE
DISABLE
WDGHALT
1)
0
WATCHDOG
RESET
1
CYCLE
AWU RC OSC ON
AWU RC OSC OFF
AWU RC OSC OFF
HALT INSTRUCTION
(Active-Halt disabled)
(AWUCSR.AWUEN=1)

Figure 33. AWUFH mode flowchart

1. WDGHALT is an option bit. See option byte section for more details.
2. Peripheral clocked with an external clock source can still be active.
3. Only an AWUFH interrupt and some specific interrupts can exit the MCU from Halt mode (such as external
interrupt). Refer to Table 18: ST7LITE49M interrupt mapping for more details.
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are
set to the current software priority level of the interrupt routine and recovered when the CC register is popped.
Doc ID 13562 Rev 3 65/188
Power saving modes ST7LITE49M

9.5.1 Register description

9.5.2 AWUFH control/status register (AWUCSR)

Reset value: 0000 0000 (00h)
7 0
00000
AWU
F
AWUM AWUEN
Read/Write
Bits 7:3 = Reserved
Bit 2 = AWU F Auto-wakeup flag
This bit is set by hardware when the AWU module generates an interrupt and cleared by software on reading AWUCSR. Writing to this bit does not change its value.
0: No AWU interrupt occurred 1: AWU interrupt occurred
Bit 1 = AWU M Auto-wakeup measurement
bit
This bit enables the AWU RC oscillator and connects its output to the Input Capture of the 8-bit Lite timer. This allows the timer to be used to measure the AWU RC oscillator dispersion and then compensate this dispersion by providing the right value in the AWUPRE register.
0: Measurement disabled 1: Measurement enabled
Bit 0 = AWUEN Auto-wakeup from Halt enabled
bit
This bit enables the Auto-wakeup from halt feature: once Halt mode is entered, the AWUFH wakes up the microcontroller after a time delay dependent on the AWU prescaler value. It is set and cleared by software.
0: AWUFH (Auto-wakeup from Halt) mode disabled 1: AWUFH (Auto-wakeup from Halt) mode enabled
Note: Whatever the clock source, this bit should be set to enable the AWUFH mode once the
HALT instruction has been executed.
66/188 Doc ID 13562 Rev 3
ST7LITE49M Power saving modes
t
AWU
64 AWUPR×
1
f
AWURC
--------------------
× t
RCSTRT
+=

9.5.3 AWUFH prescaler register (AWUPR)

Reset value: 1111 1111 (FFh)
7 0
AWUPR7 AWUPR6 AWUPR5 AWUPR4 AWUPR3 AWUPR2 AWUPR1 AWUPR0
Read/Write
Bits 7:0= AWUPR[7:0] Auto-wakeup prescaler
These 8 bits define the AWUPR dividing factor (see Tab le 2 1).
Table 21. Configuring the dividing factor
AWUPR[7:0] Dividing factor
00h Forbidden
01h 1
... ...
FEh 254
FFh 255
In AWU mode, the time during which the MCU stays in Halt mode, t equation below. See also Figure 32 on page 64.
The AWUPR prescaler register can be programmed to modify the time during which the MCU stays in Halt mode before waking up automatically.
Note: If 00h is written to AWUPR, the AWUPR remains unchanged.
Table 22. AWU register mapping and reset values
Address
(Hex.)
0048h
0049h
Register
label
AWUCSR
Reset
value
AWUPR
Reset
value
76543210
00000AWUFAWUMAWUEN
AWUPR71AWUPR61AWUPR51AWUPR41AWUPR31AWUPR21AWUPR11AWUPR0
, is given by the
AWU
1
Doc ID 13562 Rev 3 67/188
I/O ports ST7LITE49M

10 I/O ports

10.1 Introduction

The I/O ports allow data transfer. An I/O port can contain up to 8 pins. Each pin can be programmed independently either as a digital input or digital output. In addition, specific pins may have several other functions. These functions can include external interrupt, alternate signal input/output for on-chip peripherals or analog input.

10.2 Functional description

A data register (DR) and a data direction register (DDR) are always associated with each port. The Option register (OR), which allows input/output options, may or may not be implemented. The following description takes into account the OR register. Refer to the port configuration table for device specific information.
An I/O pin is programmed using the corresponding bits in the DDR, DR and OR registers: bit x corresponding to pin x of the port.
Figure 34 shows the generic I/O block diagram.

10.2.1 Input modes

Clearing the DDRx bit selects input mode. In this mode, reading its DR bit returns the digital value from that I/O pin.
If an OR bit is available, different input modes can be configured by software: floating or pull­up. Refer to I/O Port Implementation section for configuration.
Note: 1 Writing to the DR modifies the latch value but does not change the state of the input pin.
2 Do not use read/modify/write instructions (BSET/BRES) to modify the DR register.
External interrupt function
Depending on the device, setting the ORx bit while in input mode can configure an I/O as an input with interrupt. In this configuration, a signal edge or level input on the I/O generates an interrupt request via the corresponding interrupt vector (eix).
Falling or rising edge sensitivity is programmed independently for each interrupt vector. The External Interrupt Control register (EICR) or the Miscellaneous register controls this sensitivity, depending on the device.
Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout description and interrupt section). If several I/O interrupt pins on the same interrupt vector are selected simultaneously, they are logically combined. For this reason if one of the interrupt pins is tied low, it may mask the others.
External interrupts are hardware interrupts. Fetching the corresponding interrupt vector automatically clears the request latch. Changing the sensitivity of a particular external interrupt clears this pending interrupt. This can be used to clear unwanted pending interrupts.
68/188 Doc ID 13562 Rev 3
ST7LITE49M I/O ports
Spurious interrupts
When enabling/disabling an external interrupt by setting/resetting the related OR register bit, a spurious interrupt is generated if the pin level is low and its edge sensitivity includes falling/rising edge. This is due to the edge detector input which is switched to '1' when the external interrupt is disabled by the OR register.
To avoid this unwanted interrupt, a "safe" edge sensitivity (rising edge for enabling and falling edge for disabling) has to be selected before changing the OR register bit and configuring the appropriate sensitivity again.
Caution: In case a pin level change occurs during these operations (asynchronous signal input), as
interrupts are generated according to the current sensitivity, it is advised to disable all interrupts before and to reenable them after the complete previous sequence in order to avoid an external interrupt occurring on the unwanted edge.
This corresponds to the following steps:
a) Set the interrupt mask with the SIM instruction (in cases where a pin level change
could occur) b) Select rising edge c) Enable the external interrupt through the OR register d) Select the desired sensitivity if different from rising edge e) Reset the interrupt mask with the RIM instruction (in cases where a pin level
change could occur)
2. To disable an external interrupt: a) Set the interrupt mask with the SIM instruction SIM (in cases where a pin level
change could occur) b) Select falling edge c) Disable the external interrupt through the OR register d) Select rising edge e) Reset the interrupt mask with the RIM instruction (in cases where a pin level
change could occur)

10.2.2 Output modes

Setting the DDRx bit selects output mode. Writing to the DR bits applies a digital value to the I/O through the latch. Reading the DR bits returns the previously stored value.
If an OR bit is available, different output modes can be selected by software: push-pull or open-drain. Refer to I/O Port Implementation section for configuration.
Table 23. DR value and output pin status
DR Push-pull Open-drain
0V
1V
OL
OH
V
OL
Floating
Doc ID 13562 Rev 3 69/188
I/O ports ST7LITE49M
DR
DDR
OR
DATA BUS
PAD
V
DD
ALTERNATE ENABLE
ALTERNATE OUTPUT
1
0
OR SEL
DDR SEL
DR SEL
PULL-UP CONDITION
P-BUFFER (see table below)
N-BUFFER
PULL-UP (see table below)
1
0
ANALOG
INPUT
If implemented
ALTERNATE
INPUT
V
DD
DIODES (see table below)
FROM OTHER BITS
EXTERNAL
REQUEST (eix)
INTERRUPT
SENSITIVITY SELECTION
CMOS SCHMITT TRIGGER
REGISTER ACCESS
BIT
From on-chip peripheral
To on-chip peripheral
Note: Refer to the Port Configuration table for device specific information.
Combinational
Logic

10.2.3 Alternate functions

Many ST7s I/Os have one or more alternate functions. These may include output signals from, or input signals to, on-chip peripherals.Ta bl e 2 describes which peripheral signals can be input/output to which ports.
A signal coming from an on-chip peripheral can be output on an I/O. To do this, enable the on-chip peripheral as an output (enable bit in the peripheral’s control register). The peripheral configures the I/O as an output and takes priority over standard I/O programming. The I/O’s state is readable by addressing the corresponding I/O data register.
Configuring an I/O as floating enables alternate function input. It is not recommended to configure an I/O as pull-up as this will increase current consumption. Before using an I/O as an alternate input, configure it without interrupt. Otherwise spurious interrupts can occur.
Configure an I/O as input floating for an on-chip peripheral signal which can be input and output.
Caution: I/Os which can be configured as both an analog and digital alternate function need special
attention. The user must control the peripherals so that the signals do not arrive at the same time on the same pin. If an external clock is used, only the clock alternate function should be employed on that I/O pin and not the other alternate function.
Figure 34. I/O port general block diagram
70/188 Doc ID 13562 Rev 3
ST7LITE49M I/O ports
CONDITION
PAD
EXTERNAL INTERRUPT
POLARITY
DATA BUS
INTERRUPT
DR REGISTER ACCESS
W
R
FROM
OTHER
PINS
SOURCE (eix)
SELECTION
DR
REGISTER
ALTERNATE INPUT
ANALOG INPUT
To on-chip peripheral
COMBINATIONAL
LOGIC
PAD
DATA BUS
DR
DR REGISTER ACCESS
R/W
REGISTER
PAD
DATA BUS
DR
DR REGISTER ACCESS
R/W
ALTERNATEALTERNATE
ENABLE OUTPUT
REGISTER
BIT From on-chip peripheral
Table 24. I/O port mode options
(1)
Configuration mode Pull-up P-buffer
Floating with/without Interrupt Off
Input
Off
Pull-up with Interrupt On
Output
Push-pull
Off
On
Open-drain (logic level) Off
1. Off means implemented not activated, On means implemented and activated.
Table 25. I/O port configuration
Hardware configuration
(1)
INPUT
Diodes
to V
DD
On On
to V
SS
(2)
OPEN-DRAIN OUTPUT
(2)
PUSH-PULL OUTPUT
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status.
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content.
Doc ID 13562 Rev 3 71/188
I/O ports ST7LITE49M
01
floating/pull-up
interrupt
INPUT
00
floating
(reset state)
INPUT
10
open-drain
OUTPUT
11
push-pull
OUTPUT
XX
= DDR, OR

10.2.4 Analog alternate function

Configure the I/O as floating input to use an ADC input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail, connected to the ADC input.
Analog Recommendations
Do not change the voltage level or loading on any I/O while conversion is in progress. Do not have clocking pins located close to a selected analog pin.
Caution: The analog input voltage level must be within the limits stated in the absolute maximum
ratings.

10.3 I/O port implementation

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific I/O port features such as ADC input or open-drain.
Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 35. Other transitions are potentially risky and should be avoided, since they may present unwanted side-effects such as spurious interrupt generation.

Figure 35. Interrupt I/O port state transitions

10.4 Unused I/O pins

Unused I/O pins must be connected to fixed voltage levels. Refer to Section 13.9: I/O port
pin characteristics.

10.5 Low power modes

s

Table 26. Effect of low power modes on I/O ports

Mode Description
Wait
No effect on I/O ports. External interrupts cause the device to exit from Wait
mode.
Halt
72/188 Doc ID 13562 Rev 3
No effect on I/O ports. External interrupts cause the device to exit from Halt
mode.
ST7LITE49M I/O ports

10.6 Interrupts

The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and if the I bit in the CC register is cleared (RIM instruction).

Table 27. Description of interrupt events

Interrupt event Event flag
External interrupt on selected
external event
-
Enable
control bit
DDRx
ORx
See application notes AN1045 software implementation of I software LCD driver

10.7 Device-specific I/O port configuration

The I/O port register configurations are summarized in Section 10.7.1: Standard ports and
Section 10.7.2: Other ports.

10.7.1 Standard ports

Table 28. PA5:0, PB7:0, PC7:4 and PC2:0 pins
Mode DDR OR
floating input 0 0
pull-up interrupt input 0 1
open-drain output 1 0
push-pull output 1 1
Exit from
Wait
Exit from
Halt
Ye s Ye s
2
C bus master, and AN1048 -

10.7.2 Other ports

Table 29. PA7:6 pins
M
Table 30. PC3 pin
Mode DDR OR
floating input 0 0
interrupt input 0 1
open-drain output 1 0
push-pull output 1 1
Mode DDR OR
floating input 0 0
pull-up input 0 1
Doc ID 13562 Rev 3 73/188
I/O ports ST7LITE49M
Table 30. PC3 pin (continued)
Mode DDR OR
open-drain output 1 0
push-pull output 1 1
Table 31. Port configuration
Input Output
Port Pin name
OR = 0 OR = 1 OR = 0 OR = 1
Por t A
PA5:0 floating pull-up interrupt open-drain push-pull
PA7:6 floating interrupt true open-drain
Port B PB7:0 floating pull-up interrupt open-drain push-pull
Por t C
PC7:4,
PC2:0
floating pull-up interrupt open-drain push-pull
PC3 floating pull-up open-drain push-pull
Table 32. I/O port register mapping and reset values
Address
(Hex.)
0000h
0001h
0002h
0003h
0004h
Register
label
PA DR
Reset value
PADDR
Reset value
PA OR
Reset value
PBDR
Reset value
PBDDR
Reset value
76543210
MSB
0000000
MSB
0000000
MSB
0000000
MSB
0000000
MSB
0000000
LSB
0
LSB
0
LSB
0
LSB
0
LSB
0
0005h
0006h
0007h
0008h
PBOR
Reset value
PCDR
Reset value
PCDDR
Reset value
PCOR
Reset value
MSB
0000000
MSB
0000000
MSB
0000000
MSB
0000100
74/188 Doc ID 13562 Rev 3
LSB
0
LSB
0
LSB
0
LSB
0
ST7LITE49M On-chip peripherals
RESET
WDGA
7-BIT DOWNCOUNTER
f
CPU
T6
T0
CLOCK DIVIDER
WATCHDOG CONTROL REGISTER (CR)
÷16000
T1
T2
T3
T4
T5

11 On-chip peripherals

11.1 Watchdog timer (WDG)

11.1.1 Introduction

The watchdog timer is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the counter’s contents before the T6 bit becomes cleared.

11.1.2 Main features

Programmable free-running downcounter (64 increments of 16000 CPU cycles)
Programmable reset
Reset (if watchdog activated) when the T6 bit reaches zero
Optional reset on HALT instruction (configurable by option byte)
Hardware Watchdog selectable by option byte

11.1.3 Functional description

The counter value stored in the CR register (bits T[6:0]), is decremented every 16000 machine cycles, and the length of the timeout period can be programmed by the user in 64 increments.
If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the RESET pin for typically 30 µs.
Figure 36. Watchdog block diagram
Doc ID 13562 Rev 3 75/188
On-chip peripherals ST7LITE49M
The application program must write in the CR register at regular intervals during normal operation to prevent an MCU reset. This downcounter is free-running: it counts down even if the watchdog is disabled. The value to be stored in the CR register must be between FFh and C0h (see Table 33: Watchdog timing):
The WDGA bit is set (watchdog enabled)
The T6 bit is set to prevent generating an immediate reset
The T[5:0] bits contain the number of increments which represents the time delay
before the watchdog produces a reset.
Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by a reset.
The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared).
If the watchdog is activated, the HALT instruction will generate a reset.
Table 33. Watchdog timing
(1)(2)
f
CPU
= 8 MHz
WDG
counter code
C0h 1 2
FFh 127 128
1. The timing variation shown in Table 33 is due to the unknown status of the prescaler when writing to the CR register.
2. The number of CPU clock cycles applied during the reset phase (256 or 4096) must be taken into account in addition to these timings.

11.1.4 Hardware watchdog option

If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the CR is not used.
Refer to the option byte description in Section 14 on page 173.
Using Halt mode with the WDG (WDGHALT option)
If Halt mode with Watchdog is enabled by option byte (No watchdog reset on HALT instruction), it is recommended before executing the HALT instruction to refresh the WDG counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller. Same behavior in Active-halt mode.

11.1.5 Interrupts

min
[ms]
max [ms]
None.
76/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals

11.1.6 Register description

Control register (WDGCR)
Reset value: 0111 1111 (7Fh)
7 0
WDGA T6 T5 T4 T3 T2 T1 T0
Read/Write
Bit 7 = WDGA Activation bit
This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset.
0: Watchdog disabled 1: Watchdog enabled
Note: This bit is not used if the hardware watchdog option is enabled by option byte.
Bits 6:0 = T[6:0] 7-bit timer (MSB to LSB)
These bits contain the decremented value. A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared).
Table 34. Watchdog timer register mapping and reset values
Address
(Hex.)
0033h
Register
label
WDGCR
Reset value
76543210
WDGA0T6
1
T5
1
T4
T3
1
1
T2
T1
1
1
T0
1
Doc ID 13562 Rev 3 77/188
On-chip peripherals ST7LITE49M

11.2 Dual 12-bit autoreload timer

11.2.1 Introduction

The 12-bit autoreload timer can be used for general-purpose timing functions. It is based on one or two free-running 12-bit upcounters with an input capture register and four PWM output channels. There are 7 external pins:
Four PWM outputs
ATIC/LTIC pins for the input capture function
BREAK pin for forcing a break condition on the PWM outputs

11.2.2 Main features

Single timer or dual timer mode with two 12-bit upcounters (CNTR1/CNTR2) and two
12-bit autoreload registers (ATR1/ATR2)
Maskable overflow interrupts
PWM mode
Generation of four independent PWMx signals – Dead time generation for Half bridge driving mode with programmable dead time – Frequency 2 kHz - 4 MHz (@ 8 MHz f – Programmable duty-cycles – Polarity control – Programmable output modes
Output Compare mode
Input Capture mode
12-bit input capture register (ATICR) – Triggered by rising and falling edges – Maskable IC interrupt – Long range input capture
Internal/external break control
Flexible clock control
One-pulse mode on PWM2/3
Force update
CPU
)
78/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
PWM0
PWM1
PWM2
PWM3
Dead Time
Generator
PWM3 Duty Cycle Generator
12-bit Input Capture
PWM2 Duty Cycle Generator
PWM1 Duty Cycle Generator
PWM0 Duty Cycle Generator
12-Bit Autoreload register 1
12-Bit Upcounter 1
Output Compare
CMP Interrupt
OVF1 interrupt
Edge Detection Circuit
OE0
OE1
OE2
OE3
DTE bit
BPEN bit
Break Function
ATIC
Clock
Control
f
CPU
Lite timer
1 ms from
OFF
PWM0
PWM1
PWM2
PWM3
Dead Time
Generator
PWM3 Duty Cycle Generator
12-bit Input Capture
12-Bit Autoreload register 2
12-Bit Upcounter 2
PWM2 Duty Cycle Generator
PWM1 Duty Cycle Generator
PWM0 Duty Cycle Generator
12-Bit Autoreload register 1
12-Bit Upcounter 1
Output Compare
CMP Interrupt
OVF1 interrupt OVF2 interrupt
Edge Detection Circuit
OE0
OE1
OE2
OE3
ATIC
DTE bit
BPEN bit
Break Function
LTIC
OP_EN bit
Clock
Control
f
CPU
One-pulse
mode
Output Compare
CMP Interrupt
Lite timer
1 ms from
OFF
Figure 37. Single timer mode (ENCNTR2=0)
Figure 38. Dual timer mode (ENCNTR2=1)
Doc ID 13562 Rev 3 79/188
On-chip peripherals ST7LITE49M
f
PWMfCOUNTER
4096 ATR()=
Resolution 1 4096 ATR()=

11.2.3 Functional description

PWM mode
This mode allows up to four pulse width modulated signals to be generated on the PWMx output pins.
PWM frequency
The four PWM signals can have the same frequency (f frequencies. This is selected by the ENCNTR2 bit which enables Single timer or Dual timer mode (see Figure 37 and Figure 38). The frequency is controlled by the counter period and the ATR register value. In Dual timer mode, PWM2 and PWM3 can be generated with a different frequency controlled by CNTR2 and ATR2.
) or can have two different
PWM
Following the above formula, if f
COUNTER
equals 4 MHz, the maximum value of f 2 MHz (ATR register value = 4094), and the minimum value is 1 kHz (ATR register value = 0).
The maximum value of ATR is 4094 because it must be lower than the DC4R value which must be 4095 in this case.
To update the DCRx registers at 32 MHz, the following precautions must be taken: – If the PWM frequency is < 1 MHz and the TRANx bit is set asynchronously, it
should be set twice after a write to the DCRx registers.
If the PWM frequency is > 1 MHz, the TRANx bit should be set along with
FORCEx bit with the same instruction (use a load instruction and not 2 bset instructions).
Duty cycle
The duty cycle is selected by programming the DCRx registers. These are preload registers. The DCRx values are transferred in Active duty cycle registers after an overflow event if the corresponding transfer bit (TRANx bit) is set.
The TRAN1 bit controls the PWMx outputs driven by counter 1 and the TRAN2 bit controls the PWMx outputs driven by counter 2.
PWM generation and output compare are done by comparing these active DCRx values with the counter.
The maximum available resolution for the PWMx duty cycle is:
PWM
is
where ATR is equal to 0. With this maximum resolution, 0% and 100% duty cycle can be obtained by changing the polarity.
At reset, the counter starts counting from 0. When a upcounter overflow occurs (OVF event), the preloaded Duty cycle values are
transferred to the active Duty Cycle registers and the PWMx signals are set to a high level. When the upcounter matches the active DCRx value the PWMx signals are set to a low level. To obtain a signal on a PWMx pin, the contents of the corresponding active DCRx register must be greater than the contents of the ATR register.
80/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
PWMx
PWMx PIN
counter
overflow
OPx
PWMxCSR register
inverter
DFF
TRANx
ATCSR2 register
DUTY CYCLE
REGISTER
AUTO-RELOAD
REGISTER
PWMx OUTPUT
t
4095
000
WITH OE=1 AND OPx=0
(ATR)
(DCRx)
WITH OE=1 AND OPx=1
COUNTER
The maximum value of ATR is 4094 because it must be lower than the DCR value which must be 4095 in this case.
Polarity inversion
The polarity bits can be used to invert any of the four output signals. The inversion is synchronized with the counter overflow if the corresponding transfer bit in the ATCSR2 register is set (reset value). See Figure 39.
Figure 39. PWM polarity inversion
The data flip flop (DFF) applies the polarity inversion when triggered by the counter overflow input.
Output control
The PWMx output signals can be enabled or disabled using the OEx bits in the PWMCR register.
Figure 40. PWM function
Doc ID 13562 Rev 3 81/188
On-chip peripherals ST7LITE49M
COUNTER
PWMx OUTPUTtWITH MOD00=1
AND OPx=0
FFDh FFEh FFFh FFDh FFEh FFFh FFDh FFEh
DCRx=000h
DCRx=FFDh
DCRx=FFEh
DCRx=000h
ATR= FFDh
f
COUNTER
PWMx OUTPUT
WITH MOD00=1
AND OPx=1
Dead time DT 6:0[]Tcounter1×=
Figure 41. PWM signal from 0% to 100% duty cycle
Dead time generation
A dead time can be inserted between PWM0 and PWM1 using the DTGR register. This is required for half-bridge driving where PWM signals must not be overlapped. The non­overlapping PWM0/PWM1 signals are generated through a programmable dead time by setting the DTE bit.
DTGR[7:0] is buffered inside so as to avoid deforming the current PWM cycle. The DTGR effect will take place only after an overflow.
Note: 1 Dead time is generated only when DTE=1 and DT[6:0]
PWM output signals will be at their reset state.
2 Half Bridge driving is possible only if polarities of PWM0 and PWM1 are not inverted, i.e. if
OP0 and OP1 are not set. If polarity is inverted, overlapping PWM0/PWM1 signals will be generated.
3 Dead time generation does not work at 1ms timebase.
≠ 0.
If DTE is set and DT[6:0]=0,
82/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
DCR0+1 ATR1DCR0
T
dt
T
dt
Tdt = DT[6:0] x T
counter1
PWM 0
PWM 1
CNTR1
CK_CNTR1
T
counter1
OVF
PWM 0
PWM 1
if DTE = 0
if DTE = 1
counter = DCR0
counter = DCR1
Figure 42. Dead time generation
In the above example, when the DTE bit is set:
PWM goes low at DCR0 match and goes high at ATR1+Tdt
PWM1 goes high at DCR0+Tdt and goes low at ATR match.
With this programmable delay (Tdt), the PWM0 and PWM1 signals which are generated are not overlapped.
Break function
The break function can be used to perform an emergency shutdown of the application being driven by the PWM signals.
The break function is activated by the external BREAK pin. This can be selected by using the BRSEL bit in BREAKCR register. In order to use the break function it must be previously enabled by software setting the BPEN bit in the BREAKCR register.
The Break active level can be programmed by the BREDGE bit in the BREAKCR register. When an active level is detected on the BREAK pin, the BA bit is set and the break function is activated. In this case, the PWM signals are forced to BREAK value if respective OEx bit is set in PWMCR register.
Software can set the BA bit to activate the break function without using the BREAK pin. The BREN1 and BREN2 bits in the BREAKEN register are used to enable the break activation on the 2 counters respectively. In Dual Timer mode, the break for PWM2 and PWM3 is enabled by the BREN2 bit. In Single timer mode, the BREN1 bit enables the break for all PWM channels.
Doc ID 13562 Rev 3 83/188
On-chip peripherals ST7LITE49M
PWM0
PWM1
PWM2
PWM3
PWM0 PWM1
PWM2
PWM3
BREAKCR register
BREAK pin
(Inverters)
PWM0PWM1PWM2PWM3BPENBA
Level Selection
BRSEL
BREDGE
BREAKCR register
ENCNTR2 bit
BREN1
BREN2
BREAKEN register
PWM0/1 Break Enable
PWM2/3 Break Enable
OEx
When a break function is activated (BA bit =1 and BREN1/BREN2 =1):
The break pattern (PWM[3:0] bits in the BREAKCR) is forced directly on the PWMx
output pins if respective OEx is set. (after the inverter).
The 12-bit PWM counter CNTR1 is put to its reset value, i.e. 00h (if BREN1 = 1).
The 12-bit PWM counter CNTR2 is put to its reset value,i.e. 00h (if BREN2 = 1).
ATR1, ATR2, preload and active DCRx are put to their reset values.
Counters stop counting.
When the break function is deactivated after applying the break (BA bit goes from 1 to 0 by software), Timer takes the control of PWM ports.
Figure 43. ST7LITE49M block diagram of break function
Note: 1 The output compare function is only available for DCRx values other than 0 (reset value).
84/188 Doc ID 13562 Rev 3
Output compare mode
To use this function, load a 12-bit value in the Preload DCRxH and DCRxL registers.
When the 12-bit upcounter CNTR1 reaches the value stored in the Active DCRxH and DCRxL registers, the CMPFx bit in the PWMxCSR register is set and an interrupt request is generated if the CMPIE bit is set.
In Single Timer mode the output compare function is performed only on CNTR1. The difference between both the modes is that, in Single timer mode, CNTR1 can be compared with any of the four DCR registers, and in Dual timer mode, CNTR1 is compared with DCR0 or DCR1 and CNTR2 is compared with DCR2 or DCR3.
2 Duty cycle registers are buffered internally. The CPU writes in Preload duty cycle registers
and these values are transferred in Active duty cycle registers after an overflow event if the corresponding transfer bit (TRANx bit) is set. Output compare is done by comparing these active DCRx values with the counters.
ST7LITE49M On-chip peripherals
DCRx
OUTPUT COMPARE CIRCUIT
COUNTER 1
(ATCSR)CMPIE
PRELOAD DUTY CYCLE REG0/1/2/3
ACTIVE DUTY CYCLE REGx
CNTR1
TRAN1 (ATCSR2)
OVF
(ATCSR)
CMPFx (PWMxCSR)
CMP
REQUESTINTERRUPT
ATCSR
CK0CK1ICIEICF
12-BIT AUTORELOAD REGISTER
12-BIT UPCOUNTER1
f
CPU
ATIC
12-BIT INPUT CAPTURE REGISTER
IC INTERRUPT
REQUEST
ATR1
ATICR
CNTR1
(1 ms
f
LTIMER
@ 8MHz)
timebase
OFF
Figure 44. Block diagram of output compare mode (single timer)
Input capture mode
The 12-bit ATICR register is used to latch the value of the 12-bit free running upcounter CNTR1 after a rising or falling edge is detected on the ATIC pin. When an Input Capture occurs, the ICF bit is set and the ATICR register contains the value of the free running upcounter. An IC interrupt is generated if the ICIE bit is set. The ICF bit is reset by reading the ATICRH/ATICRL register when the ICF bit is set. The ATICR is a read only register and always contains the free running upcounter value which corresponds to the most recent input capture. Any further input capture is inhibited while the ICF bit is set.
Figure 45. Block diagram of input capture mode
Doc ID 13562 Rev 3 85/188
On-chip peripherals ST7LITE49M
COUNTER1
t
01h
f
COUNTER
xxh
02h 03h 04h 05h 06h 07h
04h
ATIC PIN
ICF FLAG
INTERRUPT
08h 09h 0Ah
INTERRUPT
ATICR READ
09h
LT IC
AT IC
ICS
1
0
12-bit Input Capture register
OFF
f
cpu
f
LTI M ER
12-bit Upcounter1
12-bit AutoReload register
8-bit Input Capture register
8-bit Timebase Counter1
f
OSC/32
LTI CR
CNTR1
ATI CR
ATR 1
8 LSB bits
12 MSB bits
LITE TIMER
12-bit ARTIMER
20 cascaded bits
Figure 46. Input capture timing diagram
Long range input capture
Pulses that last more than 8 µs can be measured with an accuracy of 4 µs if f
equals 8
OSC
MHz in the following conditions:
The 12-bit AT4 timer is clocked by the Lite timer (RTC pulse: CK[1:0] = 01 in the ATCSR
register)
The ICS bit in the ATCSR2 register is set so that the LTIC pin is used to trigger the AT4
timer capture.
The signal to be captured is connected to LTIC pin
Input Capture registers LTICR, ATICRH and ATICRL are read
This configuration allows to cascade the Lite timer and the 12-bit AT4 timer to get a 20-bit input capture value. Refer to Figure 47.
Figure 47. Long range input capture block diagram
86/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
P decimal F9 LT1 LT2 1++()× 0.004ms×
decimal FFF N×()N ATICR2 ATICR1 1++()1ms×+
=
Since the input capture flags (ICF) for both timers (AT4 timer and LT timer) are set when signal transition occurs, software must mask one interrupt by clearing the corresponding ICIE bit before setting the ICS bit.
If the ICS bit changes (from 0 to 1 or from 1 to 0), a spurious transition might occur on the Input Capture signal because of different values on LTIC and ATIC. To avoid this situation, it is recommended to do as follows:
1. First, reset both ICIE bits.
2. Then set the ICS bit.
3. Reset both ICF bits.
4. And then set the ICIE bit of desired interrupt.
Computing a pulse length in long input capture mode is not straightforward since both timers are used. The following steps are required:
1. At the first input capture on the rising edge of the pulse, we assume that values in the registers are the following:
LTICR = LT1 – ATICRH = ATH1 – ATICRL = ATL1 – Hence ATICR1 [11:0] = ATH1 & ATL1. Refer to Figure 48 on page 88.
2. At the second input capture on the falling edge of the pulse, we assume that the values in the registers are as follows:
LTICR = LT2 – ATICRH = ATH2 – ATICRL = ATL2 – Hence ATICR2 [11:0] = ATH2 & ATL2.
Now pulse width P between first capture and second capture is given by:
where N is the number of overflows of 12-bit CNTR1.
Doc ID 13562 Rev 3 87/188
On-chip peripherals ST7LITE49M
F9h 00h LT1 F9h 00h LT2
ATH1 & ATL1
00h
0h
LT1
ATH1
LT2
ATH2
f
OSC/32
TB Counter1
CNTR1
LTIC
LTICR
ATICRH
00h
ATL1
ATL2
ATICRL
ATICR = ATICRH[3:0] & ATICRL[7:0]
_ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
ATH2 & ATL2
_ _ _
Figure 48. Long range input capture timing diagram
88/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
One-pulse mode
One-pulse mode can be used to control PWM2/3 signal with an external LTIC pin. This mode is available only in Dual Timer mode i.e. only for CNTR2, when the OP_EN bit in PWM3CSR register is set.
One-pulse mode is activated by the external LTIC input. The active edge of the LTIC pin is selected by the OPEDGE bit in the PWM3CSR register.
After getting the active edge of the LTIC pin, CNTR2 is reset (000h) and PWM3 is set to high. CNTR2 starts counting from 000h, when it reaches the active DCR3 value then PWM3 goes low. Till this time, any further transitions on the LTIC signal will have no effect. If there are LTIC transitions after CNTR2 reaches DCR3 value, CNTR2 is reset again and PWM3 goes high.
If there is no LTIC active edge, CNTR2 counts until it reaches the ATR2 value, then it is reset again and PWM3 is set to high. The counter again starts counting from 000h, when it reaches the active DCR3 value PWM3 goes low, the counter counts until it reaches ATR2, it resets and PWM3 is set to high and so on.
The same operation applies for PWM2, but in this case the comparison is done on DCR2. OP_EN and OPEDGE bits take effect on the fly and are not synchronized with Counter 2 overflow. The output bit OP2/3 can be used to inverse the polarity of PWM2/3 in one-pulse mode. The update of these bits (OP2/3) is synchronized with the counter 2 overflow, they will be updated if the TRAN2 bit is set.
The time taken from activation of LTIC input and CNTR2 reset is between 1 and 2 t cycles, that is, 125 ns to 250 ns (with 8-MHz f
CPU
).
CPU
Lite timer Input Capture interrupt should be disabled while 12-bit ARtimer is in One-pulse mode. This is to avoid spurious interrupts.
The priority of the various conditions for PWM3 is the following: Break > one-pulse mode with active LTIC edge > Forced overflow by s/w > one-pulse mode without active LTIC edge > normal PWM operation.
It is possible to update DCR2/3 and OP2/3 at the counter 2 reset, the update is synchronized with the counter reset. This is managed by the overflow interrupt which is generated if counter is reset either due to ATR match or active pulse at LTIC pin. DCR2/3 and OP2/3 update in one-pulse mode is performed dynamically using a software force update. DCR3 update in this mode is not synchronized with any event. That may lead to a longer next PWM3 cycle duration than expected just after the change.
In One-pulse mode ATR2 value must be greater than DCR2/3 value for PWM2/3. (opposite to normal PWM mode).
If there is an active edge on the LTIC pin after the counter has reset due to an ATR2 match, then the timer again gets reset and appears as modified Duty cycle depending on whether the new DCR value is less than or more than the previous value.
The TRAN2 bit should be set along with the FORCE2 bit with the same instruction after a write to the DCR register.
ATR2 value should be changed after an overflow in one-pulse mode to avoid any irregular PWM cycle.
When exiting from one-pulse mode, the OP_EN bit in the PWM3CSR register should be reset first and then the ENCNTR2 bit (if counter 2 must be stopped).
Doc ID 13562 Rev 3 89/188
On-chip peripherals ST7LITE49M
LTIC pin
Edge Selection
OPEDGE
PWM3CSR register
OP_EN
12-bit AutoReload register 2
12-bit Upcounter 2
12-bit Active DCR2/3
Generation
PWM
OP2/3
PWM2/3
OVF
ATR 2
CNTR2
LTI C
PWM2/3
000 DCR2/3
000 DCR2/3 ATR2
000
OVF
ATR2 DCR2/3
OVF
ATR2 DCR2/3
CNTR2
LTI C
PWM2/3
f
counter2
f
counter2
OP_EN=0
1)
OP_EN=1
Note 1: When OP_EN=0, LTIC edges are not taken into account as the timer runs in PWM mode.
How to enter One-pulse mode
The steps required to enter One-pulse mode are the following:
1. Load ATR2H/ATR2L with required value.
2. Load DCR3H/DCR3L for PWM3. ATR2 value must be greater than DCR3.
3. Set OP3 in PWM3CSR if polarity change is required.
4. Select CNTR2 by setting ENCNTR2 bit in ATCSR2.
5. Set TRAN2 bit in ATCSR2 to enable transfer.
6. "Wait for Overflow" by checking the OVF2 flag in ATCSR2.
7. Select counter clock using CK<1:0> bits in ATCSR.
8. Set OP_EN bit in PWM3CSR to enable one-pulse mode.
9. Enable PWM3 by OE3 bit of PWMCR.
The "Wait for Overflow" in step 6 can be replaced by a forced update.
Follow the same procedure for PWM2 with the bits corresponding to PWM2.
Note: When break is applied in One-pulse mode, CNTR2, DCR2/3 & ATR2 registers are reset. So,
these registers have to be initialized again when break is removed.
Figure 49. Block diagram of One-pulse mode
Figure 50. One-pulse mode and PWM timing diagram
90/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
CNTR2
LTI C
000
f
counter2
OP_EN=1
(DCR2/3)
old
(DCR2/3)
new
DCR2/3
FORCE2
TRAN2
FFF
(DCR3)
old
(DCR3)
new
ATR2 000
PWM2/3
extra PWM3 period due to DCR3 update dynamically in one-pulse mode.
000
FFF
ARRx
E04
E03
f
CNTRx
CNTRx
FORCEx
FORCE2
FORCE1
ATCSR2 register
Figure 51. Dynamic DCR2/3 update in One-pulse mode
Force update
In order not to wait for the counterx overflow to load the value into active DCRx registers, a programmable counter which when set, make the counters start with the overflow value, i.e. FFFh. After overflow, the counters start counting from their respective auto reload register values.
overflow is provided. For both counters, a separate bit is provided
x
These bits are FORCE1 and FORCE2 in the ATCSR2 register. FORCE1 is used to force an overflow on Counter 1 and, FORCE2 is used for Counter 2. These bits are set by software and reset by hardware after the respective counter overflow event has occurred.
This feature can be used at any time. All related features such as PWM generation, output compare, input capture, One-pulse (refer to Figure 51: Dynamic DCR2/3 update in One-
pulse mode) etc. can be used this way.
Figure 52. Force overflow timing diagram
Doc ID 13562 Rev 3 91/188
On-chip peripherals ST7LITE49M

11.2.4 Low power modes

Table 35. Effect of low power modes on autoreload timer
Mode Description
Wait No effect on AT timer
Halt AT timer halted.

11.2.5 Interrupts

Table 36. Description of interrupt events
Interrupt event
Overflow Event OVF1 OVIE1 Yes No Yes
AT4 IC Event ICF ICIE Yes No No
Overflow Event2 OVF2 OVIE2 Yes No No
Event
flag
Enable
control bit
Exit from
Wait
Exit from
Halt
Exit from
Active-halt
Note: The AT4 IC is connected to an interrupt vector. The OVF event is mapped on a separate
vector (see Interrupts chapter). They generate an interrupt if the enable bit is set in the ATCSR register and the interrupt mask in the CC register is reset (RIM instruction).

11.2.6 Register description

Timer control status register (ATCSR)
Reset value: 0x00 0000 (x0h)
7 0
0 ICF ICIE CK1 CK0 OVF1 OVFIE1 CMPIE
Read / Write
Bit 7 = Reserved
Bit 6 = ICF Input capture flag
This Bit is set by hardware and cleared by software by reading the ATICR register (a read access to ATICRH or ATICRL clears this flag). Writing to this bit does not change the bit value.
0: No input capture 1: An input capture has occurred
Bit 5 = ICIE IC interrupt enable
bit
This bit is set and cleared by software. 0: Input capture interrupt disabled
1: Input capture interrupt enabled
92/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
Bits 4:3 = CK[1:0] Counter clock selection
bits
These bits are set and cleared by software and cleared by hardware after a reset. they select the clock frequency of the counter.
Table 37. Counter clock selection
Counter clock selection CK1 CK0
OFF 0 0
selection forbidden 1 1
(1 ms timebase @ 8 MHz) 0 1
f
LT IM ER
f
CPU
10
Bit 2 = OVF1 Overflow flag
This bit is set by hardware and cleared by software by reading the ATCSR register. It indicates the transition of the counter1 CNTR1 from FFFh to ATR1 value.
0: No counter overflow occurred 1: Counter overflow occurred
Bit 1 = OVFIE1 Overflow interrupt enable
bit
This bit is read/write by software and cleared by hardware after a reset. 0: Overflow Interrupt Disabled. 1: Overflow Interrupt Enabled.
Bit 0 = CMPIE Compare interrupt enable
bit
This bit is read/write by software and cleared by hardware after a reset. it can be used to mask the interrupt generated when any of the cmpfx bit is set.
0: Output compare interrupt disabled. 1: Output compare interrupt enabled.
Counter register 1 high (CNTR1H)
Reset value: 0000 0000 (00h)
15 8
0000
CNTR1_11CNTR1_
Read only
10
CNTR1_9 CNTR1_8
Counter register 1 low (CNTR1L)
Reset value: 0000 0000 (00h)
7 0
CNTR1_7 CNTR1_6 CNTR1_5 CNTR1_4 CNTR1_3 CNTR1_2 CNTR1_1 CNTR1_0
Bits 15:12 = Reserved
Read only
Doc ID 13562 Rev 3 93/188
On-chip peripherals ST7LITE49M
Bits 11:0 = CNTR1[11:0] Counter value
This 12-bit register is read by software and cleared by hardware after a reset. The counter CNTR1 increments continuously as soon as a counter clock is selected. To obtain the 12-bit value, software should read the counter value in two consecutive read operations. As there is no latch, it is recommended to read LSB first. In this case, CNTR1H can be incremented between the two read operations and to have an accurate result when f
timer=fCPU
, special care must be taken when CNTR1L values
close to FFh are read. When a counter overflow occurs, the counter restarts from the value specified in the
ATR 1 re g i s t e r.
Autoreload register (ATR1H)
Reset value: 0000 0000 (00h)
15 8
0000ATR11ATR10ATR9ATR8
Read/write
Autoreload register (ATR1L)
Reset value: 0000 0000 (00h)
7 0
AT R7 AT R6 AT R 5 AT R 4 AT R 3 AT R2 ATR 1 AT R 0
Read/write
Bits 11:0 = ATR1[11:0] Autoreload register 1: This is a 12-bit register which is written by software. The ATR1 register value is automatically loaded into the upcounter CNTR1 when an overflow occurs. The register value is used to set the PWM frequency.
PWM output control register (PWMCR)
Reset value: 0000 0000 (00h)
7 0
0OE30OE20OE10OE0
Read/write
Bits 7:0 = OE[3:0] PWMx output enable bits
These bits are set and cleared by software and cleared by hardware after a reset. 0: PWM mode disabled. PWMx output alternate function disabled (I/O pin free for
general purpose I/O) 1: PWM mode enabled
94/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
PWMX control status register (PWMxCSR)
Reset value: 0000 0000 (00h)
7 0
0000OP_ENOPEDGEOPxCMPFx
Read/write
Bits 7:4= Reserved, must be kept cleared.
Bit 3 = OP_EN One-pulse mode enable
bit
This bit is read/write by software and cleared by hardware after a reset. This bit enables the One-pulse feature for PWM2 and PWM3 (only available for PWM3CSR)
0: One-pulse mode disable for PWM2/3. 1: One-pulse mode enable for PWM2/3.
Bit 2 = OPEDGE One-pulse edge selection
bit
This bit is read/write by software and cleared by hardware after a reset. This bit selects the polarity of the LTIC signal for One-pulse feature. This bit will be effective only if OP_EN bit is set (only available for PWM3CSR)
0: Falling edge of LTIC is selected. 1: Rising edge of LTIC is selected.
Bit 1 = OPx PWMx output polarity
bit
This bit is read/write by software and cleared by hardware after a reset. This bit selects the polarity of the PWM signal.
0: The PWM signal is not inverted. 1: The PWM signal is inverted.
Bit 0 = CMPFx PWMx compare flag
This bit is set by hardware and cleared by software by reading the PWMxCSR register. It indicates that the upcounter value matches the Active DCRx register value.
0: Upcounter value does not match DCRx value. 1: Upcounter value matches DCRx value.
Break control register (BREAKCR)
Reset value: 0000 0000 (00h)
7 0
0 BREDGE BA BPEN PWM3 PWM2 PWM1 PWM0
Read/write
Bit 7 = Reserved
Doc ID 13562 Rev 3 95/188
On-chip peripherals ST7LITE49M
Bit 6 = BREDGE Break input edge selection
bit
This bit is read/write by software and cleared by hardware after reset. It selects the active level of Break signal.
0: Low level of Break selected as active level 1: High level of Break selected as active level
Bit 5 = BA Break active
bit
This bit is read/write by software, cleared by hardware after reset and set by hardware when the active level defined by the BR1EDGE bit is applied on the BREAK pin. It activates/deactivates the Break function.
0: Break not active 1: Break active
Bit 4 = BPEN Break pin enable
bit
This bit is read/write by software and cleared by hardware after reset. 0: Break pin disabled 1: Break pin enabled
Bits 3:0 = PWM[3:0] Break pattern
bits
These bits are read/write by software and cleared by hardware after a reset. They are used to force the four PWMx output signals into a stable state when the Break function is active and corresponding OEx bit is set.
PWMx duty cycle register High (DCRxH)
Reset value: 0000 0000 (00h)
15 8
0000DCR11DCR10DCR9DCR8
Read/write
Bits 15:12 = Reserved.
PWMx duty cycle register Low (DCRxL)
Reset value: 0000 0000 (00h)
7 0
DCR7 DCR6 DCR5 DCR4 DCR3 DCR2 DCR1 DCR0
Read/write
Bits 11:0 = DCRx[11:0] PWMx duty cycle value: this 12-bit value is written by software. It defines the duty cycle of the corresponding PWM output signal (see Figure 40).
In PWM mode (OEx=1 in the PWMCR register) the DCR[11:0] bits define the duty cycle of the PWMx output signal (see Figure 40). In output compare mode, they define the value to be compared with the 12-bit upcounter value.
96/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
Input capture register high (ATICRH)
Reset value: 0000 0000 (00h)
15 8
0000ICR11ICR10ICR9ICR8
Read only
Bits 15:12 = Reserved.
Input capture register low (ATICRL)
Reset value: 0000 0000 (00h)
7 0
ICR7 ICR6 ICR5 ICR4 ICR3 ICR2 ICR1 ICR0
Read only
Bits 11:0 = ICR[11:0] Input capture data.
This is a 12-bit register which is readable by software and cleared by hardware after a reset. The ATICR register contains captured the value of the 12-bit CNTR1 register when a rising or falling edge occurs on the ATIC or LTIC pin (depending on ICS). Capture will only be performed when the ICF flag is cleared.
Break enable register (BREAKEN)
Reset value: 0000 0011 (03h)
7 0
000000BREN2BREN1
Read/write
Bits 7:2 = Reserved, must be kept cleared.
Bit 1 = BREN2 Break enable for counter 2 bit
This bit is read/write by software. It enables the break functionality for Counter2 if BA bit is set in BREAKCR. It controls PWM2/3 if ENCNTR2 bit is set.
0: No Break applied for CNTR2 1: Break applied for CNTR2
Bit 0 = BREN1 Break enable for counter 1
This bit is read/write by software. It enables the break functionality for Counter1. If BA bit is set, it controls PWM0/1 by default, and controls PWM2/3 also if ENCNTR2 bit is reset.
0: No Break applied for CNTR1 1: Break applied for CNTR1
bit
Doc ID 13562 Rev 3 97/188
On-chip peripherals ST7LITE49M
Timer control register 2 (ATCSR2)
Reset value: 0000 0011 (03h)
7 0
FORCE2 FORCE1 ICS OVFIE2 OVF2 ENCNTR2 TRAN2 TRAN1
Read/write
Bit 7 = FORCE2 Force counter 2 overflow
This bit is read/set by software. When set, it loads FFFh in the CNTR2 register. It is reset by hardware one CPU clock cycle after counter 2 overflow has occurred.
0 : No effect on CNTR2 1 : Loads FFFh in CNTR2
Note: This bit must not be reset by software
Bit 6 = FORCE1 Force counter 1 overflow
This bit is read/set by software. When set, it loads FFFh in CNTR1 register. It is reset by hardware one CPU clock cycle after counter 1 overflow has occurred.
0 : No effect on CNTR1 1 : Loads FFFh in CNTR1
Note: This bit must not be reset by software
Bit 5 = ICS Input capture shorted
bit
This bit is read/write by software. It allows the ATtimer CNTR1 to use the LTIC pin for long Input Capture.
0 : ATIC for CNTR1 input capture 1 : LTIC for CNTR1 input capture
Bit 4 = OVFIE2 Overflow interrupt 2 enable
This bit is read/write by software and controls the overflow interrupt of counter2. 0: Overflow interrupt disabled. 1: Overflow interrupt enabled.
bit
bit
bit
Bit 3 = OVF2 Overflow flag
This bit is set by hardware and cleared by software by reading the ATCSR2 register. It indicates the transition of the counter2 from FFFh to ATR2 value.
0: No counter overflow occurred 1: Counter overflow occurred
Bit 2 = ENCNTR2 Enable counter2 for PWM2/3
This bit is read/write by software and switches the PWM2/3 operation to the CNTR2 counter. If this bit is set, PWM2/3 will be generated using CNTR2.
0: PWM2/3 is generated using CNTR1. 1: PWM2/3 is generated using CNTR2.
Note: Counter 2 gets frozen when the ENCNTR2 bit is reset. When ENCNTR2 is set again, the
counter will restart from the last value.
98/188 Doc ID 13562 Rev 3
ST7LITE49M On-chip peripherals
Bit 1= TRAN2 Transfer enable2
bit
This bit is read/write by software, cleared by hardware after each completed transfer and set by hardware after reset. It controls the transfers on CNTR2.
It allows the value of the Preload DCRx registers to be transferred to the Active DCRx registers after the next overflow event.
The OPx bits are transferred to the shadow OPx bits in the same way.
Note: 1 DCR2/3 transfer will be controlled using this bit if ENCNTR2 bit is set.
2 This bit must not be reset by software
Bit 0 = TRAN1 Transfer enable 1
bit
This bit is read/write by software, cleared by hardware after each completed transfer and set by hardware after reset. It controls the transfers on CNTR1. It allows the value of the Preload DCRx registers to be transferred to the Active DCRx registers after the next overflow event.
The OPx bits are transferred to the shadow OPx bits in the same way.
Note: 1 DCR0,1 transfers are always controlled using this bit.
2 DCR2/3 transfer will be controlled using this bit if ENCNTR2 is reset.
3 This bit must not be reset by software
Autoreload register 2 (ATR2H)
Reset value: 0000 0000 (00h)
15 8
0000ATR11ATR10ATR9ATR8
Read/write
Autoreload register (ATR2L)
Reset value: 0000 0000 (00h)
7 0
AT R7 AT R 6 AT R 5 AT R 4 AT R3 AT R 2 AT R 1 AT R 0
Read/write
Bits 11:0 = ATR2[11:0] Autoreload register 2
This is a 12-bit register which is written by software. The ATR2 register value is automatically loaded into the upcounter CNTR2 when an overflow of CNTR2 occurs. The register value is used to set the PWM2/PWM3 frequency when ENCNTR2 is set.
Doc ID 13562 Rev 3 99/188
On-chip peripherals ST7LITE49M
Dead time generator register (DTGR)
Reset value: 0000 0000 (00h)
7 0
DTE DT6 DT5 DT4 DT3 DT2 DT1 DT0
Read/write
Bit 7 = DTE Dead time enable
bit
This bit is read/write by software. It enables a dead time generation on PWM0/PWM1. 0: No Dead time insertion. 1: Dead time insertion enabled.
Bits 6:0 = DT[6:0] Dead time value
These bits are read/write by software. They define the dead time inserted between PWM0/PWM1. Dead time is calculated as follows:
Dead Time = DT[6:0] x Tcounter1
Note: If DTE is set and DT[6:0]=0, PWM output signals will be at their reset state.
Table 38. Register mapping and reset values
Add.
(Hex)
0011
0012
0013
Register
label
ATCSR
Reset value
CNTR1H
Reset value
CNTR1L
Reset value
76543 210
0
0000
CNTR1_70CNTR1_8
ICF
0
0
ICIE
0
CNTR1_
7 0
CK1
0
CNTR1_60CNTR1_30CNTR1_20CNTR1_1
CK0
0
CNTR1_1
1 0
OVF1
0
CNTR1_1
0 0
CNTR1_9
OVFIE10CMPIE
0
CNTR1_
0
0
8 0
CNTR1_
0 0
0014
0015
0016
0017
0018
0019
001A
001B
100/188 Doc ID 13562 Rev 3
ATR1H
Reset value
ATR1 L
Reset value
PWMCR
Reset value
PWM0CSR
Reset value
PWM1CSR
Reset value
PWM2CSR
Reset value
PWM3CSR
Reset value
DCR0H
Reset value
0000
AT R7
0
0
00000 0
00000 0
00000 0
0000
0000
AT R6
0
OE3
0
AT R5
0
0
AT R 4
0
OE2
0
AT R1 1
0
AT R3
0
0
OP_EN0OPEDGE
DCR11
0
AT R1 0
0
AT R2
0
OE1
0
0
DCR100DCR90DCR8
AT R9
0
AT R1
0
0
OP0
0
OP1
0
OP2
0
OP3
0
AT R8
0
AT R0
0
OE0
0
CMPF0
0
CMPF1
0
CMPF2
0
CMPF3
0
0
Loading...