ST ST72324BK2, ST72324BK4, ST72324BK6, ST72324BJ2, ST72324BJ4 User Manual

...
8-bit MCU for automotive, 3.8 to 5.5V operating range with
LQFP44
10 x 10
LQFP32
7 x 7
8 to 32 Kbyte Flash/ROM, 10-bit ADC, 4 timers, SPI, SCI
Features
Memories
8 to 32 Kbyte dual voltage High Density Flash
384 bytes to 1 Kbyte RAM
HDFlash endurance: 100 cycles, data retention
20 years
Clock, reset and supply management
Enhanced low voltage supervisor (LVD) with
programmable reset thresholds and auxiliary voltage detector (AVD) with interrupt capability
Clock sources: crystal/ceramic resonator
oscillators, internal RC oscillator and external clock input
PLL for 2x frequency multiplication
4 power saving modes: Slow, Wait, Active Halt,
and Halt
ST72324Bxx-Auto
4 timers
Main clock controller with Real-time base,
Beep and Clock-out capabilities
Configurable watchdog timer
16-bit Timer A with 1 input capture, 1 output
compare, external clock input, PWM and pulse generator modes
16-bit Timer B with 2 input captures, 2 output
compares, PWM and pulse generator modes
2 communication interfaces
SPI synchronous serial interface
SCI asynchronous serial interface
Interrupt management
Nested interrupt controller
10 interrupt vectors plus TRAP and RESET
9/6 external interrupt lines (on 4 vectors)
Up to 32 I/O ports
32/24 multifunctional bidirectional I/O lines
22/17 alternate function lines
12/10 high sink outputs

Table 1. Device summary

Device Memory RAM (stack) Voltage range Temp. range Package
ST72324BK2-Auto Flash/ROM 8 Kbytes 384 (256) bytes
ST72324BK4-Auto Flash/ROM 16 Kbytes 512 (256) bytes
ST72324BK6-Auto Flash/ROM 32 Kbytes 1024 (256) bytes
ST72324BJ2-Auto Flash/ROM 8 Kbytes 384 (256) bytes
ST72324BJ4-Auto Flash/ROM 16 Kbytes 512 (256) bytes
ST72324BJ6-Auto Flash/ROM 32 Kbytes 1024 (256) bytes
1 analog peripheral (low current coupling)
10-bit ADC with up to 12 input ports
Instruction set
8-bit data manipulation
63 basic instructions
17 main addressing modes
8 x 8 Unsigned Multiply Instruction
Development tools
In-circuit testing capability
3.8 to 5.5V
up to
-40 to 125°C
LQFP32
7x7
LQFP44
10x10
July 2010 Doc ID13466 Rev 4 1/198
www.st.com
1
Contents ST72324B-Auto
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 ICP (in-circuit programming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 IAP (in-application programming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7.1 Flash Control/Status Register (FCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.1 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Index registers (X and Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.3 Program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.4 Condition Code register (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.5 Stack Pointer register (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 PLL (phase locked loop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Multi-oscillator (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3.1 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3.2 Crystal/ceramic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2/198 Doc ID13466 Rev 4
ST72324B-Auto Contents
6.3.3 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.1 Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5.1 LVD (low voltage detector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5.2 AVD (auxiliary voltage detector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5.3 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.6 SI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6.1 System integrity (SI) control/status register (SICSR) . . . . . . . . . . . . . . . 39
7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Masking and processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.1 Servicing pending interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.2 Different interrupt vector sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.3 Non-maskable sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.4 Maskable sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Interrupts and low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Concurrent and nested management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.5 Interrupt registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.5.1 CPU CC register interrupt bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.5.2 Interrupt software priority registers (ISPRx) . . . . . . . . . . . . . . . . . . . . . . 46
7.6 External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.6.1 I/O port interrupt sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.6.2 External interrupt control register (EICR) . . . . . . . . . . . . . . . . . . . . . . . . 49
8 Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2 Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3 Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4 Active Halt and Halt modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.4.1 Active Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.4.2 Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9 I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Doc ID13466 Rev 4 3/198
Contents ST72324B-Auto
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2.1 Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2.2 Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.3 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.3 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.5.1 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.1 Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.1.4 How to program the Watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.1.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.1.6 Hardware Watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.1.7 Using Halt mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . 68
10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.1.9 Control register (WDGCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.2 Main clock controller with real-time clock and beeper (MCC/RTC) . . . . . 69
10.2.1 Programmable CPU clock prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.2.2 Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.2.3 Real-time clock (RTC) timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.2.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.2.7 MCC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.3 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.3.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.3.6 Summary of timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4/198 Doc ID13466 Rev 4
ST72324B-Auto Contents
10.3.7 16-bit timer registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.4 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.4.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.4.4 Clock phase and clock polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.4.5 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.4.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.4.8 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.5 Serial communications interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.5.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.5.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.5.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.5.7 SCI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.6 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.6.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.6.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.6.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.6.6 ADC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.1 CPU addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.1.4 Indexed (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.1.5 Indirect (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
11.1.6 Indirect indexed (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
11.1.7 Relative mode (direct, indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
11.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Doc ID13466 Rev 4 5/198
Contents ST72324B-Auto
12 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.2.1 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.2.2 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.2.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
12.4 LVD/AVD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
12.4.1 Operating conditions with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
12.4.2 Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . 149
12.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
12.5.1 ROM current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
12.5.2 Flash current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.5.3 Supply and clock managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.5.4 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.6 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
12.6.1 General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
12.6.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
12.6.3 Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . 154
12.6.4 RC oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.6.5 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
12.7 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
12.7.1 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
12.7.2 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.8 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
12.8.1 Functional electromagnetic susceptibility (EMS) . . . . . . . . . . . . . . . . . 158
12.8.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.8.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 160
12.9 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.9.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.9.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6/198 Doc ID13466 Rev 4
ST72324B-Auto Contents
12.10 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.10.1 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.10.2 ICCSEL/VPP pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.11 Timer peripheral characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.11.1 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.12 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 169
12.12.1 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
12.13 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.13.1 Analog power supply and reference pins . . . . . . . . . . . . . . . . . . . . . . . 173
12.13.2 General PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12.13.3 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
13 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
13.1 LQFP44 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
13.2 LQFP32 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
13.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.4 Ecopack information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.5 Packaging for automatic handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
14 Device configuration and ordering information . . . . . . . . . . . . . . . . . 179
14.1 Flash devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
14.1.1 Flash configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
14.1.2 Flash ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
14.2 ROM device ordering information and transfer of customer code . . . . . 183
14.3 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
14.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
14.3.2 Evaluation tools and starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
14.3.3 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
14.3.4 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
14.3.5 Socket and emulator adapter information . . . . . . . . . . . . . . . . . . . . . . 188
14.4 ST7 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
15 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
15.1 All Flash and ROM devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
15.1.1 Safe connection of OSC1/OSC2 pins . . . . . . . . . . . . . . . . . . . . . . . . . 189
15.1.2 External interrupt missed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Doc ID13466 Rev 4 7/198
Contents ST72324B-Auto
15.1.3 Unexpected reset fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15.1.4 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . 191
15.1.5 16-bit timer PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.1.6 TIMD set simultaneously with OC interrupt . . . . . . . . . . . . . . . . . . . . . 192
15.1.7 SCI wrong break duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.2 8/16 Kbyte Flash devices only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.2.1 39-pulse ICC entry mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.2.2 Negative current injection on pin PB0 . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.3 8/16 Kbyte ROM devices only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.3.1 Readout protection with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.3.2 I/O Port A and F configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8/198 Doc ID13466 Rev 4
ST72324B-Auto List of tables
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Device pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3. Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. Sectors available in Flash devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 5. Flash control/status register address and reset value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Arithmetic management bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7. Software interrupt bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. Interrupt software priority selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 9. ST7 clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. Effect of low power modes on SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 11. AVD interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 12. SICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 13. Reset source flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 14. Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 15. CPU CC register interrupt bits description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 16. Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 17. ISPRx interrupt vector correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 18. Dedicated interrupt instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 19. EICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 20. Interrupt sensitivity - ei2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 21. Interrupt sensitivity - ei3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 22. Interrupt sensitivity - ei0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 23. Interrupt sensitivity - ei1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 24. Nested interrupts register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 25. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 26. MCC/RTC low power mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 27. DR register value and output pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 28. I/O port mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 29. I/O port configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 30. Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 31. I/O port interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 32. Port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 33. I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 34. Effect of lower power modes on Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 35. WDGCR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 36. Watchdog timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 37. Effect of low power modes on MCC/RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 38. MCC/RTC interrupt control/wake-up capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 39. MCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 40. Time base selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 41. MCCBCR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 42. Beep frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 43. Main clock controller register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 44. Input capture byte distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 45. Output compare byte distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 46. Effect of low power modes on 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 47. 16-bit timer interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 48. Summary of timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Doc ID13466 Rev 4 9/198
List of tables ST72324B-Auto
Table 49. CR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 50. CR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 51. CSR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 52. 16-bit timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 53. Effect of low power modes on SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 54. SPI interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 55. SPICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 56. SPI master mode SCK frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 57. SPICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 58. SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 59. Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 60. Effect of low power modes on SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 61. SCI interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 62. SCISR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 63. SCICR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 64. SCICR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 65. SCIBRR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 66. SCIERPR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 67. SCIETPR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 68. Baud rate selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 69. SCI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 70. Effect of low power modes on ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 71. ADCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 72. ADCDRH register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 73. ADCDRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 74. ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 75. Addressing mode groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 76. CPU addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 77. Inherent instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 78. Immediate instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 79. Instructions supporting direct, indexed, indirect and indirect indexed addressing modes 139
Table 80. Relative direct and indirect instructions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 81. Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 82. Instruction set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 83. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 84. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 85. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 86. Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 87. Operating conditions with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 88. AVD thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 89. ROM current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 90. Flash current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 91. Oscillators, PLL and LVD current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 92. On-chip peripherals current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 93. General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 94. External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 95. Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 96. OSCRANGE selection for typical resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 97. RC oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 98. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 99. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 100. Dual voltage HDFlash memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10/198 Doc ID13466 Rev 4
ST72324B-Auto List of tables
Table 101. EMS test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 102. EMI emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 103. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 104. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 105. General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 106. Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 107. Asynchronous RESET Table 108. ICCSEL/V
pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
PP
pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 109. 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 110. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 111. 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 112. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 113. 44-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 114. 32-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 115. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 116. Flash option bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 117. Option byte 0 bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 118. Option byte 1 bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 119. Package selection (OPT7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 120. STMicroelectronics development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 121. Suggested list of socket types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 122. Port A and F configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 123. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Doc ID13466 Rev 4 11/198
List of figures ST72324B-Auto
List of figures
Figure 1. Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. 44-pin LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. 32-pin LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5. Memory map and sector address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 6. Typical ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7. CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 8. Stack manipulation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 9. PLL block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 10. Clock, reset and supply block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 11. Reset sequence phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 12. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 13. RESET sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 14. Low voltage detector vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 15. Using the AVD to monitor V
Figure 16. Interrupt processing flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 17. Priority decision process flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 18. Concurrent interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 19. Nested interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 20. External interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 21. Power saving mode transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 22. Slow mode clock transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 23. Wait mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 24. Active Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 25. Active Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 26. HALT timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 27. Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 28. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 29. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 30. Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 31. Approximate timeout duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 32. Exact timeout duration (t
Figure 33. Main clock controller (MCC/RTC) block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 34. Timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 35. 16-bit read sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 36. Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 37. Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 38. Counter timing diagram, internal clock divided by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 39. Input capture block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 40. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 41. Output compare block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 42. Output compare timing diagram, f Figure 43. Output compare timing diagram, f
Figure 44. One pulse mode cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 45. One Pulse mode timing example(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 46. Pulse width modulation mode timing example with two output compare functions(1)(2) . . 86
Figure 47. Pulse width modulation cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 48. Serial peripheral interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DD
min
and t
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
max
TIMER TIMER
= f = f
/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CPU
/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CPU
12/198 Doc ID13466 Rev 4
ST72324B-Auto List of figures
Figure 49. Single master/single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 50. Generic SS timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 51. Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 52. Data clock timing diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 53. Clearing the WCOL bit (Write Collision flag) software sequence . . . . . . . . . . . . . . . . . . . 104
Figure 54. Single master/multiple slave configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 55. SCI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 56. Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 57. SCI baud rate and extended prescaler block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 58. Bit sampling in Reception mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 59. ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 60. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 61. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 62. f
max versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
CPU
Figure 63. Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 64. Typical application with a crystal or ceramic resonator (8/16 Kbyte Flash
and ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 65. Typical application with a crystal or ceramic resonator (32 Kbyte Flash
and ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 66. Typical f
OSC(RCINT)
vs TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 67. Integrated PLL jitter vs signal frequency(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 68. Unused I/O pins configured as input(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 69. Typical I Figure 70. Typical V Figure 71. Typical V Figure 72. Typical V Figure 73. Typical V Figure 74. Typical V Figure 75. Typical V Figure 76. RESET Figure 77. RESET Figure 78. Two typical applications with ICCSEL/V
vs. VDD with V
PU
at VDD = 5V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
OL
at V
OL
at VDD = 5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
OH
vs. VDD (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
OL
vs. VDD (high-sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
OL
vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
OH
= 5V (high-sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
DD
= VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
IN
pin protection when LVD is enabled(1)(2)(3)(4)(5)(6) . . . . . . . . . . . . . . . . . . . . . 167
pin protection when LVD is disabled(1)(2)(3)(4) . . . . . . . . . . . . . . . . . . . . . . . . . 167
pin(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
PP
Figure 79. SPI slave timing diagram with CPHA = 0(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 80. SPI slave timing diagram with CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 81. SPI master timing diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 82. R Figure 83. Recommended C
max. vs f
AIN
ADC
with C
and R
AIN
= 0pF(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
AIN
values(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
AIN
Figure 84. Typical A/D converter application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 85. Power supply filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 86. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 87. 44-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 88. 32-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 89. pin 1 orientation in tape and reel conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 90. ST72F324Bxx-Auto Flash commercial product structure . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 91. ST72P324Bxx-Auto FastROM commercial product structure. . . . . . . . . . . . . . . . . . . . . . 184
Figure 92. ST72324Bxx-Auto ROM commercial product structure . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Doc ID13466 Rev 4 13/198
Description ST72324B-Auto
8-bit CORE
ALU
ADDRESS AND DATA BUS
OSC1
V
PP
CONTROL
Program
(8 - 32 Kbytes)
V
DD
RESET
PORT F
PF7:6, 4, 2:0
TIMER A
BEEP
PORT A
RAM
(384 - 1024 bytes)
PORT C
10-bit ADC
V
AREF
V
SSA
PORT B
PB4:0
PORT E
PE1:0
(2 bits)
SCI
TIMER B
PA7:3
(5 bits on J devices)
PORT D
PD5:0
SPI
PC7:0
(8 bits)
V
SS
WATCHDOG
OSC
LV D
OSC2
memory
MCC/RTC/BEEP
(4 bits on K devices)
(5 bits on J devices) (3 bits on K devices)
(6 bits on J devices)
(2 bits on K devices)
(6 bits on J devices)
(5 bits on K devices)

1 Description

The ST72324B-Auto devices are members of the ST7 microcontroller family designed for mid-range automotive applications running from 3.8 to 5.5V. Different package options offer up to 32 I/O pins.
All devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set and are available with Flash or ROM program memory. The ST7 family architecture offers both power and flexibility to software developers, enabling the design of highly efficient and compact application code.
The on-chip peripherals include an A/D converter, two general purpose timers, an SPI interface and an SCI interface. For power economy, the microcontroller can switch dynamically into, Slow, Wait, Active Halt or Halt mode when the application is in idle or stand-by state.

Figure 1. Device block diagram

14/198 Doc ID13466 Rev 4
Typical applications include
all types of car body applications such as window lift, DC motor control, rain sensors
safety microcontroller in airbag and engine management applications
auxiliary functions in car radios
ST72324B-Auto Pin description
MCO/AIN8/PF0
BEEP/(HS) PF1
(HS) PF2
OCMP1_A/AIN10/PF4
ICAP1_A/(HS) PF6
EXTCLK_A/(HS) PF7
V
DD_0
V
SS_0
AIN5/PD5
V
AREF
V
SSA
44 43 42 41 40 39 38 37 36 35 34
33 32 31 30 29 28 27 26 25 24 23
12 13 14 15 16 17 18 19 20 21 22
1 2 3 4 5 6 7 8 9 10 11
ei2
ei3
ei0
ei1
PB3
(HS) PB4 AIN0/PD0 AIN1/PD1 AIN2/PD2 AIN3/PD3 AIN4/PD4
RDI / PE1
PB0 PB1
PB2
PC6/SCK/ICCCLK PC5/MOSI/AIN14 PC4 / MISO/ICCDATA PC3 (HS)/ICAP1_B PC2 (HS)/ICAP2_B PC1/OCMP1_B/AIN13 PC0/OCMP2_B/AIN12
V
SS_1
V
DD_1
PA3 ( HS) PC7/SS
/AIN15
V
SS
_
2
RESET
V
PP
/ICCSEL
PA7 ( HS)
PA6 ( HS)
PA5 ( HS)
PA4 ( HS)
PE0/TDO
V
DD
_
2
OSC1
OSC2
eix associated external interrupt vector
(HS) 20mA high sink capability
ICCDATA/MISO/PC4
AIN14/MOSI/PC5
ICCCLK/SCK/PC6
AIN15/SS
/PC7
(HS) PA3
AIN13/OCMP1_B/PC1
ICAP2_B/(HS) PC2
ICAP1_B/(HS) PC3
32 31 30 29 28 27 26 25
24 23 22 21 20 19 18 17
9 10111213141516
1 2 3 4 5 6 7 8
ei1
ei3
ei0
OCMP1_A/AIN10/PF4
ICAP1_A/(HS) PF6
EXTCLK_A/(HS) PF7
AIN12/OCMP2_B/PC0
V
AREF
V
SSA
MCO/AIN8/PF0
BEEP/(HS) PF1
V
PP
/ICCSEL PA7 ( HS) PA6 ( HS) PA4 ( HS)
OSC1 OSC2 V
SS_2
RESET
PB0
PE1/RDI
PE0/TDO
V
DD
_
2
PD1/AIN1
PD0/AIN0
PB4 (HS)
PB3
ei2
eix associated external interrupt vector
(HS) 20mA high sink capability

2 Pin description

Figure 2. 44-pin LQFP package pinout

Figure 3. 32-pin LQFP package pinout

See Section 12: Electrical characteristics on page 145 for external pin connection guidelines.
Doc ID13466 Rev 4 15/198
Pin description ST72324B-Auto
Refer to Section 9: I/O ports on page 58 for more details on the software configuration of the I/O ports.
The reset configuration of each pin is shown in bold. This configuration is valid as long as the device is in reset state.

Table 2. Device pin description

No.
LQFP44
Pin
Name
LQFP32
Level Port
Type
Input
Output
float
Input Output
int
wpu
ana
OD
function
(after
reset)
PP
Main
6 30 PB4 (HS) I/O CTHS X ei3 X X Port B4
7 31 PD0/AIN0 I/O C
8 32 PD1/AIN1 I/O C
9-PD2/AIN2 I/OC
10 - PD3/AIN3 I/O C
11 - PD4/AIN4 I/O C
12 - PD5/AIN5 I/O C
13 1 V
14 2 V
AREF
SSA
(1)
(1)
15 3 PF0/MCO/AIN8 I/O C
16 4 PF1 (HS)/BEEP I/O C
17 - PF2 (HS) I/O C
18 5
PF4/OCMP1_A /AIN10
T
T
T
T
T
T
S Analog reference voltage for ADC
S Analog ground voltage
T
T
T
I/O C
T
X X X X X Port D0 ADC analog input 0
X X X X X Port D1 ADC analog input 1
X X X X X Port D2 ADC analog input 2
X X X X X Port D3 ADC analog input 3
X X X X X Port D4 ADC analog input 4
X X X X X Port D5 ADC analog input 5
X ei1 X X X Port F0
HS X ei1 X X Port F1 Beep signal output
HS X ei1 X X Port F2
X XXXXPort F4
Alternate function
Main clock out (f
CPU
Timer A output compare 1
ADC analog
)
input 8
ADC analog Input 10
19 6
20 7
21 - V
22 - V
23 8
24 9
25 10
PF6 (HS)/ICAP1_A
PF7 (HS)/EXTCLK_A
(1)
DD_0
(1)
SS_0
PC0/OCMP2_B /AIN12
PC1/OCMP1_B /AIN13
PC2 (HS)/ICAP2_B
I/O C
I/O C
S Digital main supply voltage
S Digital ground voltage
I/O C
I/O C
I/O C
HS X X X X Port F6 Timer A input capture 1
T
HS X XXXPort F7
T
T
T
T
X XXXXPort C0
X XXXXPort C1
HS X X X X Port C2 Timer B input capture 2
16/198 Doc ID13466 Rev 4
Timer A external clock source
Timer B output compare 2
Timer B output compare 1
ADC analog input 12
ADC analog input 13
ST72324B-Auto Pin description
Table 2. Device pin description (continued)
No.
LQFP44
26 11
27 12
28 13
29 14
Pin
Name
LQFP32
PC3 (HS)/ICAP1_B
PC4/MISO/ICCD ATA
PC5/MOSI /AIN14
PC6/SCK /ICCCLK
Level Port
Type
Input
Output
I/O C
I/O C
I/O C
I/O C
HS X X X X Port C3 Timer B input capture 1
T
T
T
T
X XXXPort C4
X XXXXPort C5
X XXXPort C6
Input Output
int
wpu
float
ana
OD
function
(after
reset)
PP
Main
SPI master in/slave out data
SPI master out/slave in data
SPI serial clock
SPI slave
30 15 PC7/SS
/AIN15 I/O C
T
X XXXXPort C7
select (active low)
31 16 PA3 (HS) I/O C
32 - V
33 - V
DD_1
SS_1
(1)
(1)
S Digital main supply voltage
S Digital ground voltage
34 17 PA4 (HS) I/O C
35 - PA5 (HS) I/O C
36 18 PA6 (HS) I/O C
37 19 PA7 (HS) I/O CTHS X TPort A7
HS X ei0 X X Port A3
T
HS X XXXPort A4
T
HS X XXXPort A5
T
HS X TPort A6
T
(2)
(2)
Must be tied low. In the Flash programming mode, this pin acts as
38 20 V
/ICCSEL I
PP
the programming voltage input V See Section 12.10.2 for more details. High voltage must not be applied to ROM devices.
39 21 RESET
40 22 V
SS_2
41 23 OSC2
42 24 OSC1
43 25 V
DD_2
(1)
(3)
(3)
(1)
I/O C
S Digital ground voltage
O Resonator oscillator inverter output
I
S Digital main supply voltage
44 26 PE0/TDO I/O C
127PE1/RDI I/OC
T
T
T
X X X X Port E0 SCI transmit data out
X X X X Port E1 SCI receive data in
Top priority non-maskable interrupt
External clock input or resonator oscillator inverter input
Alternate function
ICC data input
ADC analog input 14
ICC clock output
ADC analog input 15
PP
.
Doc ID13466 Rev 4 17/198
Pin description ST72324B-Auto
Table 2. Device pin description (continued)
No.
LQFP44
Pin
Name
LQFP32
Level Port
Type
Input
Output
float
Input Output
int
wpu
ana
OD
function
(after
reset)
PP
Main
Alternate function
Caution: Negative
current injection not
228PB0 I/OC
3-PB1 I/OC
4-PB2 I/OC
529PB3 I/OC
1. It is mandatory to connect all available VDD and V
2. On the chip, each I/O port has eight pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption..
3. OSC1 and OSC2 pins connect a crystal/ceramic resonator, or an external source to the on-chip oscillator; see Section 1:
Description and Section 12.6: Clock and timing characteristics or more details.
4. For details refer to Section 12.9.1 on page 162
T
T
T
T
X ei2 X X Port B0
X ei2 X X Port B1
X ei2 X X Port B2
X ei2 X X Port B3
pins to the supply voltage and all VSS and V
REF
allowed on this pin on 8/16 Kbyte Flash devices.
(4)
pins to ground.
SSA
Legend / Abbreviations for Tabl e 2:
Type:I = input, O = output, S = supply Input level: A = Dedicated analog input In/Output level: C = CMOS 0.3V
DD
/0.7
DD
CT = CMOS 0.3VDD/0.7DD with input trigger Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration:
Input:float = floating, wpu = weak pull-up, int = interrupt Output:OD = open drain
(b)
, PP = push-pull
(a)
, ana = analog ports
a. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up column
(wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.
b. In the open drain output column, ‘T’ defines a true open drain I/O (P-Buffer and protection diode to V
implemented). See Section 9: I/O ports and Section 12.9: I/O port pin characteristics for more details.
18/198 Doc ID13466 Rev 4
are not
DD
ST72324B-Auto Register and memory map
0000h
RAM
Program memory
(32, 16 or 8 Kbytes)
Interrupt and reset vectors
HW registers
0080h
007Fh
7FFFh
(see Tabl e 3)
8000h
FFDFh FFE0h
FFFFh
(see Table 25)
0480h
Reserved
047Fh
Short addressing RAM (zero page)
256 bytes stack
16-bit addressing
RAM
0100h
01FFh
027Fh
0080h
0200h
00FFh
32 Kbytes
8000h
FFFFh
or 047Fh
16 Kbytes
C000h
(1024, 512 or 384 bytes)
8 Kbytes
E000h

3 Register and memory map

As shown in Figure 4 the MCU is capable of addressing 64 Kbytes of memories and I/O registers.
The available memory locations consist of 128 bytes of register locations, up to 1024 bytes of RAM and up to 32 Kbytes of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.
The highest address bytes contain the user reset and interrupt vectors.
Caution: Never access memory locations marked as ‘Reserved’. Accessing a reserved area can
have unpredictable effects on the device.

Figure 4. Memory map

Table 3. Hardware register map

Address Block Register label Register name
0000h 0001h 0002h
0003h 0004h 0005h
0006h 0007h 0008h
0009h 000Ah 000Bh
000Ch 000Dh
000Eh
Por t A
Por t B
Por t C
Por t D
Por t E
(2)
(1)
(1)
(1)
PA DR PADDR PA OR
PBDR PBDDR PBOR
PCDR PCDDR PCOR
PDADR PDDDR PDOR
PEDR PEDDR PEOR
Port A data register Port A data direction register Port A option register
Port B data register Port B data direction register Port B option register
Port C data register Port C data direction register Port C option register
Port D data register Port D data direction register Port D option register
Port E data register Port E data direction register Port E option register
Reset
status
00h
00h 00h
00h
00h 00h
00h
00h 00h
00h
00h 00h
00h
00h 00h
(3)
(2)
(2)
(2)
(2)
(1)
Remarks
R/W R/W R/W
R/W R/W R/W
R/W R/W R/W
R/W R/W R/W
R/W R/W R/W
(1)
(1) (1)
Doc ID13466 Rev 4 19/198
Register and memory map ST72324B-Auto
Table 3. Hardware register map (continued)
Address Block Register label Register name
000Fh 0010h 0011h
0012h to
0020h
0021h 0022h 0023h
0024h 0025h 0026h 0027h
Por t F
SPI
ITC
(1)
PFDR PFDDR PFOR
SPIDR SPICR SPICSR
ISPR0 ISPR1 ISPR2 ISPR3
Port F data register Port F data direction register Port F option register
Reserved area (15 bytes)
SPI data I/O register SPI control register SPI control/status register
Interrupt software priority register 0 Interrupt software priority register 1 Interrupt software priority register 2 Interrupt software priority register 3
Reset
status
00h
00h 00h
xxh 0xh 00h
FFh FFh FFh FFh
(1)
(2)
0028h EICR External interrupt control register 00h R/W
0029h Flash FCSR Flash control/status register 00h R/W
002Ah Watchdog WDGCR Watchdog control register 7Fh R/W
002Bh SI SICSR System integrity control/status register 000x 000xb R/W
002Ch 002Dh
002Eh to
0030h
MCC
MCCSR MCCBCR
Main clock control/status register Main clock controller: beep control register
Reserved area (3 bytes)
00h 00h
Remarks
R/W R/W R/W
R/W R/W R/W
R/W R/W R/W R/W
R/W R/W
(1)
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah
003Bh 003Ch 003Dh
003Eh
003Fh
Timer A
TACR2 TACR1
TACS R TA IC 1 H R TA IC 1 L R TAOC 1 H R TAOC1LR TACHR TACL R TAACHR TA AC L R TA IC 2 H R TA IC 2 L R TAOC 2 H R TAOC2LR
Timer A control register 2 Timer A control register 1 Timer A control/status register Timer A input capture 1 high register Timer A input capture 1 low register Timer A output compare 1 high register Timer A output compare 1 low register Timer A counter high register Timer A counter low register Timer A alternate counter high register Timer A alternate counter low register Timer A input capture 2 high register Timer A input capture 2 low register Timer A output compare 2 high register Timer A output compare 2 low register
0040h Reserved area (1 byte)
00h 00h
xxxx x0xxb
xxh xxh 80h 00h
FFh FCh FFh FCh
xxh
xxh
80h
00h
R/W R/W R/W Read only Read only R/W R/W Read only Read only Read only Read only Read only Read only R/W R/W
20/198 Doc ID13466 Rev 4
ST72324B-Auto Register and memory map
Table 3. Hardware register map (continued)
Address Block Register label Register name
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah
004Bh 004Ch 004Dh
004Eh
004Fh
0050h
0051h
0052h
0053h
0054h
0055h
0056h
0057h
Timer B
SCI
TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR
SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR
SCIETPR
Timer B control register 2 Timer B control register 1 Timer B control/status register Timer B input capture 1 high register Timer B input capture 1 low register Timer B output compare 1 high register Timer B output compare 1 low register Timer B counter high register Timer B counter low register Timer B alternate counter high register Timer B alternate counter low register Timer B input capture 2 high register Timer B input capture 2 low register Timer B output compare 2 high register Timer B output compare 2 low register
SCI status register SCI data register SCI baud rate register SCI control register 1 SCI control register 2 SCI extended receive prescaler register Reserved area SCI extended transmit prescaler register
Reset
(1)
status
00h 00h
xxxx x0xxb
xxh xxh 80h
00h FFh FCh FFh FCh
xxh
xxh
80h
00h
C0h
xxh
00h
x000 0000b
00h
00h
---
00h
Remarks
R/W R/W R/W Read only Read only R/W R/W Read only Read only Read only Read only Read only Read only R/W R/W
Read only R/W R/W R/W R/W R/W
R/W
(1)
0058h to
006Fh
0070h 0071h 0072h
ADC
ADCCSR ADCDRH ADCDRL
Control/status register Data high register Data low register
0073h 007Fh
1. Legend: x = undefined, R/W = read/write.
2. The bits associated with unavailable pins must always keep their reset value.
3. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.
Reserved area (24 bytes)
Reserved area (13 bytes)
00h 00h 00h
R/W Read only Read only
Doc ID13466 Rev 4 21/198
Flash program memory ST72324B-Auto

4 Flash program memory

4.1 Introduction

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a byte-by­byte basis using an external V
The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).
The array matrix organization allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main features

3 Flash programming modes:
Insertion in a programming tool. In this mode, all sectors including option bytes
can be programmed or erased.
ICP (in-circuit programming). In this mode, all sectors including option bytes can
be programmed or erased without removing the device from the application board.
IAP (in-application programming). In this mode, all sectors, except Sector 0, can
be programmed or erased without removing the device from the application board and while the application is running.
ICT (in-circuit testing) for downloading and executing user application test patterns in
RAM
Readout protection
Register Access Security System (RASS) to prevent accidental programming or
erasing
supply.
PP

4.3 Structure

The Flash memory is organized in sectors and can be used for both code and data storage.
Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see unnecessary erasing of the whole Flash memory when only a partial erasing is required.
The first two sectors have a fixed size of 4 Kbytes (see Figure 5). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

Table 4. Sectors available in Flash devices

Flash size (bytes) Available sectors
22/198 Doc ID13466 Rev 4
Ta ble 4). Each of these sectors can be erased independently to avoid
4K Sector 0
8K Sectors 0, 1
>8K Sectors 0, 1, 2
ST72324B-Auto Flash program memory
4Kbytes
4Kbytes
Sector 1
Sector 0
Sector 2
8K 16K
32K
Flash
FFFFh
EFFFh
DFFFh
7FFFh
24 Kbytes
memory size
8Kbytes
BFFFh

4.3.1 Readout protection

Readout protection, when selected, provides a protection against program memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.
In Flash devices, this protection is removed by reprogramming the option. In this case, the entire program memory is first automatically erased.
Readout protection selection depends on the device type:
In Flash devices it is enabled and removed through the FMP_R bit in the option byte.
In ROM devices it is enabled by mask option specified in the option list.
Figure 5. Memory map and sector address

4.4 ICC interface

ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see
Figure 6). These pins are:
RESET: device reset
V
ICCCLK: ICC output serial clock pin
ICCDATA: ICC input/output serial data pin
ICCSEL/V
OSC1 (or OSCIN): main clock input for external source (optional)
V
: device power supply ground
SS
: programming voltage
PP
: application board power supply (optional, see Figure 6, Note 3).
DD
Doc ID13466 Rev 4 23/198
Flash program memory ST72324B-Auto
ICC connector
ICCDATA
ICCCLK
RESET
V
DD
HE10 connector type
Application power supply
1
246810
975 3
Programming tool
ICC connector
Application board
ICC cable
(See note 3)
10k
V
SS
ICCSEL/VPP
ST7
OSC1
OSC2
Mandatory for
See note 1
See note 2
Application
reset source
Application
I/O
(see note 4)
8/16 Kbyte Flash devices

Figure 6. Typical ICC interface

1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the programming tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values.
2. During the ICC session, the programming tool must control the RESET between the programming tool and the application reset circuit if it drives more than 5mA at high level (PUSH-pull output or pull-up resistor <1K). A schottky diode can be used to isolate the application reset circuit in this case. When using a classical RC network with R>1K or a reset management IC with open drain output and pull-up resistor >1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.
3. The use of Pin 7 of the ICC connector depends on the programming tool architecture. This pin must be connected when using most ST programming tools (it is used to monitor the application power supply). Please refer to the programming tool manual.
4. Pin 9 has to be connected to the OSC1 (OSCIN) pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi­oscillator capability need to have OSC2 grounded in this case.
pin. This can lead to conflicts
Caution: External clock ICC entry mode is mandatory in ST72F324B 8/16 Kbyte Flash devices. In
this case pin 9 must be connected to the OSC1 (OSCIN) pin of the ST7 and OSC2 must be grounded. 32 Kbyte Flash devices may use external clock or application clock ICC entry mode.

4.5 ICP (in-circuit programming)

To perform ICP the microcontroller must be switched to ICC (in-circuit communication) mode by an external controller or programming tool.
Depending on the ICP code downloaded in RAM, Flash memory programming can be fully
24/198 Doc ID13466 Rev 4
customized (number of bytes to program, program locations, or selection serial communication interface for downloading).
When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see to the device pinout description.
Figure 6). For more details on the pin locations, refer
ST72324B-Auto Flash program memory

4.6 IAP (in-application programming)

This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool).
This mode is fully controlled by user software. This allows it to be adapted to the user application, (such as user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored). For example, it is possible to download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation.

4.7 Related documentation

For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming Reference Manual and to the ST7 ICC Protocol Reference Manual

4.7.1 Flash Control/Status Register (FCSR)

This register is reserved for use by programming tool software. It controls the Flash programming and erasing operations.
FCSR Reset value:0000 0000 (00h)
76543210
.
00000000
R/W R/W R/W R/W R/W R/W R/W R/W
Table 5. Flash control/status register address and reset value
Address (Hex) Register label 7 6 5 4 3 2 1 0
0029h FCSR reset value 0 0 0 0 0 0 0 0
Doc ID13466 Rev 4 25/198
Central processing unit (CPU) ST72324B-Auto
Accumulator
X index register
Y index register
Stack pointer
Condition code register
Program counter
70
1C1I1HI0NZ
Reset value = reset vector @ FFFEh-FFFFh
70
70
70
0
7
15 8
PCH
PCL
15
87 0
Reset value = stack higher address
Reset value = 1 X11X1XX
Reset value = XXh
Reset value = XXh
Reset value = XXh
X = undefined value

5 Central processing unit (CPU)

5.1 Introduction

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8­bit data manipulation.

5.2 Main features

Enable executing 63 basic instructions
Fast 8-bit by 8-bit multiply
17 main addressing modes (with indirect addressing mode)
Two 8-bit index registers
16-bit stack pointer
Low power Halt and Wait modes
Priority maskable hardware interrupts
Non-maskable software/hardware interrupts

5.3 CPU registers

The six CPU registers shown in Figure 7 are not present in the memory mapping and are accessed by specific instructions.

Figure 7. CPU registers

26/198 Doc ID13466 Rev 4
ST72324B-Auto Central processing unit (CPU)

5.3.1 Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

5.3.2 Index registers (X and Y)

These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)
The Y register is not affected by the interrupt automatic procedures.

5.3.3 Program counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

5.3.4 Condition Code register (CC)

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions. These bits can be individually tested and/or controlled by specific instructions.
CC Reset value: 111x1xxx
76543210
11I1HI0NZC
R/W R/W R/W R/W R/W R/W R/W R/W
Table 6. Arithmetic management bits
BIt Name Function
Half carry
This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same
4H
2N
instructions. 0: No half carry has occurred. 1: A half carry has occurred. This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.
Negative
This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It is a copy of the result 7th bit. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative (that is, the most significant bit is a logic
1. This bit is accessed by the JRMI and JRPL instructions.
Doc ID13466 Rev 4 27/198
Central processing unit (CPU) ST72324B-Auto
Table 6. Arithmetic management bits (continued)
BIt Name Function
Zero (Arithmetic Management bit)
This bit is set and cleared by hardware. This bit indicates that the result of the last
1Z
0C
Table 7. Software interrupt bits
BIt Name Function
5I1
3I0
arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from zero. 1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test instructions.
Carry/borrow
This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred. This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the ‘bit test and branch’, shift and rotate instructions.
Software Interrupt Priority 1
The combination of the I1 and I0 bits determines the current interrupt software priority (see Ta b le 8).
Software Interrupt Priority 0
The combination of the I1 and I0 bits determines the current interrupt software priority (see Ta b le 8).
Table 8. Interrupt software priority selection
Interrupt software priority Level I1 I0
Level 0 (main)
Low
10
Level 1 01
Level 2 00
Level 3 (= interrupt disable) 1 1
High
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx). They can be also set/cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.
See Section 7: Interrupts on page 41 for more details.
28/198 Doc ID13466 Rev 4
ST72324B-Auto Central processing unit (CPU)

5.3.5 Stack Pointer register (SP)

SP Reset value: 01 FFh
1514131211109876543210
00000001SP7SP6SP5SP4SP3SP2SP1SP0
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see
Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.
The least significant byte of the Stack Pointer (called S) can be directly accessed by an LD instruction.
Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit,
without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.
Figure 8).
The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in
Figure 8.
When an interrupt is received, the SP is decremented and the context is pushed on the
stack.
On return from interrupt, the SP is incremented and the context is popped from the
stack.
A subroutine call occupies two locations and an interrupt five locations in the stack area.
Doc ID13466 Rev 4 29/198
Central processing unit (CPU) ST72324B-Auto
PCH PCL
SP
PCH PCL
SP
PCL
PCH
X
A
CC
PCH PCL
SP
PCL
PCH
X
A
CC
PCH PCL
SP
PCL
PCH
X
A
CC
PCH PCL
SP
SP
Y
Call
subroutine
Interrupt
event
Push Y Pop Y IRET
RET
or RSP
@ 01FFh
@ 0100h
Stack Higher Address = 01FFh Stack Lower Address =
0100h
Figure 8. Stack manipulation example
30/198 Doc ID13466 Rev 4
ST72324B-Auto Supply, reset and clock management
0
1
PLL option bit
PLL x 2
f
OSC2
/ 2
f
OSC

6 Supply, reset and clock management

6.1 Introduction

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in
For more details, refer to dedicated parametric section.
Main features
Optional Phase Locked Loop (PLL) for multiplying the frequency by 2 (not to be used
with internal RC oscillator in order to respect the max. operating frequency)
Multi-Oscillator clock management (MO)
5 crystal/ceramic resonator oscillators – 1 Internal RC oscillator
Reset Sequence Manager (RSM)
System Integrity management (SI)
Main supply low voltage detection (LVD) – Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main
supply
Figure 10.

6.2 PLL (phase locked loop)

If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the frequency by two to obtain an f byte. If the PLL is disabled, then f
OSC2
= f
Caution: The PLL is not recommended for applications where timing accuracy is required.
Furthermore, it must not be used with the internal RC oscillator.

Figure 9. PLL block diagram

of 4 to 8 MHz. The PLL is enabled by option
OSC2
/2.
OSC
Doc ID13466 Rev 4 31/198
Supply, reset and clock management ST72324B-Auto
Low Voltage
Detector
(LVD)
f
OSC2
Auxiliary Voltage
Detector
(AVD)
Multi-
Oscillator
(MO)
OSC1
RESET
V
SS
V
DD
Reset Sequence
Manager
(RSM)
OSC2
Main Clock
AVD Interrupt Request
Controller
PLL
System Integrity Management
Watchdog
SICSR
timer (WDG)
with Real-time
Clock (MCC/RTC)
AVD AVD
LV D
RF
IE
WDG
RF
f
OSC
(option)
0
F
f
CPU
00
0

Figure 10. Clock, reset and supply block diagram

6.3 Multi-oscillator (MO)

The main clock of the ST7 can be generated by three different source types coming from the multi-oscillator block:
an external source
4 crystal or ceramic resonator oscillators
an internal high frequency RC oscillator
Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in
Ta bl e 9. Refer to the electrical characteristics section for more details.
Caution: The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure
Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main oscillator may start and, in this configuration, could generate an f
clock frequency in excess of the allowed maximum (> 16 MHz.), putting the ST7 in an
OSC

6.3.1 External clock source

unsafe/undefined state. The product behavior must therefore be considered undefined when the OSC pins are left unconnected.
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.
32/198 Doc ID13466 Rev 4
ST72324B-Auto Supply, reset and clock management
OSC1 OSC2
External
ST7
source
OSC1 OSC2
Load
capacitors
ST7
C
L2
C
L1
OSC1 OSC2
ST7

6.3.2 Crystal/ceramic oscillators

This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of four oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer to
Section 14.1 on page
179 for more details on the frequency ranges). In this mode of the multi-oscillator, the
resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator.
These oscillators are not stopped during the reset phase to avoid losing time in the oscillator start-up phase.

6.3.3 Internal RC oscillator

This oscillator allows a low cost solution for the main clock of the ST7 using only an internal resistor and capacitor. Internal RC oscillator mode has the drawback of a lower frequency accuracy and should not be used in applications that require accurate timing.
In this mode, the two oscillator pins have to be tied to ground.
In order not to exceed the maximum operating frequency, the internal RC oscillator must not be used with the PLL.
Table 9. ST7 clock sources
Hardware configuration
External clockCrystal/ceramic resonatorsInternal RC oscillator
Doc ID13466 Rev 4 33/198
Supply, reset and clock management ST72324B-Auto
RESET
ACTIVE PHASE
INTERNAL RESET
256 or 4096 CLOCK CYCLES
FETCH
VECTOR

6.4 Reset sequence manager (RSM)

The reset sequence manager includes three reset sources as shown in Figure 12:
External reset source pulse
Internal LVD reset
Internal Watchdog reset
These sources act on the RESET pin and it is always kept low during the delay phase.
The reset service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map.
The basic reset sequence consists of three phases as shown in Figure 11:
Active Phase depending on the reset source
256 or 4096 CPU clock cycle delay (selected by option byte)
Reset vector fetch
Caution: When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is
not programmed. For this reason, it is recommended to keep the RESET pin in low state until programming mode is entered, in order to avoid unwanted behavior.
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilize and ensures that recovery has taken place from the reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application.
The reset vector fetch phase duration is two clock cycles.

Figure 11. Reset sequence phases

6.4.1 Asynchronous external RESET pin

The RESET pin is both an input and an open-drain output with integrated RON weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See the Electrical characteristics section for more details.
A reset signal originating from an external source must have a duration of at least t in order to be recognized (see MCU can enter reset state even in Halt mode.
Figure 13). This detection is asynchronous and therefore the
h(RSTL)in
34/198 Doc ID13466 Rev 4
ST72324B-Auto Supply, reset and clock management
RESET
R
ON
V
DD
Watchdog reset
LVD reset
Internal reset
Pulse
generator
Filter
Figure 12. Reset block diagram
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.
External power-on reset
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V the minimum level specified for the selected f
frequency.
OSC
A proper reset signal for a slow rising VDD supply can generally be provided by an external RC network connected to the
RESET pin.
is over
DD
Internal LVD reset
Two different reset sequences caused by the internal LVD circuitry can be distinguished:
Power-On reset
Voltage Drop reset
The device RESET pin acts as an output that is pulled low when VDD < V V
< V
DD
The LVD filters spikes on V
(falling edge) as shown in Figure 13.
IT-
larger than t
DD
to avoid parasitic resets.
g(VDD)
(rising edge) or
IT+
Internal Watchdog reset
The reset sequence generated by a internal Watchdog counter overflow is shown in
Figure 13.
Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least t
w(RSTL)out
.
Doc ID13466 Rev 4 35/198
Supply, reset and clock management ST72324B-Auto
V
DD
Run
RESET pin
External
Watchdog
Active phase
V
IT+(LVD)
V
IT-(LVD)
t
h(RSTL)in
Run
Watchdog underflow
t
w(RSTL)out
Run Run
reset
RESET source
External
reset
LVD
reset
Watchdog
reset
Internal reset (256 or 4096 T
CPU
)
Vector fetch
Active phase
Active
phase
Figure 13. RESET sequences

6.5 System integrity management (SI)

The system integrity management block contains the LVD and auxiliary voltage detector (AVD) functions. It is managed by the SICSR register.

6.5.1 LVD (low voltage detector)

The LVD function generates a static reset when the VDD supply voltage is below a V reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.
The V on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).
The LVD reset circuitry generates a reset when VDD is below:
V
V
The LVD function is illustrated in Figure 13.
The voltage threshold can be configured by option byte to be low, medium or high.
reference value for a voltage drop is lower than the V
IT-
when VDD is rising
IT+
when VDD is falling
IT-
IT-
reference value for power-
IT+
36/198 Doc ID13466 Rev 4
ST72324B-Auto Supply, reset and clock management
V
DD
V
IT+
RESET
V
IT-
V
hys
Provided the minimum VDD value (guaranteed for the oscillator frequency) is above V MCU can only be in two modes:
under full software control
in static safe reset
In these conditions, secure operation is always ensured for the application without the need for external reset hardware.
During an LVD reset, the RESET pin is held low, thus permitting the MCU to reset other devices.
Note: 1 The LVD allows the device to be used without any external reset circuitry.
2 If the medium or low thresholds are selected, the detection may occur outside the specified
operating voltage range. Below 3.8V, device operation is not guaranteed.
3 The LVD is an optional function which can be selected by option byte.
4 It is recommended to make sure that the V
supply voltage rises monotonously when the
DD
device is exiting from reset, to ensure the application functions properly.
Figure 14. Low voltage detector vs reset
IT-
, the

6.5.2 AVD (auxiliary voltage detector)

The AVD is based on an analog comparison between a V value and the V V
reference value for rising voltage in order to avoid parasitic detection (hysteresis).
IT+
main supply. The V
DD
reference value for falling voltage is lower than the
IT-
The output of the AVD comparator is directly readable by the application software through a real-time status bit (AVDF) in the SICSR register. This bit is read only.
Caution: The AVD function is active only if the LVD is enabled through the option byte (see
Section 14.1 on page 179).
Monitoring the VDD main supply
The AVD voltage threshold value is relative to the selected LVD threshold configured by option byte (see
If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the V
IT+(AVD)
or V
In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing software to shut down safely before the LVD resets the microcontroller. See
Section 14.1 on page 179).
threshold (AVDF bit toggles).
IT-(AVD)
Doc ID13466 Rev 4 37/198
IT-(AVD)
and V
IT+(AVD)
Figure 15.
reference
Supply, reset and clock management ST72324B-Auto
V
DD
V
IT+(AVD)
V
IT-(AVD)
AVDF bit 0 0Reset value
if AVDIE bit = 1
V
hyst
AVD Interrupt Request
Interrupt process
Interrupt process
V
IT+(LVD)
V
IT-(LVD)
LVD RESET
Early warning interrupt (power has dropped, MCU not not yet in reset)
1
1
t
rv
Voltage rise time
The interrupt on the rising edge is used to inform the application that the VDD warning state is over.
If the voltage rise time trv is less than 256 or 4096 CPU cycles (depending on the reset delay selected by option byte), no AVD interrupt will be generated when V
IT+(AVD)
is reached.
If trv is greater than 256 or 4096 cycles then:
If the AVD interrupt is enabled before the V
IT+(AVD)
threshold is reached, then 2 AVD interrupts will be received: the first when the AVDIE bit is set, and the second when the threshold is reached.
If the AVD interrupt is enabled after the V
IT+(AVD)
threshold is reached then only one
AVD interrupt will occur.
Figure 15. Using the AVD to monitor V

6.5.3 Low power modes

Table 10. Effect of low power modes on SI
DD
Mode Description
Wait No effect on SI. AVD interrupt causes the device to exit from Wait mode.
Halt The CRSR register is frozen.

6.5.4 Interrupts

The AVD interrupt event generates an interrupt if the AVDIE bit is set and the interrupt mask in the CC register is reset (RIM instruction).
38/198 Doc ID13466 Rev 4
M
Table 11. AVD interrupt control/wake-up capability
Interrupt event Event flag Enable Control bit Exit from WAIT Exit from HALT
AVD event AVDF AVDIE Yes No
ST72324B-Auto Supply, reset and clock management

6.6 SI registers

6.6.1 System integrity (SI) control/status register (SICSR)

SICSR Reset value: 000x 000x (00h)
76543210
Res AVDIE AVDF LVDRF Reserved WDGRF
- R/W RO R/W - R/W
Table 12. SICSR register description
Bit Name Function
7 - Reserved, must be kept cleared
Voltage Detector Interrupt Enable
This bit is set and cleared by software. It enables an interrupt to be generated
6AVDIE
5AVDF
4 LVDRF
3:1 - Reserved, must be kept cleared
0 WDGRF
when the AVDF flag changes (toggles). The pending interrupt information is automatically cleared when software enters the AVD interrupt routine 0: AVD interrupt disabled 1: AVD interrupt enabled
Voltage Detector Flag
This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit changes value. Refer to
Figure 15 and to Section 6.5.2: AVD (auxiliary voltage detector) for additional
details. 0: V 1: V
over V
DD
under V
DD
IT+(AVD)
IT-(AVD)
threshold
threshold
LVD Reset Flag
This bit indicates that the last reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by option byte, the LVDRF bit value is undefined.
Watchdog Reset Flag
This bit indicates that the last reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD reset (to ensure a stable cleared state of the WDGRF flag when CPU starts). Combined with the LVDRF information, the flag description is given in Table 13.
Table 13. Reset source flags
Reset sources LVDRF WDGRF
External RESET
Watchdog 0 1
LV D 1 X
Doc ID13466 Rev 4 39/198
pin 0 0
Supply, reset and clock management ST72324B-Auto
Application notes
The LVDRF flag is not cleared when another reset type occurs (external or watchdog); the LVDRF flag remains set to keep trace of the original failure. In this case, a watchdog reset can be detected by software while an external reset cannot.
Caution: When the LVD is not activated with the associated option byte, the WDGRF flag can not be
used in the application.
40/198 Doc ID13466 Rev 4
ST72324B-Auto Interrupts

7 Interrupts

7.1 Introduction

The ST7 enhanced interrupt management provides the following features:
Hardware interrupts
Software interrupt (TRAP)
Nested or concurrent interrupt management with flexible interrupt priority and level
management: – up to 4 software programmable nesting levels – up to 16 interrupt vectors fixed by hardware – 2 non-maskable events: reset, TRAP
This interrupt management is based on:
Bit 5 and bit 3 of the CPU CC register (I1:0)
Interrupt software priority registers (ISPRx)
Fixed interrupt vector addresses located at the high addresses of the memory map
(FFE0h to FFFFh) sorted by hardware priority order
This enhanced interrupt controller guarantees full upward compatibility with the standard (not nested) ST7 interrupt controller.

7.2 Masking and processing flow

The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see
Ta bl e 14). The processing flow is shown in Figure 16.
When an interrupt request has to be serviced:
Normal processing is suspended at the end of the current instruction execution.
The PC, X, A and CC registers are saved onto the stack.
I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx
registers of the serviced interrupt vector.
The PC is then loaded with the interrupt vector of the interrupt to service and the first
instruction of the interrupt service routine is fetched (refer to Table 25: Interrupt
mapping for vector addresses).
The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.
Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack
and the program in the previous level will resume.
Doc ID13466 Rev 4 41/198
Interrupts ST72324B-Auto
“IRET”
RESTORE PC, X, A, CC
Stack PC, X, A, CC
load I1:0 from interrupt SW reg.
Fetch next
Reset
TRAP
Pending
Instruction
I1:0
from stack
load PC from interrupt vector
Y
N
Y
N
Y
N
Interrupt has the same or a
lower software priority
The interrupt
stays pending
than current one
Interrupt has a higher
software priority
than current one
Execute
instruction
Interrupt
PENDING
SOFTWARE
Different
INTERRUPTS
Same
HIGHEST HARDWARE PRIORITY SERVICED
PRIORITY
HIGHEST SOFTWARE PRIORITY SERVICED

Table 14. Interrupt software priority levels

Interrupt software priority Level I1 I0
Level 0 (main) Low
10
Level 1 0 1
Level 2 0 0
Level 3 (= interrupt disable) 1 1
High

Figure 16. Interrupt processing flowchart

7.2.1 Servicing pending interrupts

As several interrupts can be pending at the same time, the interrupt to be taken into account is determined by the following two-step process:
the highest software priority interrupt is serviced,
if several interrupts have the same software priority then the interrupt with the highest
hardware priority is serviced first.
Figure 17 describes this decision process.
Figure 17. Priority decision process flowchart
42/198 Doc ID13466 Rev 4
ST72324B-Auto Interrupts
When an interrupt request is not serviced immediately, it is latched and then processed when its software priority combined with the hardware priority becomes the highest one.
Note: 1 The hardware priority is exclusive while the software one is not. This allows the previous
process to succeed with only one interrupt.
2 Reset and TRAP can be considered as having the highest software priority in the decision
process.

7.2.2 Different interrupt vector sources

Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (reset, TRAP) and the maskable type (external or from internal peripherals).

7.2.3 Non-maskable sources

These sources are processed regardless of the state of the I1 and I0 bits of the CC register (see
Figure 16). After stacking the PC, X, A and CC registers (except for reset), the
corresponding vector is loaded in the PC register and the I1 and I0 bits of the CC are set to disable interrupts (level 3). These sources allow the processor to exit Halt mode.
TRAP (non-maskable software interrupt)
This software interrupt is serviced when the TRAP instruction is executed. It will be serviced according to the flowchart in
Figure 16.
Reset
The reset source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and the highest hardware priority.
See the reset chapter for more details.

7.2.4 Maskable sources

Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt is latched and thus remains pending.
External interrupts
External interrupts allow the processor to Exit from Halt low power mode. External interrupt sensitivity is software selectable through the External Interrupt Control register (EICR).
External interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine.
If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed.
Peripheral interrupts
Usually the peripheral interrupts cause the MCU to Exit from Halt mode except those mentioned in is set in the peripheral status registers and if the corresponding enable bit is set in the
Ta ble 25: Interrupt mapping. A peripheral interrupt occurs when a specific flag
Doc ID13466 Rev 4 43/198
Interrupts ST72324B-Auto
Main
IT4
IT2
IT1
TRAP
IT1
Main
IT0
I1
Hardware priority
Software
3
3
3
3
3
3/0
3
11
11
11
11
11
11/10
11
RIM
IT2
IT1
IT4
TRAP
IT3
IT0
IT3
I0
10
priority level
Used stack = 10 bytes
peripheral control register. The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register.
Note: The clearing sequence resets the internal latch. A pending interrupt (that is, waiting to be
serviced) is therefore lost if the clear sequence is executed.

7.3 Interrupts and low power modes

All interrupts allow the processor to exit the Wait low power mode. On the contrary, only external and other specified interrupts allow the processor to exit from the Halt modes (see column Exit from HALT in
Ta bl e 25: Interrupt mapping). When several pending interrupts are
present while exiting Halt mode, the first one serviced can only be an interrupt with Exit from Halt mode capability and it is selected through the same decision process shown in
Figure 17.
Note: If an interrupt, that is not able to exit from Halt mode, is pending with the highest priority
when exiting Halt mode, this interrupt is serviced after the first one serviced.

7.4 Concurrent and nested management

Figure 18 and Figure 19 show two different interrupt management modes. The first is called
concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode in
Figure 19. The interrupt hardware priority is given in order from the lowest to the highest
as follows: MAIN, IT4, IT3, IT2, IT1, IT0. Software priority is given for each interrupt.
Warning: A stack overflow may occur without notifying the software of
the failure.

Figure 18. Concurrent interrupt management

44/198 Doc ID13466 Rev 4
ST72324B-Auto Interrupts
Main
IT2
TRAP
Main
IT0
IT2
IT1
IT4
TRAP
IT3
IT0
Hardware priority
3
2
1
3
3
3/0
3
11
00
01
11
11
11
RIM
IT1
IT4
IT4
IT1
IT2
IT3
I1
I0
11 / 10
10
Software priority level
Used stack = 20 bytes

Figure 19. Nested interrupt management

7.5 Interrupt registers

7.5.1 CPU CC register interrupt bits

CPU CC Reset value: 111x 1010(xAh)
76543210
11I1 H I0 NZC
R/ WR/ WR/ WR/ WR/ WR/ WR/ WR/ W
Table 15. CPU CC register interrupt bits description
Bit Name Function
5 I1 Software Interrupt Priority 1
3 I0 Software Interrupt Priority 0
Table 16. Interrupt software priority levels
Interrupt software priority Level I1 I0
Level 0 (main) Low
10
Level 1 0 1
Level 2 0 0
Level 3 (= interrupt disable)
1. TRAP and RESET events can interrupt a level 3 program.
(1)
High
11
These two bits indicate the current interrupt software priority (see Ta ble 16) and are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx).
Doc ID13466 Rev 4 45/198
Interrupts ST72324B-Auto
They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP instructions (see
Ta bl e 18: Dedicated interrupt instruction set).

7.5.2 Interrupt software priority registers (ISPRx)

ISPRx Reset value: 1111 1111 (FFh)
76543210
ISPR0 I1_3 I0_3 I1_2 I0_2 I1_1 I0_1 I1_0 I0_0
ISPR1 I1_7 I0_7 I1_6 I0_6 I1_5 I0_5 I1_4 I0_4
ISPR2 I1_11 I0_11 I1_10 I0_10 I1_9 I0_9 I1_8 I0_8
R/WR/WR/WR/WR/WR/WR/WR/W
ISPR31111I1_13I0_13I1_12I0_12
RO RO RO RO R/W R/W R/W R/W
These four registers contain the interrupt software priority of each interrupt vector.
Each interrupt vector (except reset and TRAP) has corresponding bits in these
registers where its own software priority is stored. This correspondence is shown in the following Tab l e 1 7 .
Table 17. ISPRx interrupt vector correspondence
Vector address ISPRx bits
FFFBh-FFFAh I1_0 and I0_0 bits
FFF9h-FFF8h I1_1 and I0_1 bits
... ...
FFE1h-FFE0h I1_13 and I0_13 bits
Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1
and I0 bits in the CC register.
Level 0 cannot be written (I1_x = 1, I0_x = 0). In this case, the previously stored value
is kept (for example, previous value = CFh, write = 64h, result = 44h).
The reset, and TRAP vectors have no software priorities. When one is serviced, the I1 and I0 bits of the CC register are both set.
Caution: If the I1_x and I0_x bits are modified while the interrupt x is executed the following behavior
has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and the new software priority is higher than the previous one, the interrupt x is re-entered. Otherwise, the software priority stays unchanged up to the next interrupt request (after the IRET of the interrupt x).
Table 18. Dedicated interrupt instruction set
Instruction New description Function/example I1 H I0 N Z C
(1)
HALT Entering HALT mode 1 0
46/198 Doc ID13466 Rev 4
ST72324B-Auto Interrupts
Table 18. Dedicated interrupt instruction set
(1)
(continued)
Instruction New description Function/example I1 H I0 N Z C
IRET Interrupt routine return POP CC, A, X, PC I1 H I0 N Z C
JRM Jump if I1:0=11 (level 3) I1:0=11 ?
JRNM Jump if I1:0<>11 I1:0<>11 ?
POP CC POP CC from the Stack Mem => CC I1 H I0 N Z C
RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CC 1 0
SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CC 1 1
TRAP Software TRAP Software NMI 1 1
WFI WAIT for interrupt 1 0
1. During the execution of an interrupt routine, the HALT, POP CC, RIM, SIM and WFI instructions change the current software priority up to the next IRET instruction or one of the previously mentioned instructions.
Doc ID13466 Rev 4 47/198
Interrupts ST72324B-Auto
IS10 IS11
EICR
PBOR.3
PBDDR.3
IPB BIT
PB3
ei2 interrupt source
Port B [3:0] interrupts
PB3 PB2 PB1 PB0
IS10 IS11
EICR
PBOR.4
PBDDR.4
PB4
ei3 interrupt source
Port B4 interrupt
IS20 IS21
EICR
PAOR.3
PADDR.3
IPA BIT
PA3
ei0 interrupt source
Port A3 interrupt
IS20 IS21
EICR
PFOR.2
PFDDR.2
PF2
ei1 interrupt source
Port F [2:0] interrupts
PF2 PF1 PF0
Sensitivity
control
Sensitivity
control
Sensitivity
Sensitivity
control
control

7.6 External interrupts

7.6.1 I/O port interrupt sensitivity

The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR register ( sensitivities.
Each external interrupt source can be generated on four (or five) different events on the pin:
Falling edge
Rising edge
Falling and rising edge
Falling edge and low level
Rising edge and high level (only for ei0 and ei2)
To guarantee correct functionality, the sensitivity bits in the EICR register can be modified only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that interrupts must be disabled before changing sensitivity.
The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits of the EICR.
Figure 20). This control allows up to four fully independent external interrupt source
Figure 20. External interrupt control bits
48/198 Doc ID13466 Rev 4
ST72324B-Auto Interrupts

7.6.2 External interrupt control register (EICR)

EICR Reset value: 0000 0000 (00h)
76543210
IS11 IS10 IPB IS21 IS20 IPA Reserved
R/W R/W R/W R/W R/W R/W -
Table 19. EICR register description
Bit Name Function
ei2 and ei3 sensitivity
The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following external interrupts:
7:6 IS1[1:0]
5IPB
4:3 IS2[1:0]
- ei2 for port B [3:0] (see Tabl e 2 0 )
- ei3 for port B4 (see Table 21 Bits 7 and 6 can only be written when I1 and I0 of the CC register are both set to 1 (level 3).
Interrupt Polarity (for port B)
This bit is used to invert the sensitivity of port B [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion 1: Sensitivity inversion
ei0 and ei1 sensitivity
The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following external interrupts:
- ei0 for port A[3:0] (see Ta ble 22 )
- ei1 for port F[2:0] (see Ta ble 2 3 ) Bits 4 and 3 can only be written when I1 and I0 of the CC register are both set to 1
(level 3).
Interrupt Polarity (for port A)
This bit is used to invert the sensitivity of port A [3:0] external interrupts. It can be
2IPA
set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion. 1: Sensitivity inversion.
1:0 - Reserved, must always be kept cleared
Table 20. Interrupt sensitivity - ei2
External interrupt sensitivity
IS11 IS10
IPB bit = 0 IPB bit = 1
0 0 Falling edge and low level Rising edge and high level
0 1 Rising edge only Falling edge only
1 0 Falling edge only Rising edge only
1 1 Rising and falling edge
Doc ID13466 Rev 4 49/198
Interrupts ST72324B-Auto
Table 21. Interrupt sensitivity - ei3
IS11 IS10 External interrupt sensitivity
0 0 Falling edge and low level
0 1 Rising edge only
1 0 Falling edge only
1 1 Rising and falling edge
Table 22. Interrupt sensitivity - ei0
External interrupt sensitivity
IS21 IS20
IPA bit = 0 IPA bit = 1
0 0 Falling edge and low level Rising edge and high level
0 1 Rising edge only Falling edge only
1 0 Falling edge only Rising edge only
1 1 Rising and falling edge
Table 23. Interrupt sensitivity - ei1
IS21 IS20 External interrupt sensitivity
0 0 Falling edge and low level
0 1 Rising edge only
1 0 Falling edge only
1 1 Rising and falling edge
Table 24. Nested interrupts register map and reset values
Address (Hex.)Register label76543210
ei1 ei0 MCC + SI
0024h
ISPR0 reset value
I1_31I0_31I1_21I0_21I1_11I0_1
111
SPI ei3 ei2
0025h
ISPR1 reset value
I1_71I0_71I1_61I0_61I1_51I0_51I1_41I0_4
1
AVD SCI Timer B Timer A
0026h
0027h
ISPR2
I1_111I0_111I1_101I0_101I1_91I0_91I1_81I0_8
reset value
ISPR3
I1_131I0_131I1_121I0_12
reset value 1111
1
1
0028h
EICR reset value
IS110IS100IPB0IS210IS200IPA
50/198 Doc ID13466 Rev 4
000
ST72324B-Auto Interrupts
Table 25. Interrupt mapping
No.
Source
block
Reset Reset
Description
Register
label
Priority
order
Exit from
Halt/Active Halt
Address vector
yes FFFEh-FFFFh
N/A
TRAP Software interrupt no FFFCh-FFFDh
0 Not used FFFAh-FFFBh
1 MCC/RTC
Main clock controller time base interrupt
2 ei0 External interrupt port A3..0
MCCSR
Higher
priority
yes FFF8h-FFF9h
yes FFF6h-FFF7h
3 ei1 External interrupt port F2..0 yes FFF4h-FFF5h
N/A
4 ei2 External interrupt port B3..0 yes FFF2h-FFF3h
5 ei3 External interrupt port B7..4 yes FFF0h-FFF1h
6 Not used FFEEh-FFEFh
7 SPI SPI peripheral interrupts SPICSR yes FFECh-FFEDh
8 Timer A Timer A peripheral interrupts TASR no FFEAh-FFEBh
9 Timer B Timer B peripheral interrupts TBSR no FFE8h-FFE9h
10 SCI SCI peripheral interrupts SCISR
11 AVD Auxiliary voltage detector interrupt SICSR no FFE4h-FFE5h
Lower
priority
no FFE6h-FFE7h
Doc ID13466 Rev 4 51/198
Power saving modes ST72324B-Auto
Power consumption
Wait
Slow
Run
Active Halt
High
Low
Slow Wait
Halt

8 Power saving modes

8.1 Introduction

To give a large measure of flexibility to the application in terms of power consumption, four main power saving modes are implemented in the ST7 (see Wait), Active Halt and Halt.
After a reset the normal operating mode is selected by default (Run mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided or multiplied by 2 (f
From Run mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

Figure 21. Power saving mode transitions

Figure 21): Slow, Wait (Slow
).
OSC2

8.2 Slow mode

This mode has two targets:
To reduce power consumption by decreasing the internal clock in the device,
To adapt the internal clock frequency (f
Slow mode is controlled by three bits in the MCCSR register: the SMS bit which enables or disables Slow mode and two CPx bits which select the internal slow frequency (f
In this mode, the master clock frequency (f and peripherals are clocked at this lower frequency (f
Note: Slow-Wait mode is activated when entering the Wait mode while the device is already in
Slow mode.
52/198 Doc ID13466 Rev 4
) to the available supply voltage.
CPU
) can be divided by 2, 4, 8 or 16. The CPU
OSC2
CPU
).
CPU
).
ST72324B-Auto Power saving modes
00 01
SMS
CP1:0
f
CPU
New Slow
Normal Run mode
MCCSR
frequency
request
request
f
OSC2
f
OSC2
/2 f
OSC2
/4 f
OSC2
WFI instruction
Reset
Interrupt
Y
N
N
Y
CPU
Oscillator Peripherals
I[1:0] bits
on on
10
off
Fetch reset vector
or service interrupt
CPU
Oscillator Peripherals
I[1:0] bits
on off
10
on
CPU
Oscillator Peripherals
I[1:0] bits
on on
XX
(1)
on
256 or 4096 CPU clock
cycle delay

Figure 22. Slow mode clock transitions

8.3 Wait mode

Wait mode places the MCU in a low power consumption mode by stopping the CPU.
This power saving mode is selected by calling the ‘WFI’ instruction.
All peripherals remain active. During Wait mode, the I[1:0] bits of the CC register are forced to ‘10’, to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in Wait mode until an interrupt or reset occurs, whereupon the Program Counter branches to the starting address of the interrupt or reset service routine. The MCU will remain in Wait mode until a reset or an interrupt occurs, causing it to wake up. Refer to
Figure 23.

Figure 23. Wait mode flowchart

1. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.
Doc ID13466 Rev 4 53/198
Power saving modes ST72324B-Auto
HaltRun Run
256 or 4096 CPU
cycle delay
(1)
Reset
or
interrupt
Halt
instruction
Fetch
vector
Active
[MCCSR.OIE = 1]

8.4 Active Halt and Halt modes

Active Halt and Halt modes are the two lowest power consumption modes of the MCU. They are both entered by executing the ‘HALT’ instruction. The decision to enter either in Active Halt or Halt mode is given by the MCC/RTC interrupt enable flag (OIE bit in the MCCSR register).

Table 26. MCC/RTC low power mode selection

MCCSR OIE bit Power saving mode entered when HALT instruction is executed
0 Halt mode
1 Active Halt mode

8.4.1 Active Halt mode

Active Halt mode is the lowest power consumption mode of the MCU with a real-time clock available. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is set (see
time clock and beeper (MCC/RTC) on page 69 for more details on the MCCSR register).
The MCU can exit Active Halt mode on reception of either an MCC/RTC interrupt, a specific interrupt (see
Ta bl e 25: Interrupt mapping) or a reset. When exiting Active Halt mode by
means of an interrupt, no 256 or 4096 CPU cycle delay occurs. The CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see
When entering Active Halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.
Section 10.2: Main clock controller with real-
Figure 25).
In Active Halt mode, only the main oscillator and its associated counter (MCC/RTC) are running to keep a wake-up time base. All other peripherals are not clocked except those which get their clock supply from another clock generator (such as external or auxiliary oscillator).
The safeguard against staying locked in Active Halt mode is provided by the oscillator interrupt.
Note: As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set),
entering Active Halt mode while the Watchdog is active does not generate a reset.
This means that the device cannot spend more than a defined delay in this power saving mode.
Caution: When exiting Active Halt mode following an interrupt, OIE bit of MCCSR register must not be
cleared before t on option byte). Otherwise, the ST7 enters Halt mode for the remaining t
after the interrupt occurs (t
DELAY
= 256 or 4096 t
DELAY
delay depending
CPU
DELAY
period.
Figure 24. Active Halt timing overview
1. This delay occurs only if the MCU exits Active Halt mode by means of a reset.
54/198 Doc ID13466 Rev 4
ST72324B-Auto Power saving modes
Halt instruction
Reset
Interrupt
(2)
Y
N
N
Y
CPU
Oscillator Peripherals
(1)
I[1:0] bits
on off
10
off
Fetch reset vector
or service interrupt
CPU
Oscillator Peripherals
I[1:0] bits
on off
XX
(3)
on
CPU
Oscillator Peripherals
I[1:0] bits
on on
XX
(3)
on
256 or 4096 CPU clock
cycle delay
(MCCSR.OIE = 1)
Figure 25. Active Halt mode flowchart
1. Peripheral clocked with an external clock source can still be active.
2. Only the MCC/RTC interrupt and some specific interrupts can exit the MCU from Active Halt mode (such as external interrupt). Refer to Table 25: Interrupt mapping on page 51 for more details.
3. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and restored when the CC register is popped.

8.4.2 Halt mode

The Halt mode is the lowest power consumption mode of the MCU. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is cleared (see
and beeper (MCC/RTC) on page 69for more details on the MCCSR register).
The MCU can exit Halt mode on reception of either a specific interrupt (see Ta ble 25:
Interrupt mapping) or a reset. When exiting Halt mode by means of a reset or an interrupt,
the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see
When entering Halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.
In Halt mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator).
The compatibility of Watchdog operation with Halt mode is configured by the “WDGHALT” option bit of the option byte. The HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog reset (see details.
Section 10.2: Main clock controller with real-time clock
Figure 27).
Section 14.1 on page 179) for more
Doc ID13466 Rev 4 55/198
Power saving modes ST72324B-Auto
HaltRun Run
256 or 4096 CPU
cycle delay
Reset
or
interrupt
Halt
instruction
Fetch
vector
[MCCSR.OIE = 0]
Halt instruction
Reset
Interrupt
(3)
Y
N
N
Y
CPU
Oscillator Peripherals
(2)
I[1:0] bits
off off
10
off
Fetch reset vector
or service interrupt
CPU
Oscillator Peripherals
I[1:0] bits
on off
XX
(4)
on
CPU
Oscillator Peripherals
I[1:0] bits
on on
XX
(4)
on
256 or 4096 CPU clock
delay
Watchdog
Enable
Disable
WDGHALT
(1)
0
Watchdog
reset
1
(MCCSR.OIE = 0)
cycle
Figure 26. HALT timing overview
Figure 27. Halt mode flowchart
1. WDGHALT is an option bit. See Section 14.1 on page 179 for more details.
2. Peripheral clocked with an external clock source can still be active.
3. Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to
Table 25: Interrupt mappingfor more details.
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.
56/198 Doc ID13466 Rev 4
ST72324B-Auto Power saving modes
Halt mode recommendations
Make sure that an external event is available to wake up the microcontroller from Halt
mode.
When using an external interrupt to wake up the microcontroller, reinitialize the
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT instruction. The main reason for this is that the I/O may be wrongly configured due to external interference or by an unforeseen logical condition.
For the same reason, reinitialize the sensitivity level of each external interrupt as a
precautionary measure.
The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction
due to a program counter failure, it is advised to clear all occurrences of the data value 0x8E from memory. For example, avoid defining a constant in ROM with the value 0x8E.
As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,
the user may choose to clear all pending interrupt bits before executing the HALT instruction. This avoids entering other peripheral interrupt routines after executing the external interrupt routine corresponding to the wake-up event (reset or external interrupt).
Doc ID13466 Rev 4 57/198
I/O ports ST72324B-Auto

9 I/O ports

9.1 Introduction

The I/O ports offer different functional modes:
transfer of data through digital inputs and outputs,
and for specific pins:
external interrupt generation,
alternate signal input/output for the on-chip peripherals.
An I/O port contains up to 8 pins. Each pin can be programmed independently as digital input (with or without interrupt generation) or digital output.

9.2 Functional description

Each port has two main registers:
Data Register (DR)
Data Direction Register (DDR)
and one optional register:
Option Register (OR)
Each I/O pin may be programmed using the corresponding register bits in the DDR and OR registers: bit X corresponding to pin X of the port. The same correspondence is used for the DR register.
The following description takes into account the OR register, (for specific ports which do not provide this register refer to I/O block diagram is shown in Figure 28.
Section 9.3: I/O port implementation on page 62). The generic

9.2.1 Input modes

The input configuration is selected by clearing the corresponding DDR register bit.
In this case, reading the DR register returns the digital value applied to the external I/O pin.
Different input modes can be selected by software through the OR register.
Note: 1 Writing the DR register modifies the latch value but does not affect the pin status.
2 When switching from input to output mode, the DR register has to be written first to drive the
correct level on the pin as soon as the port is configured as an output.
3 Do not use read/modify/write instructions (BSET or BRES) to modify the DR register as this
might corrupt the DR content for I/Os configured as input.
58/198 Doc ID13466 Rev 4
ST72324B-Auto I/O ports
External interrupt function
When an I/O is configured as ‘Input with Interrupt’, an event on this I/O can generate an external interrupt request to the CPU.
Each pin can independently generate an interrupt request. The interrupt sensitivity is independently programmable using the sensitivity bits in the EICR register.
Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout description and interrupt section). If several input pins are selected simultaneously as interrupt sources, these are first detected according to the sensitivity bits in the EICR register and then logically ORed.
The external interrupts are hardware interrupts, which means that the request latch (not accessible directly by the application) is automatically cleared when the corresponding interrupt vector is fetched. To clear an unwanted pending interrupt by software, the sensitivity bits in the EICR register must be modified.

9.2.2 Output modes

The output configuration is selected by setting the corresponding DDR register bit. In this case, writing the DR register applies this digital value to the I/O pin through the latch. Then reading the DR register returns the previously stored value.
Two different output modes can be selected by software through the OR register: Output push-pull and open-drain.
Table 27. DR register value and output pin status
DR Push-pull Open-drain
0V
1V
SS
DD
V
SS
Floating

9.2.3 Alternate functions

When an on-chip peripheral is configured to use a pin, the alternate function is automatically selected. This alternate function takes priority over the standard I/O programming.
When the signal is coming from an on-chip peripheral, the I/O pin is automatically configured in output mode (push-pull or open drain according to the peripheral).
When the signal is going to an on-chip peripheral, the I/O pin must be configured in input mode. In this case, the pin state is also digitally readable by addressing the DR register.
Note: Input pull-up configuration can cause unexpected value at the input of the alternate
peripheral input. When an on-chip peripheral use a pin as input and output, this pin has to be configured in input floating mode.
Doc ID13466 Rev 4 59/198
I/O ports ST72324B-Auto
DR
DDR
OR
Data bus
Pad
V
DD
Alternate enable
Alternate output
1
0
OR SEL
DDR SEL
DR SEL
Pull-up condition
P-buffer (see table 24 below)
N-buffer
Pull-up (see table 24 below)
1
0
Analog
input
If implemented
V
DD
Diodes (see table 24 below)
CMOS
Register access
External interrupt
source (ei
x
)
Alternate input
Schmitt trigger
Figure 28. I/O port general block diagram
Table 28. I/O port mode options
Configuration mode Pull-up P-buffer
Floating with/without Interrupt Off
Input
Pull-up with/without Interrupt On
Push-pull
1. The diode to VDD is not implemented in the true open drain pads.
2. A local protection between the pad and VSS is implemented to protect the device against positive stress.
3. Off = implemented not activated.
4. On = implemented and activated.
5. NI = not implemented
60/198 Doc ID13466 Rev 4
Output
Open drain (logic level) Off
True open drain NI NI NI
(3)
(4)
Off
Off
On
to V
On
DD
(5)
Diodes
(1)
to V
On
SS
(2)
ST72324B-Auto I/O ports
V
DD
R
PU
W
R
true open drain
Not implemented in
I/O ports
Pad
Pull-up condition
DR
register
DR register access
Data bus
Alternate input
External interrupt source (ei
x
)
Interrupt
condition
Analog input
Pad
R
PU
R/W
V
DD
DR register access
DR
register
true open drain
Not implemented in
I/O ports
Data bus
Alternate
output
Alternate
enable
Pad
R
PU
DR
R/W
V
DD
true open drain
Not implemented in
I/O ports
DR register access
register
Data bus
Alternate
enable
Alternate
output
Table 29. I/O port configurations
Hardware configuration
(1)
Input
(2)
Open-drain output
(2)
PUSH-pull output
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status.
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content.
Caution: The alternate function must not be activated as long as the pin is configured as input with
interrupt, in order to avoid generating spurious interrupts.
Doc ID13466 Rev 4 61/198
I/O ports ST72324B-Auto
01
floating/pull-up
interrupt
Input
00
floating
(reset state)
Input
10
open-drain
Output
11
push-pull
Output
XX
= DDR, OR
Analog alternate function
When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.
It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin.
Warning: The analog input voltage level must be within the limits
stated in the absolute maximum ratings.

9.3 I/O port implementation

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC Input or true open drain.
Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation.
Figure 29.

Figure 29. Interrupt I/O port state transitions

9.4 Low power modes

Table 30. Effect of low power modes on I/O ports

Mode Description
Wait No effect on I/O ports. External interrupts cause the device to exit from Wait mode.
Halt No effect on I/O ports. External interrupts cause the device to exit from Halt mode.

9.5 Interrupts

The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and the interrupt mask in the CC register is not active (RIM instruction).
62/198 Doc ID13466 Rev 4
ST72324B-Auto I/O ports

Table 31. I/O port interrupt control/wake-up capability

Interrupt event Event flag Enable Control bit Exit from WAIT Exit from HALT
External interrupt on selected external event

9.5.1 I/O port implementation

The I/O port register configurations are summarized Tab l e 32.
Table 32. Port configuration
Port Pin name
OR = 0 OR = 1 OR = 0 OR = 1
PA7:6 Floating True open-drain (high sink)
Por t A
Por t B
Port C PC7:0 Floating Pull-up Open drain Push-pull
Port D PD5:0 Floating Pull-up Open drain Push-pull
Port E PE1:0 Floating Pull-up Open drain Push-pull
Por t F
PA5:4 Floating Pull-up Open drain Push-pull
PA3 Floating Floating interrupt Open drain Push-pull
PB3 Floating Floating interrupt Open drain Push-pull
PB4, PB2:0 Floating Pull-up Open drain Push-pull
PF7:6, 4 Floating Pull-up Open drain Push-pull
PF2:0 Floating Pull-up Open drain Push-pull
- DDRx, ORx Yes Yes
Input (DDR = 0) Output (DDR = 1)
Table 33. I/O port register map and reset values
Address (Hex.) Register label 7 6 5 43210
Reset value of all I/O port registers00000000
0000h PADR
MSB LSB0001h PADDR
0002h PAOR
0003h PBDR
MSB LSB0004h PBDDR
0005h PBOR
0006h PCDR
MSB LSB0007h PCDDR
0008h PCOR
0009h PDDR
MSB LSB000Ah PDDDR
000Bh PDOR
Doc ID13466 Rev 4 63/198
I/O ports ST72324B-Auto
Table 33. I/O port register map and reset values (continued)
Address (Hex.) Register label 7 6 5 43210
000Ch PEDR
MSB LSB000Dh PEDDR
000Eh PEOR
000Fh PFDR
MSB LSB0010h PFDDR
0011h PFOR
64/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals

10 On-chip peripherals

10.1 Watchdog timer (WDG)

10.1.1 Introduction

The Watchdog timer is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the counter’s contents before the T6 bit becomes cleared.

10.1.2 Main features

Programmable free-running downcounter
Programmable reset
Reset (if Watchdog activated) when the T6 bit reaches zero
Optional reset on HALT instruction (configurable by option byte)
Hardware Watchdog selectable by option byte

10.1.3 Functional description

The counter value stored in the Watchdog Control register (WDGCR bits T[6:0]), is decremented every 16384 f be programmed by the user in 64 increments.
If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin for typically 30µs.
The application program must write in the WDGCR register at regular intervals during normal operation to prevent an MCU reset. This downcounter is free-running: it counts down even if the watchdog is disabled. The value to be stored in the WDGCR register must be between FFh and C0h:
The WDGA bit is set (Watchdog enabled)
The T6 bit is set to prevent generating an immediate reset
The T[5:0] bits contain the number of increments which represents the time delay
before the Watchdog produces a reset (see Figure 31: Approximate timeout duration). The timing varies between a minimum and a maximum value due to the unknown status of the prescaler when writing to the WDGCR register (see Figure 32).
Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by a reset.
The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared).
cycles (approx.), and the length of the timeout period can
OSC2
If the Watchdog is activated, the HALT instruction generates a reset.
Doc ID13466 Rev 4 65/198
On-chip peripherals ST72324B-Auto
Reset
WDGA
6-bit downcounter (CNT)
f
OSC2
T6
T0
WDG prescaler
Watchdog Control register (WDGCR)
div 4
T1
T2
T3
T4
T5
12-bit MCC
RTC counter
LSB
Div 64
0
5
6
11
MCC/RTC
TB[1:0] bits (MCCSR register)
MSB
CNT value (Hex.)
Watchdog timeout (ms) @ 8 MHz. f
OSC2
3F
00
38
128
1.5 65
30
28
20
18
10
08
503418 82 98 114
Figure 30. Watchdog block diagram

10.1.4 How to program the Watchdog timeout

Figure 31 shows the linear relationship between the 6-bit value to be loaded in the
Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a quick calculation without taking the timing variations into account. If more precision is needed, use the formulae in
Figure 32.
Caution: When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an
immediate reset.
Figure 31. Approximate timeout duration
66/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
WHERE:
t
min0
= (LSB + 128) x 64 x t
OSC2
t
max0
= 16384 x t
OSC2
t
OSC2
= 125ns if f
OSC2
= 8 MHz
CNT = value of T[5:0] bits in the WDGCR register (6 bits)
MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits in the MCCSR register
To calculate the minimum Watchdog timeout (t
min
):
IF THEN
ELSE
To calculate the maximum Watchdog timeout (t
max
):
IF THEN
ELSE
NOTE: In the above formulae, division results must be rounded down to the next integer value.
EXAMPLE: With 2ms timeout selected in MCCSR register
TB1 bit
(MCCSR reg.)
TB0 bit
(MCCSR reg.)
Selected MCCSR timebase MSB LSB
0 0 2ms 4 59
0 1 4ms 8 53
1 0 10ms 20 35
1 1 25ms 49 54
Value of T[5:0] bits in WDGCR register
(Hex.)
Min. Watchdog timeout (ms)
t
min
Max. Watchdog timeout (ms)
t
max
00 1.496 2.048
3F 128 128.552
CNT
MSB
4
-------------
<
t
mintmin0
16384 CN T t
osc2
+=
t
mintmin0
16384 CNT
4CNT
MSB
-----------------


192 LSB+64
4CNT
MSB
-----------------
+ t
osc2
+=
CNT
MSB
4
-------------
t
maxtmax0
16384 CN T t
osc2
+=
t
maxtmax0
16384 CNT
4CNT
MSB
-----------------


192 L SB+64
4CNT
MSB
-----------------
+ t
osc2
+=
Figure 32. Exact timeout duration (t
min
and t
max
)
Doc ID13466 Rev 4 67/198
On-chip peripherals ST72324B-Auto

10.1.5 Low power modes

Table 34. Effect of lower power modes on Watchdog
Mode Description
Slow
No effect on Watchdog
Wait
OIE bit in
MCCSR register
00
Halt
0 1 A reset is generated.
1x
WDGHALT bit in
option byte

10.1.6 Hardware Watchdog option

No Watchdog reset is generated. The MCU enters Halt mode. The Watchdog counter is decremented once and then stops counting and is no longer able to generate a watchdog reset until the MCU receives an external interrupt or a reset. If an external interrupt is received, the Watchdog restarts counting after 256 or 4096 CPU clocks. If a reset is generated, the Watchdog is disabled (reset state) unless Hardware Watchdog is selected by option byte. For application recommendations, see
Section 10.1.7 below.
No reset is generated. The MCU enters Active Halt mode. The Watchdog counter is not decremented. It stop counting. When the MCU receives an oscillator interrupt or external interrupt, the Watchdog restarts counting immediately. When the MCU receives a reset the Watchdog restarts counting after 256 or 4096 CPU clocks.
If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the WDGCR is not used. Refer to the option byte description in
Flash devices.

10.1.7 Using Halt mode with the WDG (WDGHALT option)

The following recommendation applies if Halt mode is used when the watchdog is enabled: Before executing the HALT instruction, refresh the WDG counter to avoid an unexpected WDG reset immediately after waking up the microcontroller.

10.1.8 Interrupts

None.
68/198 Doc ID13466 Rev 4
Section 14.1:
ST72324B-Auto On-chip peripherals

10.1.9 Control register (WDGCR)

WDGCR Reset value: 0111 1111 (7F h)
76543210
WDGA T[6:0]
R/W R/W
Table 35. WDGCR register description
Bit Name Function
Activation bit
This bit is set by software and only cleared by hardware after a reset. When
7WDGA
6:0 T[6:0]
WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled
Note: This bit is not used if the hardware watchdog option is enabled by option byte.
7-bit counter (MSB to LSB)
These bits contain the value of the Watchdog counter, which is decremented every 16384 f (T6 is cleared).
cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh
OSC2
10.2
10.2.1
Table 36. Watchdog timer register map and reset values
Address (Hex.)Register label76543210
002Ah
WDGCR reset value
WDGA0T6
T5
1
1
T4
T3
1
1
T2
T1
1
T0
1
1

Main clock controller with real-time clock and beeper (MCC/RTC)

The main clock controller consists of three different functions:
a programmable CPU clock prescaler
a clock-out signal to supply external devices
a real-time clock timer with interrupt capability
Each function can be used independently and simultaneously.

Programmable CPU clock prescaler

The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal peripherals. It manages Slow power saving mode (see for more details).
The prescaler selects the f
main clock frequency and is controlled by three bits in the
CPU
MCCSR register: CP[1:0] and SMS.
Section 8.2: Slow mode on page 52
Doc ID13466 Rev 4 69/198
On-chip peripherals ST72324B-Auto
Div 2, 4, 8, 16
MCC/RTC interrupt
SMSCP1 CP0 TB1 TB0 OIE OIF
CPU clock
MCCSR
12-bit MCC RTC
counter
to CPU and peripherals
f
OSC2
f
CPU
MCO
MCO
BC1 BC0
MCCBCR
Beep
selection
Beep signal
1
0
To
Watchdog
timer
Div 64
10.2.2
Caution:
10.2.3
10.2.4

Clock-out capability

The clock-out capability is an alternate function of an I/O port pin that outputs the f to drive external devices. It is controlled by the MCO bit in the MCCSR register.
When selected, the clock out pin suspends the clock during Active Halt mode.
CPU
clock

Real-time clock (RTC) timer

The counter of the real-time clock timer allows an interrupt to be generated based on an accurate real-time clock. Four different time bases depending directly on f
are available.
OSC2
The whole functionality is controlled by four bits of the MCCSR register: TB[1:0], OIE and OIF.
When the RTC interrupt is enabled (OIE bit set), the ST7 enters Active Halt mode when the HALT instruction is executed. See
Section 8.4: Active Halt and Halt modes on page 54for
more details.

Beeper

The beep function is controlled by the MCCBCR register. It can output three selectable frequencies on the Beep pin (I/O port alternate function).
Figure 33.
Main clock controller (MCC/RTC) block diagram
70/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
10.2.5
10.2.6

Low power modes

Table 37. Effect of low power modes on MCC/RTC
Mode Description
Wait
Active Halt
Halt
No effect on MCC/RTC peripheral. MCC/RTC interrupt causes the device to exit from Wait mode.
No effect on MCC/RTC counter (OIE bit is set), the registers are frozen. MCC/RTC interrupt causes the device to exit from Active Halt mode.
MCC/RTC counter and registers are frozen. MCC/RTC operation resumes when the MCU is woken up by an interrupt with Exit from Halt capability.

Interrupts

The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is set and the interrupt mask in the CC register is not active (RIM instruction).
Table 38. MCC/RTC interrupt control/wake-up capability
Interrupt event Event flag Enable control bit Exit from WAIT Exit from HALT
Time base overflow event OIF OIE Yes No
1. The MCC/RTC interrupt wakes up the MCU from Active Halt mode, not from Halt mode.
(1)

10.2.7 MCC registers

MCC control/status register (MCCSR)
)
MCCSR Reset value: 0000 0000 (00h)
76543210
MCO CP[1:0] SMS
R/W R/W R/W R/W R/W R/W
Table 39. MCCSR register description
Bit Name Function
Main Clock Out selection
This bit enables the MCO alternate function on the PF0 I/O port. It is set and cleared by software.
7MCO
0: MCO alternate function disabled (I/O pin free for general-purpose I/O). 1: MCO alternate function enabled (f
Note: To reduce power consumption, the MCO function is not active in Active Halt mode.
TB[1:0]
on I/O port).
CPU
OIE OIF
Doc ID13466 Rev 4 71/198
On-chip peripherals ST72324B-Auto
Table 39. MCCSR register description (continued)
Bit Name Function
CPU Clock Prescaler
These bits select the CPU clock prescaler which is applied in different slow modes. Their action is conditioned by the setting of the SMS bit. These two bits are set and
6:5 CP[1:0]
4SMS
3:2
TB[1:0]
cleared by software: 00: f 01: f 10: f 11: f
in Slow mode = f
CPU
in Slow mode = f
CPU
in Slow mode = f
CPU
in Slow mode = f
CPU
OSC2 OSC2 OSC2 OSC2
/2 /4 /8 /16
Slow Mode Select
This bit is set and cleared by software. 0: Normal mode. f 1: Slow mode. f
= f
CPU
is given by CP1, CP0.
CPU
OSC2
.
See Section 8.2: Slow mode and Section 10.2: Main clock controller with real-time
clock and beeper (MCC/RTC) for more details.
Time Base control
These bits select the programmable divider time base. They are set and cleared by software (see Tabl e 4 0 ). A modification of the time base is taken into account at the end of the current period (previously set) to avoid an unwanted time shift. This allows to use this time base as a real-time clock.
Oscillator interrupt Enable
This bit set and cleared by software.
1OIE
0: Oscillator interrupt disabled 1: Oscillator interrupt enabled This interrupt can be used to exit from Active Halt mode. When this bit is set, calling the ST7 software HALT instruction enters the Active Halt power saving mode
Oscillator interrupt Flag
This bit is set by hardware and cleared by software reading the MCCSR register. It indicates when set that the main oscillator has reached the selected elapsed time
0OIF
(TB1:0). 0: Timeout not reached 1: Timeout reached Caution: The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit.
.
Table 40. Time base selection
Counter prescaler
16000 4ms 2ms 0 0
32000 8ms 4ms 0 1
80000 20ms 10ms 1 0
200000 50ms 25ms 1 1
= 4 MHz f
f
OSC2
Time base
OSC2
.
TB1 TB0
= 8 MHz
72/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
MCC beep control register (MCCBCR)
MCCBCR Reset value: 0000 0000 (00h)
76543210
Reserved BC[1:0]
-R/W
Table 41. MCCBCR register description
Bit Name Function
7:2 - Reserved, must be kept cleared
Beep Control
1:0 BC[1:0]
Table 42. Beep frequency selection
These 2 bits select the PF1 pin beep capability (see Ta ble 4 2 ). The beep output signal is available in Active Halt mode but has to be disabled to reduce the consumption.
BC1 BC0 Beep mode with f
OSC2
00 Off
0 1 ~2 kHz
1 0 ~1 kHz
11 ~500 Hz
Table 43. Main clock controller register map and reset values
Address
(Hex.)
002Bh
002Ch
002Dh
Register label7654321 0
SICSR Reset value 0
MCCSR
MCO0CP10CP00SMS0TB1
Reset value
AVD IE0AVD F0LVDRF
x000
0
MCCBCR Reset value000000
= 8 MHz
Output
Beep signal
~50% duty cycle
TB00OIE
0
BC1
0
WDGRF
x
OIF
0
BC0
0
Doc ID13466 Rev 4 73/198
On-chip peripherals ST72324B-Auto

10.3 16-bit timer

10.3.1 Introduction

The timer consists of a 16-bit free-running counter driven by a programmable prescaler.
It may be used for a variety of purposes, including pulse length measurement of up to two input signals (input capture) or generation of up to two output waveforms (output compare and PWM).
Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler.
Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified.
This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B).

10.3.2 Main features

Programmable prescaler: f
Overflow status flag and maskable interrupt
External clock input (must be at least four times slower than the CPU clock speed) with
divided by 2, 4 or 8
CPU
the choice of active edge
1 or 2 output compare functions each with:
2 dedicated 16-bit registers – 2 dedicated programmable signals – 2 dedicated status flags – 1 dedicated maskable interrupt
1 or 2 input capture functions each with:
2 dedicated 16-bit registers – 2 dedicated active edge selection signals – 2 dedicated status flags – 1 dedicated maskable interrupt
Pulse width modulation mode (PWM)
One pulse mode
Reduced power mode
5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)
(c)
The timer block diagram is shown in Figure 34.
c. Some timer pins may not be available (not bonded) in some ST7 devices. Refer to Section 2: Pin description.
When reading an input signal on a non-bonded pin, the value will always be ‘1’.
74/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals

10.3.3 Functional description

Counter
The main block of the programmable timer is a 16-bit free running upcounter and its associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called high and low.
Counter Register (CR)
Counter High Register (CHR) is the most significant byte (MSB) – Counter Low Register (CLR) is the least significant byte (LSB)
Alternate Counter Register (ACR)
Alternate Counter High Register (ACHR) is the most significant byte (MSB) – Alternate Counter Low Register (ACLR) is the least significant byte (LSB)
These two read-only 16-bit registers contain the same value but with the difference that reading the ACLR register does not clear the TOF bit (timer overflow flag), located in the Status register (SR) (see note at the end of paragraph entitled
Writing in the CLR register or ACLR register resets the free running counter to the FFFCh value. Both counters have a reset value of FFFCh (this is the only value which is reloaded in the 16-bit timer). The reset value of both counters is also FFFCh in one pulse mode and PWM mode.
16-bit read sequence).
The timer clock depends on the clock control bits of the CR2 register, as illustrated in
Ta bl e 50. The value in the counter register repeats every 131072, 262144 or 524288 CPU
clock cycles depending on the CC[1:0] bits. The timer frequency can be f f
/8 or an external frequency.
CPU
CPU
/2, f
CPU
/4,
Doc ID13466 Rev 4 75/198
On-chip peripherals ST72324B-Auto
MCU-peripheral interface
Counter
Alternate
Output
Compare
register
Output Compare
Edge Detect
Overflow
Detect
circuit
1/2 1/4 1/8
8-bit
buffer
ST7 internal bus
Latch 1
OCMP1
ICAP1
EXTCLK
fCPU
Timer interrupt
ICF2ICF1 TIMD 0 0OCF2OCF1 TOF
PWMOC1E
EXEDG
IEDG2CC0CC1
OC2E
OPM
FOLV2ICIE OLVL1IEDG1OLVL2FOLV1OCIE TOIE
ICAP2
Latch 2
OCMP2
8
8
8 low
16
8 high
16 16
16
16
(Control register 1) CR1
(Control register 2) CR2
(Control/Status register) CSR
6
16
8 8 8
88 8
high
low
high
high
high
low
low
low
EXEDG
Timer internal bus
circuit 1
Edge Detect
circuit 2
circuit
1
Output
Compare
register
2
Input
Capture
register
1
Input
Capture
register
2
CC[1:0]
pin
pin
pin
pin
pin
register
(See note 1)
Counter
register
Figure 34. Timer block diagram
1. If IC, OC and TO interrupt requests have separate vectors then the last OR is not present (see Table 25:
Interrupt mapping on page 51).
76/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
Read
At t0
Read
Returns the buffered
LSB value at t0
At t0 +t
Other
instructions
Beginning of the sequence
Sequence completed
LSB is buffered
LSB
MSB
16-bit read sequence
The 16-bit read sequence (from either the Counter register or the Alternate Counter register) is illustrated in the following
Figure 35. 16-bit read sequence
The user must first read the MSB, afterwhich the LSB value is automatically buffered.
This buffered value remains unchanged until the 16-bit read sequence is completed, even if the user reads the MSB several times.
After a complete reading sequence, if only the CLR register or ACLR register are read, they return the LSB of the count value at the time of the read.
Figure 35.
Whatever the timer mode used (input capture, output compare, one pulse mode or PWM mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then:
The TOF bit of the SR register is set.
A timer interrupt is generated if:
TOIE bit of the CR1 register is set and – I bit of the CC register is cleared.
If one of these conditions is false, the interrupt remains pending to be issued as soon as they are both true.
Clearing the overflow interrupt request is done in two steps:
1. Reading the SR register while the TOF bit is set.
2. An access (read or write) to the CLR register.
Note: The TOF bit is not cleared by access to the ACLR register. The advantage of accessing the
ACLR register rather than the CLR register is that it allows simultaneous use of the overflow function and reading the free running counter at random times (for example, to measure elapsed time) without the risk of clearing the TOF bit erroneously.
The timer is not affected by Wait mode.
In Halt mode, the counter stops counting until the mode is exited. Counting then resumes from the previous count (MCU awakened by an interrupt) or from the reset count (MCU awakened by a reset).
Doc ID13466 Rev 4 77/198
On-chip peripherals ST72324B-Auto
CPU clock
FFFD FFFE FFFF 0000 0001 0002 0003
Internal reset
Timer clock
Counter register
Timer Overflow Flag (TOF)
FFFC FFFD 0000 0001
CPU clock
Internal reset
Timer clock
Counter register
Timer Overflow Flag (TOF)
CPU clock
Internal reset
Timer clock
Counter register
Timer Overflow Flag (TOF)
FFFC FFFD
0000
External clock
The external clock (where available) is selected if CC0 = 1 and CC1 = 1 in the CR2 register.
The status of the EXEDG bit in the CR2 register determines the type of level transition on the external clock pin EXTCLK that will trigger the free running counter.
The counter is synchronized with the falling edge of the internal CPU clock.
A minimum of four falling edges of the CPU clock must occur between two consecutive active edges of the external clock; thus the external clock frequency must be less than a quarter of the CPU clock frequency.
Figure 36. Counter timing diagram, internal clock divided by 2
Figure 37. Counter timing diagram, internal clock divided by 4
Figure 38. Counter timing diagram, internal clock divided by 8
Note: The MCU is in reset state when the internal reset signal is high, when it is low the MCU is
running.
78/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
Input capture
In this section, the index, i, may be 1 or 2 because there are two input capture functions in the 16-bit timer.
The two 16-bit input capture registers (IC1R/IC2R) are used to latch the value of the free running counter after a transition is detected on the ICAPi pin (see Figure
Table 44. Input capture byte distribution
Register MS byte LS byte
ICiR ICiHR ICiLR
The ICiR registers are read-only registers.
The active transition is software programmable through the IEDGi bit of Control Registers (CRi).
40).
Timing resolution is one count of the free running counter: (f
/CC[1:0]).
CPU
Procedure
To use the input capture function select the following in the CR2 register:
Select the timer clock (CC[1:0]) (see Tabl e 5 0 ).
Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2
pin must be configured as floating input or input with pull-up without interrupt if this configuration is available).
Select the following in the CR1 register:
Set the ICIE bit to generate an interrupt after an input capture coming from either the
ICAP1 pin or the ICAP2 pin
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the
ICAP1pin must be configured as floating input or input with pull-up without interrupt if this configuration is available).
When an input capture occurs:
ICFi bit is set.
The ICiR register contains the value of the free running counter on the active transition
on the ICAPi pin (see Figure 40).
A timer interrupt is generated if the ICIE bit is set and the I bit is cleared in the CC
register. Otherwise, the interrupt remains pending until both conditions become true.
Clearing the Input Capture interrupt request (that is, clearing the ICFi bit) is done in two steps:
1. Reading the SR register while the ICFi bit is set
2. An access (read or write) to the ICiLR register
Doc ID13466 Rev 4 79/198
On-chip peripherals ST72324B-Auto
ICIE
CC0CC1
16-bit free running
counter
IEDG1
(Control register 1) CR1
(Control register 2) CR2
ICF2
ICF1 000
(Status register) SR
IEDG2
ICAP1
ICAP2
Edge Detect
circuit 2
16-bit
IC1R register
Edge Detect
circuit 1
pin
pin
IC2R register
FF01
FF02
FF03
FF03
Timer clock
Counter register
ICAPi pin
ICAPi flag
ICAPi register
Note: The rising edge is the active edge.
Note: 1 After reading the ICiHR register, transfer of input capture data is inhibited and ICFi will never
be set until the ICiLR register is also read.
2 The ICiR register contains the free running counter value which corresponds to the most
recent input capture.
3 The two input capture functions can be used together even if the timer also uses the two
output compare functions.
4 In One pulse mode and PWM mode only Input Capture 2 can be used.
5 The alternate inputs (ICAP1 and ICAP2) are always directly connected to the timer. So any
transitions on these pins activates the input capture function.
Moreover if one of the ICAPi pins is configured as an input and the second one as an output, an interrupt can be generated if the user toggles the output pin and if the ICIE bit is set.
This can be avoided if the input capture function i is disabled by reading the ICiHR (see note 1).
6 The TOF bit can be used with interrupt generation in order to measure events that go
beyond the timer range (FFFFh).
Figure 39. Input capture block diagram
Figure 40. Input capture timing diagram
80/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
OCiR =
t * f
CPU
PRESC
Output compare
In this section, the index, i, may be 1 or 2 because there are two output compare functions in the 16-bit timer.
This function can be used to control an output waveform or indicate when a period of time has elapsed.
When a match is found between the Output Compare register and the free running counter, the output compare function:
Assigns pins with a programmable value if the OCiE bit is set
Sets a flag in the status register
Generates an interrupt if enabled
Two 16-bit registers Output Compare register 1 (OC1R) and Output Compare register 2 (OC2R) contain the value to be compared to the counter register each timer clock cycle.
Table 45. Output compare byte distribution
Register MS byte LS byte
OCiR OCiHR OCiLR
These registers are readable and witable and are not affected by the timer hardware. A reset event changes the OC
iR value to 8000h.
Timing resolution is one count of the free running counter: (f
/CC[1:0]).
CPU
Procedure
To use the Output Compare function, select the following in the CR2 register:
Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output
compare i signal.
Select the timer clock (CC[1:0]) (see Tabl e 5 0 ).
And select the following in the CR1 register:
Select the OLVLi bit to applied to the OCMPi pins after the match occurs.
Set the OCIE bit to generate an interrupt if it is needed.
When a match is found between OCRi register and CR register:
OCFi bit is set
The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset)
A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is
cleared in the CC register (CC).
The OCiR register value required for a specific timing application can be calculated using the following formula:
Where: t = Output compare period (in seconds)
f
= CPU clock frequency (in hertz)
CPU
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits; see Ta bl e 50)
Doc ID13466 Rev 4 81/198
On-chip peripherals ST72324B-Auto
OCiR = t * f
EXT
If the timer clock is an external clock, the formula is:
Where: t = Output compare period (in seconds)
f
= External timer clock frequency (in hertz)
EXT
Clearing the output compare interrupt request (that is, clearing the OCFi bit) is done by:
1. Reading the SR register while the OCFi bit is set.
2. An access (read or write) to the OCiLR register.
The following procedure is recommended to prevent the OCFi bit from being set between the time it is read and the write to the OC
Write to the OCiHR register (further compares are inhibited).
Read the SR register (first step of the clearance of the OCFi bit, which may be already
iR register:
set).
Write to the OCiLR register (enables the output compare function and clears the OCFi
bit).
Note: 1 After a processor write cycle to the OCiHR register, the output compare function is inhibited
until the OCiLR register is also written.
2 If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not
appear when a match is found but an interrupt could be generated if the OCIE bit is set.
3 In both internal and external clock modes, OCFi and OCMPi are set while the counter value
equals the OCiR register value (see Figure 42 on page 83 for an example with f
Figure 43 on page 83 for an example with f
/4). This behavior is the same in OPM or
CPU
CPU
/2 and
PWM mode.
4 The output compare functions can be used both for generating external events on the
OCMPi pins even if the input capture mode is also used.
5 The value in the 16-bit OC
iR register and the OLVi bit should be changed after each
successful comparison in order to control an output waveform or establish a new elapsed timeout.
Forced output compare capability
When the FOLVi bit is set by software, the OLVLi bit is copied to the OCMPi pin. The OLVi bit has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE bit OCFi bit is then not set by hardware, and thus no interrupt request is generated.
The FOLVLi bits have no effect in both one pulse mode and PWM mode.
82/198 Doc ID13466 Rev 4
= 1). The
ST72324B-Auto On-chip peripherals
Output compare
16-bit
circuit
OC1R register
16-bit free running counter
OC1E CC0CC1OC2E
OLVL1OLVL2OCIE
(Control Register 1) CR1
(Control Register 2) CR2
000OCF2OCF1
(Status register) SR
16-bit
16-bit
OCMP1
OCMP2
Latch
1
Latch
2
OC2R register
Pin
Pin
FOLV2FOLV1
Internal CPU clock
Timer clock
Counter register
Output Compare register i (OCRi)
Output Compare flag i (OCFi)
OCMPi pin (OLVLi =1)
2ED3
2ED0 2ED1 2ED2
2ED3
2ED42ECF
Internal CPU clock
Timer clock
Counter register
Output Compare register i (OCRi)
2ED3
2ED0 2ED1 2ED2
2ED3
2ED42ECF
Output Compare flag i (OCFi)
OCMPi pin (OLVLi =1)
Figure 41. Output compare block diagram
Figure 42. Output compare timing diagram, f
Figure 43. Output compare timing diagram, f
TIMER
TIMER
= f
= f
CPU
CPU
/2
/4
Doc ID13466 Rev 4 83/198
On-chip peripherals ST72324B-Auto
event occurs
counter =
OC1R
OCMP1 = OLVL1
When
When
on ICAP1
OCMP1 = OLVL2
Counter is reset
to FFFCh
ICF1 bit is set
ICR1 = Counter
One Pulse mode
One Pulse mode enables the generation of a pulse when an external event occurs. This mode is selected via the OPM bit in the CR2 register.
The one pulse mode uses the Input Capture1 function and the Output Compare1 function.
Procedure
To use One Pulse mode:
1. Load the OC1R register with the value corresponding to the length of the pulse (see the
formula below).
2. Select the following in the CR1 register:
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the
pulse.
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the
pulse.
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the
ICAP1 pin must be configured as floating input).
3. Select the following in the CR2 register:
Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1
function. – Set the OPM bit. – Select the timer clock CC[1:0] (see Ta b l e 5 0 ).
Figure 44. One pulse mode cycle
Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is loaded on the OCMP1 pin, the ICF1 bit is set and the value FFFDh is loaded in the IC1R register.
Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the ICIE bit is set.
Clearing the Input Capture interrupt request (that is, clearing the ICFi bit) is done in two steps:
1. Reading the SR register while the ICFi bit is set.
2. An access (read or write) to the ICiLR register.
84/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
OCiR value =
t
* fCPU PRESC
- 5
OCiR = t * f
EXT
- 5
Counter
FFFC FFFD FFFE 2ED0 2ED1 2ED2
2ED3
FFFC FFFD
OLVL2
OLVL2OLVL1
ICAP1
OCMP1
Compare1
01F8
01F8
2ED3
IC1R
The OC1R register value required for a specific timing application can be calculated using the following formula:
Where: t = Pulse period (in seconds)
f
= CPU clock frequnency (in hertz)
CPU
PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits; see Ta ble 50)
If the timer clock is an external clock the formula is:
Where: t = Pulse period (in seconds)
f
EXT
= External timer clock frequency (in hertz)
When the value of the counter is equal to the value of the contents of the OC1R register, the OLVL1 bit is output on the OCMP1 pin (see
Figure 45).
Note: 1 The OCF1 bit cannot be set by hardware in one pulse mode but the OCF2 bit can generate
an Output Compare interrupt.
2 When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the
PWM mode is the only active one.
3 If OLVL1 = OLVL2 a continuous signal will be seen on the OCMP1 pin.
4 The ICAP1 pin can not be used to perform input capture. The ICAP2 pin can be used to
perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each time a valid edge occurs on the ICAP1 pin and ICF1 can also generates interrupt if ICIE is set.
5 When one pulse mode is used OC1R is dedicated to this mode. Nevertheless OC2R and
OCF2 can be used to indicate a period of time has been elapsed but cannot generate an output waveform because the level OLVL2 is dedicated to the one pulse mode.
Figure 45. One Pulse mode timing example
(1)
1. IEDG1 = 1, OC1R = 2ED0h, OLVL1 = 0, OLVL2 = 1
Doc ID13466 Rev 4 85/198
On-chip peripherals ST72324B-Auto
Counter
34E2
34E2 FFFC
OLVL2
OLVL2
OLVL1
OCMP1
compare2 compare1 compare2
FFFC FFFD FFFE
2ED0
2ED1
2ED2
Figure 46. Pulse width modulation mode timing example with two output compare
functions
1. OC1R = 2ED0h, OC2R = 34E2, OLVL1 = 0, OLVL2 = 1
2. On timers with only one Output Compare register, a fixed frequency PWM signal can be generated using the output compare and the counter overflow to define the pulse length.
(1)(2)
Pulse Width Modulation mode
Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency and pulse length determined by the value of the OC1R and OC2R registers.
Pulse Width Modulation mode uses the complete Output Compare 1 function plus the OC2R register, and so this functionality can not be used when PWM mode is activated.
In PWM mode, double buffering is implemented on the output compare registers. Any new values written in the OC1R and OC2R registers are taken into account only at the end of the PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).
Procedure
To use Pulse Width Modulation mode:
1. Load the OC2R register with the value corresponding to the period of the signal using
the formula below.
2. Load the OC1R register with the value corresponding to the period of the pulse if
(OLVL1
3. Select the following in the CR1 register:
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a
4. Select the following in the CR2 register:
Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function. – Set the PWM bit. – Select the timer clock (CC[1:0]) (see Table 50).
= 0 and OLVL2 = 1) using the formula in the opposite column.
successful comparison with the OC1R register.
successful comparison with the OC2R register.
86/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
counter
OCMP1 = OLVL2
counter
= OC2R
OCMP1 = OLVL1
When
When
= OC1R
counter is reset
to FFFCh
ICF1 bit is set
OCiR value =
t
* fCPU
PRESC
- 5
OCiR = t * f
EXT
- 5
Figure 47. Pulse width modulation cycle
If OLVL1 = 1 and OLVL2 = 0, the length of the positive pulse is the difference between the OC2R and OC1R registers.
If OLVL1 = OLVL2, a continuous signal will be seen on the OCMP1 pin.
The OC1R register value required for a specific timing application can be calculated using the following formula:
Where: t = Signal or pulse period (in seconds)
f
= CPU clock frequnency (in hertz)
CPU
PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits; see Ta ble 50)
If the timer clock is an external clock the formula is:
Where: t = Signal or pulse period (in seconds)
f
EXT
= External timer clock frequency (in hertz)
The Output Compare 2 event causes the counter to be initialized to FFFCh (see Ta bl e 46).
Note: 1 After a write instruction to the OCiHR register, the output compare function is inhibited until
the OCiLR register is also written.
2 The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output
Compare interrupt is inhibited.
3 The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce
a timer interrupt if the ICIE bit is set and the I bit is cleared.
4 In PWM mode the ICAP1 pin can not be used to perform input capture because it is
disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each period and ICF1 can also generates interrupt if ICIE is set.
5 When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the
PWM mode is the only active one.
Doc ID13466 Rev 4 87/198
On-chip peripherals ST72324B-Auto

10.3.4 Low power modes

Table 46. Effect of low power modes on 16-bit timer
Mode Description
Wait
Halt

10.3.5 Interrupts

Table 47. 16-bit timer interrupt control/wake-up capability
Interrupt event Event flag Enable Control bit Exit from WAIT Exit from HALT
Input Capture 1 event/counter reset in PWM mode
Input Capture 2 event ICF2
Output Compare 1 event (not available in PWM mode)
Output Compare 2 event (not available in PWM mode)
Timer Overflow event TOF TOIE
No effect on 16-bit timer. Timer interrupts cause the device to exit from Wait mode.
16-bit timer registers are frozen. In Halt mode, the counter stops counting until Halt mode is exited. Counting resumes
from the previous count when the MCU is woken up by an interrupt with Exit from Halt mode capability or from the counter reset value when the MCU is woken up by a reset.
If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is armed. Consequently, when the MCU is woken up by an interrupt with Exit from Halt mode capability, the ICFi bit is set, and the counter value present when exiting from Halt mode is captured into the ICiR register.
(1)
ICF1
ICIE
OCF1
Ye s N o
OCIE
OCF2
1. The 16-bit timer interrupt events are connected to the same interrupt vector (see Section 7: Interrupts). These events generate an interrupt if the corresponding Enable Control bit is set and the interrupt mask in the CC register is reset (RIM instruction).
88/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals

10.3.6 Summary of timer modes

Table 48. Summary of timer modes
Timer resources
Mode
Input
Capture 1
Input
Capture 2
Output
Compare 1
Output
Compare 2
Input Capture (1 and/or 2)
Ye s Ye s Ye s Ye s
Output Compare (1 and/or 2)
One Pulse mode
Not recommended
No
PWM mode Not recommended
1. See note 4 in One Pulse mode on page 84.
2. See note 5 in One Pulse mode on page 84.
3. See note 4 in Pulse Width Modulation mode on page 86.
(1)
(3)
No
Partially
(2)
No

10.3.7 16-bit timer registers

Each timer is associated with three control and status registers, and with six pairs of data registers (16-bit values) relating to the two input captures, the two output compares, the counter and the alternate counter.
Control Register 1 (CR1)
CR1 Reset value: 0000 0000 (00h)
76543210
ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1
R/W R/W R/W R/W R/W R/W R/W R/W
M
Table 49. CR1 register description
Bit Name Function
Input Capture Interrupt Enable
7ICIE
6OCIE
0: Interrupt is inhibited. 1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is set.
Output Compare Interrupt Enable
0: Interrupt is inhibited. 1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register is set.
5TOIE
Timer Overflow Interrupt Enable
0: Interrupt is inhibited. 1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.
Doc ID13466 Rev 4 89/198
On-chip peripherals ST72324B-Auto
Table 49. CR1 register description (continued)
Bit Name Function
Forced Output compare 2
This bit is set and cleared by software.
4FOLV2
3FOLV1
2OLVL2
1IEDG1
0OLVL1
0: No effect on the OCMP2 pin. 1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and even if there is no successful comparison.
Forced Output compare 1
This bit is set and cleared by software. 0: No effect on the OCMP1 pin. 1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there is no successful comparison.
Output Level 2
This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 pin in One Pulse mode and Pulse Width modulation mode.
Input Edge 1
This bit determines which type of level transition on the ICAP1 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture.
Output Level 1
The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register.
Control Register 2 (CR2)
CR2 Reset value: 0000 0000 (00h)
76543210
OC1E OC2E OPM PWM CC[1:0] IEDG2 EXEDG
R/W R/W R/W R/W R/W R/W R/W
90/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
M
Table 50. CR2 register description
Bit Name Function
Output Compare 1 Pin Enable This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in
7OCIE
6OC2E
5OPM
4PWM
3:2 CC[1:0]
Output Compare mode, both OLV1 and OLV2 in PWM and One-Pulse mode). Whatever the value of the OC1E bit, the Output Compare 1 function of the timer remains active. 0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O). 1: OCMP1 pin alternate function enabled.
Output Compare 2 Pin Enable This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in
Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2 function of the timer remains active. 0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O). 1: OCMP2 pin alternate function enabled.
One Pulse Mode
0: One Pulse mode is not active. 1: One Pulse mode is active, the ICAP1 pin can be used to trigger one pulse on the OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the generated pulse depends on the contents of the OC1R register.
Pulse Width Modulation
0: PWM mode is not active. 1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the length of the pulse depends on the value of OC1R register; the period depends on the value of OC2R register.
Clock Control
The timer clock mode depends on these bits. 00: Timer clock = f 01: Timer clock = f 10: Timer clock = f
CPU CPU CPU
/4 /2 /8
11: Timer clock = external clock (where available)
Note: If the external clock pin is not available, programming the external clock configuration stops the counter.
1IEDG2
0 EXEDG
Input Edge 2
This bit determines which type of level transition on the ICAP2 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture.
External Clock Edge
This bit determines which type of level transition on the external clock pin EXTCLK will trigger the counter register. 0: A falling edge triggers the counter register. 1: A rising edge triggers the counter register.
Doc ID13466 Rev 4 91/198
On-chip peripherals ST72324B-Auto
Control/Status Register (CSR)
CSR Reset value: xxxx x0xx (xxh)
76543210
ICF1 OCF1 TOF ICF2 OCF2 TIMD Reserved
RO RO RO RO RO R/W -
M
Table 51. CSR register description
Bit Name Function
Input Capture Flag 1
0: No Input Capture (reset value).
7ICF1
6OCF1
1: An Input Capture has occurred on the ICAP1 pin or the counter has reached the OC2R value in PWM mode. To clear this bit, first read the SR register, then read or write the low byte of the IC1R (IC1LR) register.
Output Compare Flag 1
0: No match (reset value). 1: The content of the free running counter has matched the content of the OC1R register. To clear this bit, first read the SR register, then read or write the low byte of the OC1R (OC1LR) register.
Timer Overflow Flag
0: No timer overflow (reset value).
5TOF
1: The free running counter rolled over from FFFFh to 0000h. To clear this bit, first read the SR register, then read or write the low byte of the CR (CLR) register.
Note: Reading or writing the ACLR register does not clear TOF.
Input Capture Flag 2
4ICF2
0: No input capture (reset value). 1: An Input Capture has occurred on the ICAP2 pin. To clear this bit, first read the SR register, then read or write the low byte of the IC2R (IC2LR) register.
Output Compare Flag 2
0: No match (reset value).
3OCF2
1: The content of the free running counter has matched the content of the OC2R register. To clear this bit, first read the SR register, then read or write the low byte of the OC2R (OC2LR) register.
Timer Disable
This bit is set and cleared by software. When set, it freezes the timer prescaler and counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce
2TIMD
power consumption. Access to the timer registers is still available, allowing the timer configuration to be changed, or the counter reset, while it is disabled. 0: Timer enabled. 1: Timer prescaler, counter and outputs disabled.
1:0 - Reserved, must be kept cleared.
92/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
Input Capture 1 High Register (IC1HR)
This is an 8-bit register that contains the high part of the counter value (transferred by the input capture 1 event).
IC1HR Reset value: undefined
76543210
MSB LSB
RO RO RO RO RO RO RO RO
Doc ID13466 Rev 4 93/198
On-chip peripherals ST72324B-Auto
Input Capture 1 Low Register (IC1LR)
This is an 8-bit register that contains the low part of the counter value (transferred by the input capture 1 event).
IC1LR Reset value: undefined
76543210
MSB LSB
RO RO RO RO RO RO RO RO
Output Compare 1 High Register (OC1HR)
This is an 8-bit register that contains the high part of the value to be compared to the CHR register.
OC1HR Reset value: 1000 0000 (80h)
76543210
MSB LSB
R/W R/W R/W R/W R/W R/W R/W R/W
Output Compare 1 Low Register (OC1LR)
This is an 8-bit register that contains the low part of the value to be compared to the CLR register.
OC1LR Reset value: 0000 0000 (00h)
76543210
MSB LSB
R/W R/W R/W R/W R/W R/W R/W R/W
Output Compare 2 High Register (OC2HR)
This is an 8-bit register that contains the high part of the value to be compared to the CHR register.
OC2HR Reset value: 1000 0000 (80h)
76543210
MSB LSB
R/W R/W R/W R/W R/W R/W R/W R/W
94/198 Doc ID13466 Rev 4
ST72324B-Auto On-chip peripherals
Output Compare 2 Low Register (OC2LR)
This is an 8-bit register that contains the low part of the value to be compared to the CLR register.
OC2LR Reset value: 0000 0000 (00h)
76543210
MSB LSB
R/W R/W R/W R/W R/W R/W R/W R/W
Counter High Register (CHR)
This is an 8-bit register that contains the high part of the counter value.
CHR Reset value: 1111 1111 (FFh)
76543210
MSB LSB
RO RO RO RO RO RO RO RO
Counter Low Register (CLR)
This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after accessing the CSR register clears the TOF bit.
CLR Reset value: 1111 1100 (FCh)
76543210
MSB LSB
RO RO RO RO RO RO RO RO
Alternate Counter High Register (ACHR)
This is an 8-bit register that contains the high part of the counter value.
ACHR Reset value: 1111 1111 (FFh)
76543210
MSB LSB
RO RO RO RO RO RO RO RO
Doc ID13466 Rev 4 95/198
On-chip peripherals ST72324B-Auto
Alternate Counter Low Register (ACLR)
This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after an access to CSR register does not clear the TOF bit in the CSR register.
ACLR Reset value: 1111 1100 (FCh)
76543210
MSB LSB
RO RO RO RO RO RO RO RO
Input Capture 2 High Register (IC2HR)
This is an 8-bit register that contains the high part of the counter value (transferred by the Input Capture 2 event).
1C2HR Reset value: undefined
76543210
MSB LSB
RO RO RO RO RO RO RO RO
Input Capture 2 Low Register (IC2LR)
This is an 8-bit register that contains the low part of the counter value (transferred by the Input Capture 2 event).
1C2LR Reset value: undefined
76543210
MSB LSB
RO RO RO RO RO RO RO RO
Table 52. 16-bit timer register map and reset values
Address
(Hex.)
Timer A: 32 Timer B: 42
Timer A: 31 Timer B: 41
Timer A: 33 Timer B: 43
Register
label
CR1 Reset value
CR2 Reset value
CSR Reset value
76543210
ICIE
0
OCIE
0
TOIE0FOLV20FOLV10OLVL20IEDG10OLVL1
OC1E0OC2E0OPM
0
ICF1
x
OCF1
x
TOF
x
PWM
0
ICF2
x
CC1
0
OCF2
x
0
CC00IEDG20EXEDG
0
TIMD
0
-
x
-
x
Timer A: 34 Timer B: 44
IC1HR Reset value
MSB
xxxxxxx
96/198 Doc ID13466 Rev 4
LSB
x
ST72324B-Auto On-chip peripherals
Table 52. 16-bit timer register map and reset values (continued)
Address
(Hex.)
Timer A: 35 Timer B: 45
Timer A: 36 Timer B: 46
Timer A: 37 Timer B: 47
Timer A: 3E Timer B: 4E
Timer A: 3F Timer B: 4F
Timer A: 38 Timer B: 48
Timer A: 39 Timer B: 49
Timer A: 3A Timer B: 4A
Timer A: 3B Timer B: 4B
Timer A: 3C Timer B: 4C
Register
label
IC1LR Reset value
OC1HR Reset value
OC1LR Reset value
OC2HR Reset value
OC2LR Reset value
CHR Reset value
CLR Reset value
ACHR Reset value
ACLR Reset value
IC2HR Reset value
76543210
MSB
xxxxxxx
MSB
1000000
MSB
0000000
MSB
1000000
MSB
0000000
MSB
1111111
MSB
1111110
MSB
1111111
MSB
1111110
MSB
xxxxxxx
LSB
x
LSB
0
LSB
0
LSB
0
LSB
0
LSB
1
LSB
0
LSB
1
LSB
0
LSB
x
Timer A: 3D Timer B: 4D
IC2LR Reset value
MSB
xxxxxxx

10.4 Serial peripheral interface (SPI)

10.4.1 Introduction

The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication with external devices. An SPI system may consist of a master and one or more slaves. However, the SPI interface can not be a master in a multi-master system.

10.4.2 Main features

Full duplex synchronous transfers (on 3 lines)
Simplex synchronous transfers (on 2 lines)
Master or slave operation
6 master mode frequencies (f
f
SS Management by software or hardware
Programmable clock polarity and phase
End of transfer interrupt flag
Write collision, Master mode fault and Overrun flags
/2 max. slave mode frequency (see note)
CPU
CPU
/4 max.)
LSB
x
Doc ID13466 Rev 4 97/198
On-chip peripherals ST72324B-Auto
SPIDR
Read Buffer
8-bit Shift Register
Write
Read
Data/Address bus
SPI
SPIE SPE MSTR CPHA SPR0SPR1CPOL
Serial clock
generator
MOSI
MISO
SS
SCK
control
state
SPICR
SPICSR
Interrupt
request
Master
control
SPR2
0
7
0
7
SPIF WCOL MODF
0
OVR SS ISSMSOD
SOD
bit
SS
1
0
Note: In slave mode, continuous transmission is not possible at maximum frequency due to the
software overhead for clearing status flags and to initiate the next transmission sequence.

10.4.3 General description

Figure 49 shows the serial peripheral interface (SPI) block diagram. The SPI has three
registers:
SPI Control Register (SPICR)
SPI Control/Status Register (SPICSR)
SPI Data Register (SPIDR)
The SPI is connected to external devices through four pins:
MISO: Master In / Slave Out data
MOSI: Master Out / Slave In data
SCK: Serial Clock out by SPI masters and input by SPI slaves
SS: Slave select: This input signal acts as a ‘chip select’ to let the SPI master
communicate with slaves individually and to avoid contention on the data lines. Slave SS
inputs can be driven by standard I/O ports on the master MCU.
Figure 48. Serial peripheral interface block diagram
98/198 Doc ID13466 Rev 4
Functional description
A basic example of interconnections between a single master and a single slave is illustrated in
Figure 49.
ST72324B-Auto On-chip peripherals
8-bit Shift Register
SPI
clock
generator
8-bit Shift Register
MISO
MOSI
MOSI
MISO
SCK
SCK
Slave
Master
SS
SS
+5V
MSB LSB MSB LSB
Not used if SS is managed
by software
The MOSI pins are connected together and the MISO pins are connected together. In this way data is transferred serially between master and slave (most significant bit first).
The communication is always initiated by the master. When the master device transmits data to a slave device via MOSI pin, the slave device responds by sending data to the master device via the MISO pin. This implies full duplex communication with both data out and data in synchronized with the same clock signal (which is provided by the master device via the SCK pin).
To use a single data line, the MISO and MOSI pins must be connected at each node (in this case only simplex communication is possible).
Four possible data/clock timing relationships may be chosen (see Figure 52) but master and slave must be programmed with the same timing mode.
Figure 49. Single master/single slave application
Slave Select management
As an alternative to using the SS pin to control the Slave Select signal, the application can choose to manage the Slave Select signal by software. This is configured by the SSM bit in the SPICSR register (see
In software management, the external SS pin is free for other application uses and the internal
SS signal level is driven by writing to the SSI bit in the SPICSR register.
In Master mode:
SS internal must be held high continuously
Depending on the data/clock timing relationship, there are two cases in Slave mode (see
Figure 50):
If CPHA = 1 (data latched on second clock edge):
SS internal must be held low during the entire transmission. This implies that in single
slave applications the SS managing the SS register)
If CPHA = 0 (data latched on first clock edge):
SS internal must be held low during byte transmission and pulled high between each
byte to allow the slave to write to the shift register. If SS
Figure 51).
pin either can be tied to VSS, or made free for standard I/O by
function by software (SSM = 1 and SSI = 0 in the in the SPICSR
is not pulled high, a Write
Doc ID13466 Rev 4 99/198
On-chip peripherals ST72324B-Auto
Byte 1 Byte 2
Byte 3
MOSI/MISO
Master SS
Slave SS (if CPHA=0)
Slave SS (if CPHA=1)
1
0
SS internal
SSM bit
SSI bi
t
SS external pin
Collision error will occur when the slave writes to the shift register (seeWrite collision
error (WCOL) on page 103).
Figure 50. Generic SS
timing diagram
Figure 51. Hardware/software slave select management
Master mode operation
In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and phase are configured by software (refer to the description of the SPICSR register).
Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by
pulling up SCK if CPOL
= 1 or pulling down SCK if CPOL = 0).
How to operate the SPI in master mode
To operate the SPI in master mode, perform the following steps in order:
1. Write to the SPICR register:
Select the clock frequency by configuring the SPR[2:0] bits. Select the clock polarity and clock phase by configuring the CPOL and CPHA bits.
Figure 52 shows the four possible configurations.
Note: The slave must have the same CPOL and CPHA settings as the master.
2. Write to the SPICSR register:
Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin
high for the complete byte transmit sequence.
3. Write to the SPICR register:
Set the MSTR and SPE bits.
Note: MSTR and SPE bits remain set only if SS
is high.
Caution: If the SPICSR register is not written first, the SPICR register setting (MSTR bit) might not be
taken into account.
The transmit sequence begins when software writes a byte in the SPIDR register.
100/198 Doc ID13466 Rev 4
Loading...