ST ST10F276E User Manual

ST10F276E

16-bit MCU with MAC unit,

832 Kbyte Flash memory and 68 Kbyte RAM

Features

Highly performance 16-bit CPU with DSP functions

31.25ns instruction cycle time at 64MHz max CPU clock

Multiply/accumulate unit (MAC) 16 x 16-bit multiplication, 40-bit accumulator

Enhanced boolean bit manipulations

Single-cycle context switching support

On-chip memories

512 Kbyte Flash memory (32-bit fetch)

320 Kbyte extension Flash memory (16-bit fetch)

Single voltage Flash memories with erase/program controller and 100K erasing/programming cycles

Up to 16 Mbyte linear address space for code and data (5 Mbytes with CAN or I2C)

2 Kbyte internal RAM (IRAM)

66 Kbyte extension RAM (XRAM)

External bus

Programmable external bus configuration & characteristics for different address ranges

5 programmable chip-select signals

Hold-acknowledge bus arbitration support

Interrupt

8-channel peripheral event controller for single cycle interrupt driven data transfer

16-priority-level interrupt system with 56 sources, sampling rate down to 15.6ns

Timers

2 multi-functional general purpose timer units with 5 timers

Two 16-channel capture / compare units

 

LQFP144 (20 x 20 x 1.4mm)

PQFP144 (28 x 28 x 3.4mm)

(Low profile plastic quad

flat package)

(Plastic quad flat package)

 

4-channel PWM unit + 4-channel XPWM

A/D converter

24-channel 10-bit

3 µs minimum conversion time

Serial channels

2 synch. / asynch. serial channels

2 high-speed synchronous channels

1 I2C standard interface

2 CAN 2.0B interfaces operating on 1 or 2 CAN busses (64 or 2x32 message, C-CAN version)

Fail-safe protection

Programmable watchdog timer

Oscillator watchdog

On-chip bootstrap loader

Clock generation

On-chip PLL with 4 to 12 MHz oscillator

Direct or prescaled clock input

Real-time clock and 32 kHz on-chip oscillator

Up to 111 general purpose I/O lines

Individually programmable as input, output or special function

Programmable threshold (hysteresis)

Idle, power down and stand-by modes

Single voltage supply: 5V ±10% (embedded regulator for 1.8 V core supply)

August 2008

Rev 2

1/231

www.st.com

Contents

ST10F276E

 

 

Contents

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

2

Pin data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

3

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

4

Internal Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

4.1

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

4.2

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

4.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.2 Modules structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.3 Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.4 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.5 Power supply drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3

Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

4.3.1

Flash control register 0 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

4.3.2

Flash control register 0 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

4.3.3

Flash control register 1 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

 

4.3.4

Flash control register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

 

4.3.5

Flash data register 0 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

 

4.3.6

Flash data register 0 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

 

4.3.7

Flash data register 1 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

 

4.3.8

Flash data register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

4.3.9

Flash address register low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

4.3.10

Flash address register high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

 

4.3.11

Flash error register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

 

4.3.12

XFlash interface control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

4.4

Protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

4.4.1 Protection registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4.2 Flash non-volatile write protection X register low . . . . . . . . . . . . . . . . . . 37 4.4.3 Flash non-volatile write protection X register high . . . . . . . . . . . . . . . . . 38 4.4.4 Flash non-volatile write protection I register low . . . . . . . . . . . . . . . . . . 38 4.4.5 Flash non-volatile write protection I register high . . . . . . . . . . . . . . . . . 38 4.4.6 Flash non-volatile access protection register 0 . . . . . . . . . . . . . . . . . . . 39

2/231

ST10F276E

Contents

 

 

4.4.7 Flash non-volatile access protection register 1 low . . . . . . . . . . . . . . . . 39 4.4.8 Flash non-volatile access protection register 1 high . . . . . . . . . . . . . . . 40 4.4.9 Access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4.10 Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.11 Temporary unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Write operation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.6 Write operation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5

Bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

 

5.1

Selection among user-code, standard or alternate bootstrap . . . . . . . . .

46

 

5.2

Standard bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

5.2.1 Entering the standard bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2.2 ST10 configuration in BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.3 Booting steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.4 Hardware to activate BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.5 Memory configuration in bootstrap loader mode . . . . . . . . . . . . . . . . . . 51 5.2.6 Loading the start-up code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2.7 Exiting bootstrap loader mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.8 Hardware requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3

Standard bootstrap with UART (RS232 or K-Line) . . . . . . . . . . . . . . . . . .

53

 

5.3.1

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

 

5.3.2

Entering bootstrap via UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

 

5.3.3

ST10 Configuration in UART BSL (RS232 or K-Line) . . . . . . . . . . . . . .

55

 

5.3.4

Loading the start-up code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55

 

5.3.5

Choosing the baud rate for the BSL via UART . . . . . . . . . . . . . . . . . . .

56

5.4 Standard bootstrap with CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

 

5.4.1

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

 

5.4.2

Entering the CAN bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

 

5.4.3

ST10 configuration in CAN BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60

 

5.4.4

Loading the start-up code via CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60

 

5.4.5

Choosing the baud rate for the BSL via CAN . . . . . . . . . . . . . . . . . . . .

61

 

5.4.6

Computing the baud rate error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

 

5.4.7

Bootstrap via CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

5.5

Comparing the old and the new bootstrap loader . . . . . . . . . . . . . . . . . .

65

5.5.1 Software aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5.2 Hardware aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3/231

Contents ST10F276E

5.6

Alternate boot mode (ABM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

 

5.6.1

Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

 

5.6.2

Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

 

5.6.3

Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

 

5.6.4

ST10 configuration in alternate boot mode . . . . . . . . . . . . . . . . . . . . . .

66

 

5.6.5

Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

67

 

5.6.6

Exiting alternate boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

67

 

5.6.7

Alternate boot user software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

67

 

5.6.8

User/alternate mode signature integrity check . . . . . . . . . . . . . . . . . . .

67

 

5.6.9

Alternate boot user software aspects . . . . . . . . . . . . . . . . . . . . . . . . . .

68

 

5.6.10

EMUCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68

 

5.6.11

Internal decoding of test modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68

 

5.6.12

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69

5.7 Selective boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6

Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71

 

6.1

Multiplier-accumulator unit (MAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

72

 

6.2

Instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

73

 

6.3

MAC coprocessor specific instructions . . . . . . . . . . . . . . . . . . . . . . . . . . .

75

7

External bus controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

8

Interrupt system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77

 

8.1

X-Peripheral interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

79

 

8.2

Exception and error traps list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

81

9

Capture / compare (CAPCOM) units . . . . . . . . . . . . . . . . . . . . . . . . . . .

82

10

General purpose timer unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

 

10.1

GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

 

10.2

GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

86

11

PWM modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

88

12

Parallel ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

 

12.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

 

12.2

I/O’s special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

4/231

 

 

 

 

 

 

 

ST10F276E

 

 

Contents

 

 

 

 

 

12.2.1

Open drain mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 89

 

12.2.2

Input threshold control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 90

 

12.3 Alternate port functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 90

13

A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 92

14

Serial channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 94

14.1 Asynchronous / synchronous serial interfaces . . . . . . . . . . . . . . . . . . . . . 94 14.2 ASCx in asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 14.3 ASCx in synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14.4 High speed synchronous serial interfaces . . . . . . . . . . . . . . . . . . . . . . . . 96

15

I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 98

16

CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 99

 

16.1

Configuration support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 99

 

16.2

CAN bus configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100

17

Real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

102

18

Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

103

19

System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

104

 

19.1

Input filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

104

 

19.2

Asynchronous reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

105

 

19.3

Synchronous reset (warm reset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

110

 

19.4

Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

115

 

19.5

Watchdog timer reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

116

 

19.6

Bidirectional reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

117

 

19.7

Reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

121

 

19.8

Reset application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

124

 

19.9

Reset summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

126

20

Power reduction modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

 

20.1

Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

 

20.2

Power down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

 

 

 

5/231

 

 

 

 

Contents

ST10F276E

 

 

20.2.1 Protected power down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 20.2.2 Interruptible power down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

20.3 Stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

20.3.1 Entering stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 20.3.2 Exiting stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 20.3.3 Real-time clock and stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 20.3.4 Power reduction modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

21

Programmable output clock divider . . . . . . . . . . . . . . . . . . . . . . . . . .

134

22

Register set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135

 

22.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135

 

22.2

Register description format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135

 

22.3

General purpose registers (GPRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

136

 

22.4

Special function registers ordered by name . . . . . . . . . . . . . . . . . . . . .

138

 

22.5

Special function registers ordered by address . . . . . . . . . . . . . . . . . . . .

145

 

22.6

X-registers sorted by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

152

 

22.7

X-registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157

 

22.8

Flash registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

162

 

22.9

Flash registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . .

163

 

22.10

Identification registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

164

 

22.11

System configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

166

 

22.12

XPERCON and XPEREMU registers . . . . . . . . . . . . . . . . . . . . . . . . . . .

173

 

22.13

Emulation dedicated registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

174

23

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

175

23.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 23.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 23.3 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 23.4 Parameter interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 23.5 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 23.6 Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 23.7 A/D converter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

23.7.1 Conversion timing control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 23.7.2 A/D conversion accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6/231

ST10F276E

Contents

 

 

23.7.3 Total unadjusted error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 23.7.4 Analog reference pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 23.7.5 Analog input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 23.7.6 Example of external network sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

23.8 AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

193

23.8.1

Test waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

193

23.8.2

Definition of internal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

194

23.8.3

Clock generation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

195

23.8.4

Prescaler operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

195

23.8.5

Direct drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

195

23.8.6

Oscillator watchdog (OWD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

196

23.8.7

Phase locked loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

196

23.8.8

Voltage controlled oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

197

23.8.9

PLL Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

198

23.8.10

Jitter in the input clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

198

23.8.11

Noise in the PLL loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

198

23.8.12

PLL lock/unlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

200

23.8.13

Main oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

200

23.8.14

32 kHz oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

201

23.8.15

External clock drive XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

202

23.8.16

Memory cycle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

203

23.8.17

External memory bus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

204

23.8.18

Multiplexed bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

204

23.8.19

Demultiplexed bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

210

23.8.20

CLKOUT and READY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

216

23.8.21

External bus arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

218

23.8.22

High-speed synchronous serial interface (SSC) timing modes . . . . . .

220

24

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

224

 

24.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

224

25

Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

228

26

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

229

7/231

List of tables

ST10F276E

 

 

List of tables

Table 1. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 2. Flash modules absolute mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 3. Flash modules sectorization (read operations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 4. Flash modules sectorization (write operations or with ROMS1 = ‘1’) . . . . . . . . . . . . . . . . . 26 Table 5. Control register interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6. Flash control register 0 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 7. Flash control register 0 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 8. Flash control register 1 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 9. Flash control register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 10. Banks (BxS) and sectors (BxFy) status bits meaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 11. Flash data register 0 low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 12. Flash data register 0 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 13. Flash data register 1 low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 14. Flash data register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 15. Flash address register low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 16. Flash address register high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 17. Flash error register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 18. XFlash interface control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 19. Flash non-volatile write protection X register low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 20. Flash non-volatile write protection X register high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 21. Flash non-volatile write protection I register low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 22. Flash non-volatile write protection I register high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 23. Flash non-volatile access protection register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 24. Flash non-volatile access protection register 1 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 25. Flash non-volatile access protection register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 26. Summary of access protection level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 27. Flash write operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 28. ST10F276E boot mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 29. ST10 configuration in BSL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 30. ST10 configuration in UART BSL mode (RS232 or K-line). . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 31. ST10 configuration in CAN BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 32. BRP and PT0 values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 33. Software topics summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 34. Hardware topics summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 35. ST10 configuration in alternate boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 36. ABM bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 37. Selective boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 38. Standard instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 39. MAC instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 40. Interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 41. X-Interrupt detailed mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 42. Trap priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 43. Compare modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 44. CAPCOM timer input frequencies, resolutions and periods at 40 MHz . . . . . . . . . . . . . . . 83 Table 45. CAPCOM timer input frequencies, resolutions and periods at 64 MHz . . . . . . . . . . . . . . . 83 Table 46. GPT1 timer input frequencies, resolutions and periods at 40 MHz. . . . . . . . . . . . . . . . . . . 84 Table 47. GPT1 timer input frequencies, resolutions and periods at 64 MHz. . . . . . . . . . . . . . . . . . . 85 Table 48. GPT2 timer input frequencies, resolutions and periods at 40 MHz. . . . . . . . . . . . . . . . . . . 86

8/231

ST10F276E

List of tables

 

 

Table 49. GPT2 timer input frequencies, resolutions and periods at 64 MHz. . . . . . . . . . . . . . . . . . . 86 Table 50. PWM unit frequencies and resolutions at 40 MHz CPU clock . . . . . . . . . . . . . . . . . . . . . . 88 Table 51. PWM unit frequencies and resolutions at 64 MHz CPU clock . . . . . . . . . . . . . . . . . . . . . . 88 Table 52. ASC asynchronous baud rates by reload value and deviation errors (fCPU = 40 MHz) . . 94 Table 53. ASC asynchronous baud rates by reload value and deviation errors (fCPU = 64 MHz) . . 95 Table 54. ASC synchronous baud rates by reload value and deviation errors (fCPU = 40 MHz) . . . 95 Table 55. ASC synchronous baud rates by reload value and deviation errors (fCPU = 64 MHz) . . . 96 Table 56. Synchronous baud rate and reload values (fCPU = 40 MHz). . . . . . . . . . . . . . . . . . . . . . . 97 Table 57. Synchronous baud rate and reload values (fCPU = 64 MHz). . . . . . . . . . . . . . . . . . . . . . . 97 Table 58. WDTREL reload value (fCPU = 40 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 59. WDTREL reload value (fCPU = 64 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 60. Reset event definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 61. Reset event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 62. PORT0 latched configuration for the different reset events . . . . . . . . . . . . . . . . . . . . . . . 127 Table 63. Power reduction modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Table 64. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 65. General purpose registers (GPRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Table 66. General purpose registers (GPRs) bytewise addressing . . . . . . . . . . . . . . . . . . . . . . . . . 136 Table 67. Special function registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Table 68. Special function registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Table 69. X-Registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 70. X-registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 71. Flash registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Table 72. Flash registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Table 73. MANUF description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Table 74. IDCHIP description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Table 75. IDMEM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Table 76. IDPROG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Table 77. SYSCON description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 78. BUSCON4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Table 79. RPOH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Table 80. EXIxES bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 81. EXISEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 82. EXIxSS and port 2 pin configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 83. SFR area description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Table 84. ESFR description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Table 85. Segment 8 address range mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Table 86. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Table 87. Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Table 88. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Table 89. Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Table 90. DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Table 91. Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Table 92. Data retention characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Table 93. A/D converter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Table 94. A/D converter programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Table 95. On-chip clock generator selections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Table 96. Internal PLL divider mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Table 97. PLL lock/unlock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Table 98. Main oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Table 99. Negative resistance (absolute min. value @125oC / VDD = 4.5V). . . . . . . . . . . . . . . . . . 201 Table 100. 32 kHz Oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9/231

List of tables

ST10F276E

 

 

Table 101. Minimum values of negative resistance (module). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Table 102. External clock drive timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Table 103. Memory cycle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Table 104. Multiplexed bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Table 105. Demultiplexed bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Table 106. CLKOUT and READY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Table 107. External bus arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Table 108. Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Table 109. Slave mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Table 110. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Table 111. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10/231

ST10F276E

List of figures

 

 

List of figures

Figure 1. Logic symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 2. Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 4. Flash modules structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 5. ST10F276E new standard bootstrap loader program flow . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 6. Booting steps for ST10F276E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 7. Hardware provisions to activate the BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 8. Memory configuration after reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 9. UART bootstrap loader sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 10. Baud rate deviation between host and ST10F276E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 11. CAN bootstrap loader sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 12. Bit rate measurement over a predefined zero-frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 13. Reset boot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 14. CPU Block Diagram (MAC Unit not included). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Figure 15. MAC unit architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 16. X-Interrupt basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 17. Block diagram of GPT1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Figure 18. Block diagram of GPT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Figure 19. Block diagram of PWM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 20. Connection to single CAN bus via separate CAN transceivers . . . . . . . . . . . . . . . . . . . . 100 Figure 21. Connection to single CAN bus via common CAN transceivers. . . . . . . . . . . . . . . . . . . . . 100 Figure 22. Connection to two different CAN buses (e.g. for gateway application). . . . . . . . . . . . . . . 101 Figure 23. Connection to one CAN bus with internal Parallel Mode enabled . . . . . . . . . . . . . . . . . . 101 Figure 24. Asynchronous power-on RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Figure 25. Asynchronous power-on RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Figure 26. Asynchronous hardware RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Figure 27. Asynchronous hardware RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Figure 28. Synchronous short / long hardware RESET (EA = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Figure 29. Synchronous short / long hardware RESET (EA = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Figure 30. Synchronous long hardware RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Figure 31. Synchronous long hardware RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure 32. SW / WDT unidirectional RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Figure 33. SW / WDT unidirectional RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Figure 34. SW / WDT bidirectional RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Figure 35. SW / WDT bidirectional RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 36. SW / WDT bidirectional RESET (EA = 0) followed by a HW RESET . . . . . . . . . . . . . . . . 121 Figure 37. Minimum external reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Figure 38. System reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 39. Internal (simplified) reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 40. Example of software or watchdog bidirectional reset (EA = 1) . . . . . . . . . . . . . . . . . . . . . 124 Figure 41. Example of software or watchdog bidirectional reset (EA = 0) . . . . . . . . . . . . . . . . . . . . . 125 Figure 42. PORT0 bits latched into the different registers after reset . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 43. External RC circuitry on RPD pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Figure 44. Port2 test mode structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Figure 45. Supply current versus the operating frequency (RUN and IDLE modes) . . . . . . . . . . . . . 181 Figure 46. A/D conversion characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Figure 47. A/D converter input pins scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Figure 48. Charge sharing timing diagram during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . 189

11/231

List of figures

ST10F276E

 

 

Figure 49. Anti-aliasing filter and conversion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Figure 50. Input/output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Figure 51. Float waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Figure 52. Generation mechanisms for the CPU clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Figure 53. ST10F276E PLL jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Figure 54. Crystal oscillator and resonator connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Figure 55. 32 kHz crystal oscillator connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Figure 56. External clock drive XTAL1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Figure 57. Multiplexed bus with/without R/W delay and normal ALE. . . . . . . . . . . . . . . . . . . . . . . . . 206 Figure 58. Multiplexed bus with/without R/W delay and extended ALE . . . . . . . . . . . . . . . . . . . . . . . 207 Figure 59. Multiplexed bus, with/without R/W delay, normal ALE, R/W CS. . . . . . . . . . . . . . . . . . . . 208 Figure 60. Multiplexed bus, with/without R/ W delay, extended ALE, R/W CS . . . . . . . . . . . . . . . . . 209 Figure 61. Demultiplexed bus, with/without read/write delay and normal ALE . . . . . . . . . . . . . . . . . 212 Figure 62. Demultiplexed bus with/without R/W delay and extended ALE . . . . . . . . . . . . . . . . . . . . 213 Figure 63. Demultiplexed bus with ALE and R/W CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Figure 64. Demultiplexed bus, no R/W delay, extended ALE, R/W CS . . . . . . . . . . . . . . . . . . . . . . . 215 Figure 65. CLKOUT and READY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Figure 66. External bus arbitration (releasing the bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Figure 67. External bus arbitration (regaining the bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Figure 68. SSC master timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Figure 69. SSC slave timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Figure 70. PQFP144 mechanical data and package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Figure 71. LQFP144 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Figure 72. LQFP144 package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

12/231

ST10F276E

Introduction

 

 

1 Introduction

The ST10F276E is a derivative of the STMicroelectronics ST10 family of 16-bit single-chip CMOS microcontrollers. It combines high CPU performance (up to 32 million instructions per second) with high peripheral functionality and enhanced I/O-capabilities. It also provides on-chip high-speed single voltage Flash memory, on-chip high-speed RAM, and clock generation via PLL.

ST10F276E is processed in 0.18µm CMOS technology. The MCU core and the logic is supplied with a 5V to 1.8V on-chip voltage regulator. The part is supplied with a single 5V supply and I/Os work at 5V.

The device is upward compatible with the ST10F269 device, with the following set of differences:

Flash control interface is now based on STMicroelectronics third generation of standalone Flash memories (M29F400 series), with an embedded Program/Erase Controller. This completely frees up the CPU during programming or erasing the Flash.

Only one supply pin (ex DC1 in ST10F269, renamed into V18) on the QFP144 package is used for decoupling the internally generated 1.8V core logic supply. Do not connect this pin to 5.0V external supply. Instead, this pin should be connected to a decoupling capacitor (ceramic type, typical value 10nF, maximum value 100nF).

The AC and DC parameters are modified due to a difference in the maximum CPU frequency.

A new VDD pin replaces DC2 of ST10F269.

EA pin assumes a new alternate functionality: it is also used to provide a dedicated

power supply (see VSTBY) to maintain biased a portion of the XRAM (16 Kbytes) when the main Power Supply of the device (VDD and consequently the internally generated V18) is turned off for low power mode, allowing data retention. VSTBY voltage shall be in the range 4.5-5.5 Volt, and a dedicated embedded low power voltage regulator is in charge to provide the 1.8V for the RAM, the low-voltage section of the 32 kHz oscillator and the Real-Time Clock module when not disabled. It is allowed to exceed the upper limit up to 6V for a very short period of time during the global life of the device, and exceed the lower limit down to 4V when RTC and 32kHz on-chip oscillator are not used.

A second SSC mapped on the XBUS is added (SSC of ST10F269 becomes here SSC0, while the new one is referred as XSSC or simply SSC1). Note that some restrictions and functional differences due to the XBUS peculiarities are present between the classic SSC, and the new XSSC.

A second ASC mapped on the XBUS is added (ASC0 of ST10F269 remains ASC0, while the new one is referred as XASC or simply as ASC1). Note that some restrictions and functional differences due to the XBUS peculiarities are present between the classic ASC, and the new XASC.

A second PWM mapped on the XBUS is added (PWM of ST10F269 becomes here PWM0, while the new one is referred as XPWM or simply as PWM1). Note that some restrictions and functional differences due to the XBUS peculiarities are present between the classic PWM, and the new XPWM.

An I2C interface on the XBUS is added (see X-I2C or simply I2C interface).

CLKOUT function can output either the CPU clock (like in ST10F269) or a software programmable prescaled value of the CPU clock.

13/231

Introduction

ST10F276E

 

 

Embedded memory size has been significantly increased (both Flash and RAM).

PLL multiplication factors have been adapted to new frequency range.

A/D Converter is not fully compatible versus ST10F269 (timing and programming model). Formula for the conversion time is still valid, while the sampling phase programming model is different.

Besides, additional 8 channels are available on P1L pins as alternate function: the accuracy reachable with these extra channels is reduced with respect to the standard Port5 channels.

External Memory bus potential limitations on maximum speed and maximum capacitance load could be introduced (under evaluation): ST10F276E will probably not be able to address an external memory at 64MHz with 0 wait states (under evaluation).

XPERCON register bit mapping modified according to new peripherals implementation (not fully compatible with ST10F269).

Bondout chip for emulation (ST10R201) cannot achieve more than 50MHz at room temperature (so no real-time emulation possible at maximum speed).

Input section characteristics are different. The threshold programmability is extended to all port pins (additional XPICON register); it is possible to select standard TTL (with up to 500mV of hysteresis) and standard CMOS (with up to 800mV of hysteresis).

Output transition is not programmable.

CAN module is enhanced: ST10F276E implements two C-CAN modules, so the programming model is slightly different. Besides, the possibility to map in parallel the two CAN modules is added (on P4.5/P4.6).

On-chip main oscillator input frequency range has been reshaped, reducing it from 1- 25MHz down to 4-12MHz. This is a high performance oscillator amplifier, providing a very high negative resistance and wide oscillation amplitude: when this on-chip amplifier is used as reference for Real-Time Clock module, the Power-down consumption is dominated by the consumption of the oscillator amplifier itself. A metal option is added to offer a low power oscillator amplifier working in the range of 4-8MHz: this will allow a power consumption reduction when Real-Time Clock is running in Power Down mode using as reference the on-chip main oscillator clock.

A second on-chip oscillator amplifier circuit (32kHz) is implemented for low power modes: it can be used to provide the reference to the Real-Time Clock counter (either

in Power Down or Stand-by mode). Pin XTAL3 and XTAL4 replace a couple of VDD/VSS pins of ST10F269.

Possibility to re-program internal XBUS chip select window characteristics (XRAM2 and XFLASH address window) is added.

14/231

ST10F276E

Introduction

 

 

Figure 1. Logic symbol

V18 VDD VSS

 

XTAL1

Port 0

XTAL2

16-bit

XTAL3

Port 1

XTAL4

16-bit

RSTIN

Port 2

RSTOUT

16-bit

VAREF

Port 3

VAGND

15-bit

 

ST10F276E

Port 4

NMI

8-bit

EA / VSTBY

Port 6

READY

8-bit

 

ALE

Port 7

RD

8-bit

 

WR / WRL

Port 8

Port 5

8-bit

 

16-bit

RPD

 

15/231

Pin data

ST10F276E

 

 

2 Pin data

Figure 2. Pin configuration (top view)

P6.0 / CS0 1

P6.1 / CS1 2

P6.2 / CS2 3

P6.3 / CS3 4

P6.4 / CS4 5

P6.5 / HOLD / SCLK1 6

P6.6 / HLDA / MTSR1 7

P6.7 / BREQ / MRST1 8

P8.0 / XPOUT0 / CC16IO 9

P8.1 / XPOUT1 / CC17IO 10

P8.2 / XPOUT2 / CC18IO 11

P8.3 / XPOUT3 / CC19IO 12

P8.4 / CC20IO 13

P8.5 / CC21IO 14

P8.6 / RxD1 / CC22IO 15

P8.7 / TxD1 / CC23IO 16 VDD 17 VSS 18

P7.0 / POUT0 19

P7.1 / POUT1 20

P7.2 / POUT2 21

P7.3 / POUT3 22

P7.4 / CC28IO 23

P7.5 / CC29IO 24

P7.6 / CC30IO 25

P7.7 / CC31IO 26

P5.0 / AN0 27

P5.1 / AN1 28

P5.2 / AN2 29

P5.3 / AN3 30

P5.4 / AN4 31

P5.5 / AN5 32

P5.6 / AN6 33

P5.7 / AN7 34

P5.8 / AN8 35

P5.9 / AN9 36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RSTIN VSS XTAL1 XTAL2 VDD P1H.7/ A15 / CC27I

P1H.6/ A14 / CC26I

P1H.5/ A13 / CC25I

P1H.4/ A12 / CC24I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(*)

 

(*)

 

(*)

 

(*)

 

(*)

 

(*)

 

(*)

 

(*)

 

 

 

 

 

 

 

 

 

XTAL4

XTAL3

 

NMI

 

RSTOUT

 

P1H.3/ A11

P1H.2/ A10

P1H.1/ A9

P1H.0/ A8

VSS VDD P1L.7/ A7 / AN23

P1L.6/ A6 / AN22

P1L.5/ A5 / AN21

P1L.4/ A4 / AN20

P1L.3/ A3 / AN19

P1L.2/ A2 / AN18

P1L.1/ A1 / AN17

P1L.0/ A0 / AN16

P0H.7/ AD15

P0H.6/ AD14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

ST10F276E

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VAREF VAGND P5.10 / AN10 / T6EUD P5.11 / AN11 / T5EUD P5.12 / AN12 / T6IN P5.13 / AN13 / T5IN P5.14 / AN14 / T4EUD P5.15 / AN15 / T2EUD VSS VDD P2.0 / CC0IO P2.1 / CC1IO P2.2 / CC2IO P2.3 / CC3IO P2.4 / CC4IO P2.5 / CC5IO P2.6 / CC6IO P2.7 / CC7IO VSS V18 P2.8 / CC8IO / EX0IN P2.9 / CC9IO / EX1IN P2.10 / CC10IO / EX2IN P2.11 / CC11IO / EX3IN P2.12 / CC12IO / EX4IN P2.13 / CC13IO / EX5IN P2.14 / CC14IO / EX6IN / CC15IO / EX7IN / T7IN

P3.0 / T0IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2.15

 

P0H.5 / AD13

P0H.4 / AD12

 

 

 

 

 

 

 

115

 

114

P3.1 / T6OUT 66 P3.2 / CAPIN 67

113 P0H.3 / AD11

P3.3 / T3OUT 68

P0H.2 / AD10

P0H.1 / AD9

 

 

 

 

 

 

 

112

 

111

P3.4 / T3EUD 69 P3.5 / T4IN 70

110 VSS

VSS 71

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

109

 

 

 

 

 

 

 

 

 

 

108

 

P0H.0 / AD8

107

 

P0L.7 / AD7

106

 

P0L.6 / AD6

105

 

P0L.5 / AD5

104

 

P0L.4 / AD4

103

 

P0L.3 / AD3

102

 

P0L.2 / AD2

101

 

P0L.1 / AD1

100

 

P0L.0

/ AD0

99

 

EA / VSTBY

98

 

ALE

 

 

 

 

 

 

97

 

READY

 

 

 

 

96

 

WR

/WRL

 

 

 

95

 

RD

 

 

 

 

 

 

94

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

93

 

VDD

 

 

 

 

 

 

92

 

P4.7

/ A23 / CAN2_TxD / SDA

91

 

P4.6

/ A22 / CAN1_TxD / CAN2_TxD

90

 

P4.5

/ A21 / CAN1_RxD / CAN2_RxD

89

 

P4.4

/ A20 / CAN2_RxD / SCL

88

 

P4.3

/

A19

87

 

P4.2

/

A18

86

 

P4.1

/

A17

85

 

P4.0

/

A16

84

 

RPD

 

 

 

 

 

 

 

 

 

 

 

 

83

 

VSS

 

 

 

 

 

 

82

 

VDD

 

 

 

 

 

 

81

 

P3.15

/ CLKOUT

80

 

P3.13

/ SCLK0

79

 

P3.12

/ BHE /

WRH

 

78

 

P3.11

/ RxD0

77

 

P3.10

/ TxD0

76

 

P3.9

/ MTSR0

75

 

P3.8

/ MRST0

74

 

P3.7

/ T2IN

73

 

P3.6

/ T3IN

72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

16/231

ST10F276E

 

 

 

 

 

 

 

 

 

 

 

Pin data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

Pin description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

 

 

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

8-bit bidirectional I/O port, bit-wise programmable for input or output via direction

 

 

 

 

 

bit. Programming an I/O pin as input forces the corresponding output driver to

 

 

 

1 - 8

I/O

high impedance state. Port 6 outputs can be configured as push-pull or open

 

 

 

 

 

drain drivers. The input threshold of Port 6 is selectable (TTL or CMOS). The

 

 

 

 

 

following Port 6 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

O

P6.0

 

CS0

 

 

 

 

Chip select 0 output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

O

P6.4

 

 

 

 

 

 

Chip select 4 output

 

P6.0 - P6.7

 

CS4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

P6.5

 

 

 

 

 

 

 

External master hold request input

 

 

 

6

 

HOLD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

SCLK1

SSC1: master clock output / slave clock input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

P6.6

 

 

 

 

 

 

Hold acknowledge output

 

 

 

7

HLDA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

MTSR1

SSC1: master-transmitter / slave-receiver O/I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

P6.7

 

 

 

 

 

 

 

Bus request output

 

 

 

8

 

BREQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

MRST1

SSC1: master-receiver / slave-transmitter I/O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8-bit bidirectional I/O port, bit-wise programmable for input or output via direction

 

 

 

 

 

bit. Programming an I/O pin as input forces the corresponding output driver to

 

 

 

9-16

I/O

high impedance state. Port 8 outputs can be configured as push-pull or open

 

 

 

 

 

drain drivers. The input threshold of Port 8 is selectable (TTL or CMOS).

 

 

 

 

 

The following Port 8 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

9

I/O

P8.0

CC16IO

CAPCOM2: CC16 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

XPWM0

PWM1: channel 0 output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

P8.0 - P8.7

 

12

I/O

P8.3

CC19IO

CAPCOM2: CC19 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

XPWM0

PWM1: channel 3 output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

I/O

P8.4

CC20IO

CAPCOM2: CC20 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

14

I/O

P8.5

CC21IO

CAPCOM2: CC21 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

15

I/O

P8.6

CC22IO

CAPCOM2: CC22 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

RxD1

ASC1: Data input (Asynchronous) or I/O (Synchronous)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

I/O

P8.7

CC23IO

CAPCOM2: CC23 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

TxD1

ASC1: Clock / Data output (Asynchronous/Synchronous)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17/231

Pin data

 

 

 

 

 

ST10F276E

 

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

8-bit bidirectional I/O port, bit-wise programmable for input or output via direction

 

 

 

 

 

bit. Programming an I/O pin as input forces the corresponding output driver to

 

 

 

19-26

I/O

high impedance state. Port 7 outputs can be configured as push-pull or open

 

 

 

 

 

drain drivers. The input threshold of Port 7 is selectable (TTL or CMOS).

 

 

 

 

 

The following Port 7 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

19

O

P7.0

POUT0

PWM0: channel 0 output

 

P7.0 - P7.7

 

 

 

 

 

 

 

 

...

...

...

...

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

O

P7.3

POUT3

PWM0: channel 3 output

 

 

 

 

 

 

 

 

 

 

 

23

I/O

P7.4

CC28IO

CAPCOM2: CC28 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

...

 

 

 

 

 

 

 

 

 

 

 

26

I/O

P7.7

CC31IO

CAPCOM2: CC31 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

16-bit input-only port with Schmitt-Trigger characteristics. The pins of Port 5 can

 

 

 

27-36

I

be the analog input channels (up to 16) for the A/D converter, where P5.x equals

 

 

 

ANx (Analog input channel x), or they are timer inputs. The input threshold of

 

 

 

39-44

I

 

 

 

Port 5 is selectable (TTL or CMOS). The following Port 5 pins have alternate

 

 

 

 

 

 

 

 

 

 

functions:

 

 

 

 

 

 

 

 

 

 

P5.0 - P5.9

 

39

I

P5.10

T6EUD

GPT2: timer T6 external up/down control input

 

 

 

 

 

 

 

 

 

40

I

P5.11

T5EUD

GPT2: timer T5 external up/down control input

 

P5.10 - P5.15

 

 

 

 

 

 

 

 

 

 

 

41

I

P5.12

T6IN

GPT2: timer T6 count input

 

 

 

 

 

 

 

 

 

 

 

42

I

P5.13

T5IN

GPT2: timer T5 count input

 

 

 

 

 

 

 

 

 

 

 

43

I

P5.14

T4EUD

GPT1: timer T4 external up/down control input

 

 

 

 

 

 

 

 

 

 

 

44

I

P5.15

T2EUD

GPT1: timer T2 external up/down control input

 

 

 

 

 

 

 

 

 

 

 

 

 

16-bit bidirectional I/O port, bit-wise programmable for input or output via

 

 

 

47-54

 

direction bit. Programming an I/O pin as input forces the corresponding output

 

 

 

I/O

driver to high impedance state. Port 2 outputs can be configured as push-pull or

 

 

 

57-64

 

 

 

 

open drain drivers. The input threshold of Port 2 is selectable (TTL or CMOS).

 

 

 

 

 

 

 

 

 

 

The following Port 2 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

47

I/O

P2.0

CC0IO

CAPCOM: CC0 capture input/compare output

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

...

 

P2.0 - P2.7

 

 

 

 

 

 

 

 

54

I/O

P2.7

CC7IO

CAPCOM: CC7 capture input/compare output

 

P2.8 - P2.15

 

 

 

 

 

 

57

I/O

P2.8

CC8IO

CAPCOM: CC8 capture input/compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

EX0IN

Fast external interrupt 0 input

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

...

 

 

 

 

 

 

 

 

 

 

 

64

I/O

P2.15

CC15IO

CAPCOM: CC15 capture input/compare output

 

 

 

 

 

 

 

 

 

 

 

 

I

 

EX7IN

Fast external interrupt 7 input

 

 

 

 

 

 

 

 

 

 

 

 

I

 

T7IN

CAPCOM2: timer T7 count input

 

 

 

 

 

 

 

 

 

18/231

ST10F276E

 

 

 

 

 

 

 

 

Pin data

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

15-bit (P3.14 is missing) bidirectional I/O port, bit-wise programmable for input or

 

 

 

65-70,

I/O

output via direction bit. Programming an I/O pin as input forces the

 

 

 

73-80,

I/O

corresponding output driver to high impedance state. Port 3 outputs can be

 

 

 

81

I/O

configured as push-pull or open drain drivers. The input threshold of Port 3 is

 

 

 

 

 

selectable (TTL or CMOS). The following Port 3 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

 

65

I

P3.0

 

T0IN

CAPCOM1: timer T0 count input

 

 

 

 

 

 

 

 

 

 

 

66

O

P3.1

T6OUT

GPT2: timer T6 toggle latch output

 

 

 

 

 

 

 

 

 

 

 

 

67

I

P3.2

 

CAPIN

GPT2: register CAPREL capture input

 

 

 

 

 

 

 

 

 

 

 

68

O

P3.3

T3OUT

GPT1: timer T3 toggle latch output

 

 

 

 

 

 

 

 

 

 

 

69

I

P3.4

T3EUD

GPT1: timer T3 external up/down control input

 

 

 

 

 

 

 

 

 

P3.0 - P3.5

 

70

I

P3.5

T4IN

GPT1; timer T4 input for count/gate/reload/capture

 

 

 

 

 

 

 

 

 

 

 

 

73

I

P3.6

T3IN

GPT1: timer T3 count/gate input

 

P3.6 - P3.13,

 

P3.15

 

 

 

 

 

 

 

 

 

 

 

74

I

P3.7

T2IN

GPT1: timer T2 input for count/gate/reload / capture

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75

I/O

P3.8

 

MRST0

SSC0: master-receiver/slave-transmitter I/O

 

 

 

 

 

 

 

 

 

 

 

76

I/O

P3.9

MTSR0

SSC0: master-transmitter/slave-receiver O/I

 

 

 

 

 

 

 

 

 

 

 

77

O

P3.10

TxD0

ASC0: clock / data output (asynchronous/synchronous)

 

 

 

 

 

 

 

 

 

 

 

 

78

I/O

P3.11

 

RxD0

ASC0: data input (asynchronous) or I/O (synchronous)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79

O

P3.12

 

 

 

 

External memory high byte enable signal

 

 

 

BHE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External memory high byte write strobe

 

 

 

 

 

 

 

WRH

 

 

 

 

 

 

 

 

 

 

 

80

I/O

P3.13

SCLK0

SSC0: master clock output / slave clock input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81

O

P3.15

CLKOUT

System clock output (programmable divider on CPU

 

 

 

clock)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19/231

Pin data

 

 

 

 

 

 

 

 

 

 

 

ST10F276E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

 

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or

 

 

 

 

 

 

 

 

 

 

 

 

 

output via direction bit. Programming an I/O pin as input forces the

 

 

 

 

 

 

 

 

 

 

 

 

 

corresponding output driver to high impedance state. The input threshold is

 

 

 

 

 

 

 

 

 

 

 

85-92

I/O

selectable (TTL or CMOS). Port 4.4, 4.5, 4.6 and 4.7 outputs can be configured

 

 

 

 

 

 

 

 

 

 

 

 

 

as push-pull or open drain drivers.

 

 

 

 

 

 

 

 

 

 

 

 

 

In case of an external bus configuration, Port 4 can be used to output the

 

 

 

 

 

 

 

 

 

 

 

 

 

segment address lines:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85

O

P4.0

A16

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86

O

P4.1

A17

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87

O

P4.2

A18

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

O

P4.3

A19

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89

O

P4.4

A20

Segment address line

 

 

 

 

 

 

 

 

 

P4.0 –P4.7

 

 

I

 

CAN2_RxD

CAN2: receive data input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

SCL

I2C Interface: serial clock

 

 

 

 

 

 

 

 

 

 

 

90

O

P4.5

A21

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

CAN1_RxD

CAN1: receive data input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

CAN2_RxD

CAN2: receive data input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91

O

P4.6

A22

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

CAN1_TxD

CAN1: transmit data output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

CAN2_TxD

CAN2: transmit data output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92

O

P4.7

A23

Most significant segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

CAN2_TxD

CAN2: transmit data output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

SDA

I2C Interface: serial data

 

 

 

 

 

 

 

 

 

 

 

 

 

External memory read strobe.

 

 

is activated for every external instruction or

 

 

 

 

 

 

 

 

 

 

 

 

 

RD

 

 

 

 

RD

 

95

O

 

 

 

 

 

data read access.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External memory write strobe. In

 

 

 

-mode this pin is activated for every

 

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

 

 

 

 

 

 

 

 

external data write access. In

WRL

mode this pin is activated for low byte data

 

 

WR/WRL

 

96

O

 

 

 

write accesses on a 16-bit bus, and for every data write access on an 8-bit bus.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See WRCFG in the SYSCON register for mode selection.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ready input. The active level is programmable. When the ready function is

 

 

READY/

 

97

I

enabled, the selected inactive level at this pin, during an external memory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

READY

access, will force the insertion of waitstate cycles until the pin returns to the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

selected active level.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALE

 

98

O

Address latch enable output. In case of use of external addressing or of

 

 

 

 

multiplexed mode, this signal is the latch command of the address lines.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20/231

ST10F276E

 

 

 

 

 

Pin data

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External access enable pin.

 

 

 

 

 

 

 

 

A low level applied to this pin during and after Reset forces the ST10F276E to

 

 

 

 

 

 

 

start the program from the external memory space. A high level forces

 

 

 

 

 

 

 

ST10F276E to start in the internal memory space. This pin is also used (when

 

 

 

 

 

 

 

Stand-by mode is entered, that is ST10F276E under reset and main VDD turned

 

 

 

 

 

 

 

off) to bias the 32 kHz oscillator amplifier circuit and to provide a reference

 

 

 

 

 

 

 

voltage for the low-power embedded voltage regulator which generates the

 

 

EA / VSTBY

 

99

I

 

 

 

internal 1.8V supply for the RTC module (when not disabled) and to retain data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

inside the Stand-by portion of the XRAM (16 Kbyte).

 

 

 

 

 

 

 

It can range from 4.5 to 5.5V (6V for a reduced amount of time during the device

 

 

 

 

 

 

 

life, 4.0V when RTC and 32 kHz on-chip oscillator amplifier are turned off). In

 

 

 

 

 

 

 

running mode, this pin can be tied low during reset without affecting 32 kHz

 

 

 

 

 

 

 

oscillator, RTC and XRAM activities, since the presence of a stable VDD

 

 

 

 

 

 

 

guarantees the proper biasing of all those modules.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two 8-bit bidirectional I/O ports P0L and P0H, bit-wise programmable for input or

 

 

 

 

 

 

 

output via direction bit. Programming an I/O pin as input forces the

 

 

 

 

 

 

 

corresponding output driver to high impedance state. The input threshold of

 

 

 

 

 

 

 

Port 0 is selectable (TTL or CMOS).

 

 

 

 

 

 

 

In case of an external bus configuration, PORT0 serves as the address (A) and

 

 

 

 

 

 

 

as the address / data (AD) bus in multiplexed bus modes and as the data (D) bus

 

 

 

 

 

 

 

in demultiplexed bus modes.

 

 

 

 

 

 

 

 

Demultiplexed bus modes

 

 

P0L.0 -P0L.7,

100-107,

 

Data path width

8-bit

16-bi

 

 

P0H.0

 

108,

I/O

 

 

 

 

 

 

 

P0H.1 - P0H.7

111-117

 

P0L.0 – P0L.7:

D0 – D7

D0 - D7

 

 

 

 

 

 

 

P0H.0 – P0H.7:

I/O

D8 - D15

 

 

 

 

 

 

 

Multiplexed bus modes

 

 

 

 

 

 

 

 

Data path width

8-bit

16-bi

 

 

 

 

 

 

 

P0L.0 – P0L.7:

AD0 – AD7

AD0 - AD7

 

 

 

 

 

 

 

P0H.0 – P0H.7:

A8 – A15

AD8 - AD15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two 8-bit bidirectional I/O ports P1L and P1H, bit-wise programmable for input or

 

 

 

 

 

 

 

output via direction bit. Programming an I/O pin as input forces the

 

 

 

 

 

 

 

corresponding output driver to high impedance state. PORT1 is used as the 16-

 

 

 

 

 

 

 

bit address bus (A) in demultiplexed bus modes: if at least BUSCONx is

 

 

 

 

 

118-125

 

configured such the demultiplexed mode is selected, the pis of PORT1 are not

 

 

 

 

 

I/O available for general purpose I/O function. The input threshold of Port 1 is

 

 

 

 

 

128-135

 

 

 

 

 

 

selectable (TTL or CMOS).

 

 

 

 

 

 

 

 

 

 

P1L.0 - P1L.7

The pins of P1L also serve as the additional (up to 8) analog input channels for

P1H.0 - P1H.7

the A/D converter, where P1L.x equals ANy (Analog input channel y,

where y = x + 16). This additional function have higher priority on demultiplexed bus function. The following PORT1 pins have alternate functions:

 

132

I

P1H.4

CC24IO

CAPCOM2: CC24 capture input

 

 

 

 

 

 

 

133

I

P1H.5

CC25IO

CAPCOM2: CC25 capture input

 

 

 

 

 

 

 

134

I

P1H.6

CC26IO

CAPCOM2: CC26 capture input

 

 

 

 

 

 

 

135

I

P1H.7

CC27IO

CAPCOM2: CC27 capture input

 

 

 

 

 

 

21/231

Pin data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST10F276E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

XTAL1

 

138

I

XTAL1

Main oscillator amplifier circuit and/or external clock input.

 

 

 

 

 

 

 

 

 

 

 

 

XTAL2

 

137

O

XTAL2

Main oscillator amplifier circuit output.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To clock the device from an external source, drive XTAL1 while leaving XTAL2

 

 

 

 

 

 

 

 

 

 

 

unconnected. Minimum and maximum high / low and rise / fall times specified in

 

 

 

 

 

 

 

 

 

 

 

the AC Characteristics must be observed.

 

 

 

 

 

 

 

 

 

 

 

 

XTAL3

 

143

I

XTAL3

32 kHz oscillator amplifier circuit input

 

 

 

 

 

 

 

 

 

 

 

 

XTAL4

 

144

O

XTAL4

32 kHz oscillator amplifier circuit output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When 32 kHz oscillator amplifier is not used, to avoid spurious consumption,

 

 

 

 

 

 

 

 

 

 

 

XTAL3 shall be tied to ground while XTAL4 shall be left open. Besides, bit OFF32

 

 

 

 

 

 

 

 

 

 

 

in RTCCON register shall be set. 32 kHz oscillator can only be driven by an

 

 

 

 

 

 

 

 

 

 

 

external crystal, and not by a different clock source.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Input with CMOS Schmitt-Trigger characteristics. A low level at this pin for

 

 

 

 

 

 

 

 

 

 

 

a specified duration while the oscillator is running resets the ST10F276E. An

 

 

 

 

 

 

 

 

 

140

I

internal pull-up resistor permits power-on reset using only a capacitor connected

 

 

 

RSTIN

 

 

 

 

 

to VSS. In bidirectional reset mode (enabled by setting bit BDRSTEN in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYSCON register), the

RSTIN

line is pulled low for the duration of the internal

 

 

 

 

 

 

 

 

 

 

 

reset sequence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal Reset Indication Output. This pin is driven to a low level during

 

 

RSTOUT

 

 

141

O

hardware, software or watchdog timer reset.

RSTOUT

remains low until the EINIT

 

 

 

 

 

 

 

 

 

 

 

(end of initialization) instruction is executed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU

 

 

 

 

 

 

 

 

 

 

 

to vector to the NMI trap routine. If bit PWDCFG = ‘0’ in SYSCON register, when

 

 

 

 

 

 

 

 

 

 

 

the PWRDN (power down) instruction is executed, the

NMI

pin must be low in

 

 

 

 

NMI

 

 

142

I

order to force the ST10F276E to go into power down mode. If

NMI

is high and

 

 

 

 

 

 

 

 

 

 

 

PWDCFG = ‘0’, when PWRDN is executed, the part will continue to run in

 

 

 

 

 

 

 

 

 

 

 

normal mode.

 

 

 

 

 

 

 

 

 

 

 

If not used, pin

 

should be pulled high externally.

 

 

 

 

 

 

 

 

 

 

 

NMI

 

 

 

 

 

 

 

 

 

 

 

VAREF

 

37

-

A/D converter reference voltage and analog supply

 

 

 

VAGND

 

38

-

A/D converter reference and analog ground

 

 

 

RPD

 

84

-

Timing pin for the return from interruptible power down mode and synchronous /

 

 

 

 

asynchronous reset selection.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17, 46,

 

Digital supply voltage = + 5V during normal operation, idle and power down

 

 

 

 

 

 

 

 

 

72,82,93,

 

 

 

 

 

VDD

 

-

modes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

109, 126,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be turned off when Stand-by RAM mode is selected.

 

 

 

 

 

 

 

 

 

136

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18,45,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55,71,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

83,94,

-

Digital ground

 

 

 

 

 

 

 

 

 

110, 127,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

139

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V18

 

56

-

1.8V decoupling pin: a decoupling capacitor (typical value of 10nF, max 100nF)

 

 

 

 

 

must be connected between this pin and nearest VSS pin.

 

 

 

 

 

 

 

 

 

 

 

 

22/231

ST ST10F276E User Manual

ST10F276E

Functional description

 

 

3 Functional description

The architecture of the ST10F276E combines advantages of both RISC and CISC processors and an advanced peripheral subsystem. The block diagram gives an overview of the different on-chip components and the high bandwidth internal bus structure of the ST10F276E.

Figure 3. Block diagram

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

XFLASH 16

 

IFLASH

32

CPU-Core and MAC Unit

 

16

IRAM

 

 

320 KB

 

 

512 KB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 KB

 

 

XRAM

16

16

XRTC

 

 

 

 

 

 

 

 

 

 

48 KB

 

 

 

 

 

 

 

 

 

Watchdog

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

PEC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XRAM

16

 

 

16

 

 

 

 

 

 

Oscillator

 

 

16 KB

 

 

 

 

 

 

 

 

 

 

 

 

 

(STBY)

 

16

 

 

 

 

 

 

 

 

32 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XRAM

 

 

XPWM

 

 

 

 

 

 

 

Oscillator

 

 

16

16

 

 

 

Interrupt Controller

 

 

 

 

 

2 KB

 

 

XASC

 

 

 

 

PLL

 

 

(PEC)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

16

 

 

 

 

 

 

 

 

5V-1.8V

 

 

XI2C

 

 

XSSC

 

 

 

 

 

 

 

 

 

 

16

16

 

 

 

 

 

 

 

 

Voltage

 

 

 

 

 

 

 

 

 

 

 

Regulator

 

 

XCAN1

 

 

XCAN2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

0

 

 

 

 

 

 

 

 

 

 

 

 

Port 1 Port

 

 

 

 

GPT1 / GPT2

 

 

 

 

 

 

 

16

 

External Bus

Controller

10-bit ADC

ASC0

SSC0

PWM

CAPCOM2

CAPCOM1

Port 2

16

 

 

 

8

4

 

 

 

 

 

BRG

BRG

 

 

 

 

 

Port

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port 6

 

Port 5

 

Port 3

 

Port 7

 

Port 8

 

 

8

 

 

16

 

 

15

 

8

 

8

 

 

23/231

Internal Flash memory

ST10F276E

 

 

4 Internal Flash memory

4.1Overview

The on-chip Flash is composed of two matrix modules, each one containing one array divided in two banks that can be read and modified independently of one another: one bank can be read while another bank is under modification.

Figure 4. Flash modules structure

IFLASH (Module I)

Control section

XFLASH

(Module X)

Bank 1: 128 Kbyte

HV and Ref.

Bank 3:

128 Kbyte

program memory

generator

program memory

Bank 0: 384 Kbyte

 

 

 

program memory

 

Bank 2:

192 Kbyte

+

Program/erase

program memory

8 Kbyte test-Flash

controller

 

 

I-BUS interface

 

X-BUS interface

 

The write operations of the four banks are managed by an embedded Flash program/erase controller (FPEC). The high voltages needed for program/erase operations are internally generated.

The data bus is 32-bit wide. Due to ST10 core architecture limitation, only the first

512 Kbytes are accessed at 32-bit (internal Flash bus, see I-BUS), while the remaining

320 Kbytes are accessed at 16-bit (see X-BUS).

4.2Functional description

4.2.1Structure

Table 2 shows the address space reserved to the Flash module.

Table 2.

Flash modules absolute mapping

 

 

 

 

Description

 

Addresses

Size

 

 

 

 

IFLASH sectors

0x00

0000 to 0x08 FFFF

512 Kbyte

 

 

 

XFLASH sectors

0x09 0000 to 0x0D FFFF

320 Kbyte

 

 

 

 

Registers and Flash internal reserved area

0x0E

0000 to 0x0E FFFF

64 Kbyte

 

 

 

 

 

4.2.2Modules structure

The IFLASH module is composed of two banks. Bank 0 contains 384 Kbyte of program memory divided in 10 sectors. Bank 0 contains also a reserved sector named test-Flash.

24/231

ST10F276E

Internal Flash memory

 

 

Bank 1 contains 128 Kbyte of program memory or parameter divided in two sectors (64 Kbyte each).

The XFLASH module is composed of two banks as well. Bank 2 contains 192 Kbyte of program memory divided in three sectors. Bank 3 contains 128 Kbyte of program memory or parameter divided in two sectors (64 Kbyte each).

Addresses from 0x0E 0000 to 0x0E FFFF are reserved for the control register interface and other internal service memory space used by the Flash program/erase controller.

The following tables show the memory mapping of the Flash when it is accessed in read mode (Table 3), and when accessed in write or erase mode (Table 2): note that with this second mapping, the first three banks are remapped into code segment 1 (same as obtained when setting bit ROMS1 in SYSCON register).

Table 3.

Flash modules sectorization (read operations)

 

 

Bank

Description

 

Addresses

Size

ST10 bus

 

size

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 0 (B0F0)

0x0000

0000 - 0x0000 1FFF

8 KB

 

 

 

 

 

 

 

 

Bank 0 Flash 1 (B0F1)

0x0000

2000 - 0x0000 3FFF

8 KB

 

 

 

 

 

 

 

 

Bank 0 Flash 2 (B0F2)

0x0000

4000 - 0x0000 5FFF

8 KB

 

 

 

 

 

 

 

 

Bank 0 Flash 3 (B0F3)

0x0000

6000 - 0x0000 7FFF

8 KB

 

 

 

 

 

 

 

 

B0

Bank 0 Flash 4 (B0F4)

0x0001

8000

- 0x0001 FFFF

32 KB

 

 

 

 

 

 

 

Bank 0 Flash 5 (B0F5)

0x0002

0000

- 0x0002 FFFF

64 KB

32-bit (I-BUS)

 

 

 

 

 

 

 

 

Bank 0 Flash 6 (B0F6)

0x0003

0000

- 0x0003 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 7 (B0F7)

0x0004

0000

- 0x0004 FFFF

64 KB

 

 

 

 

 

 

 

 

 

Bank 0 Flash 8 (B0F8)

0x0005

0000

- 0x0005 FFFF

64 KB

 

 

 

 

 

 

 

 

 

Bank 0 Flash 9 (B0F9)

0x0006

0000

- 0x0006 FFFF

64 KB

 

 

 

 

 

 

 

 

B1

Bank 1 Flash 0 (B1F0)

0x0007

0000

- 0x0007 FFFF

64 KB

 

 

 

 

 

 

 

Bank 1 Flash 1 (B1F1)

0x0008

0000

- 0x0008 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

Bank 2 Flash 0 (B2F0)

0x0009

0000

- 0x0009 FFFF

64 KB

 

 

 

 

 

 

 

 

B2

Bank 2 Flash 1 (B2F1)

0x000A

0000

- 0x000A FFFF

64 KB

 

 

 

 

 

 

 

16-bit

 

Bank 2 Flash 2 (B2F2)

0x000B

0000

- 0x000B FFFF

64 KB

 

(X-BUS)

 

 

 

 

 

 

B3

Bank 3 Flash 0 (B3F0)

0x000C

0000

- 0x000C FFFF

64 KB

 

 

 

 

 

 

 

Bank 3 Flash 1 (B3F1)

0x000D

0000

- 0x000D FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

25/231

Internal Flash memory

 

 

 

 

 

ST10F276E

 

 

 

 

 

 

 

 

Table 4.

Flash modules sectorization (write operations or with ROMS1 = ‘1’)

 

 

 

 

 

 

 

 

 

 

Bank

 

Description

 

Addresses

Size

ST10 Bus

 

 

 

size

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Test-Flash (B0TF)

0x0000

0000 - 0x0000 1FFF

8 KB

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 0 (B0F0)

0x0001

0000 - 0x0001 1FFF

8 KB

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 1 (B0F1)

0x0001

2000 - 0x0001 3FFF

8 KB

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 2 (B0F2)

0x0001

4000 - 0x0001 5FFF

8 KB

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 3 (B0F3)

0x0001

6000 - 0x0001 7FFF

8 KB

 

 

 

 

 

 

 

 

 

 

 

B0

 

Bank 0 Flash 4 (B0F4)

0x0001

8000

- 0x0001 FFFF

32 KB

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 5 (B0F5)

0x0002

0000

- 0x0002 FFFF

64 KB

32-bit (I-BUS)

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 6 (B0F6)

0x0003

0000

- 0x0003 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 7 (B0F7)

0x0004

0000

- 0x0004 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 8 (B0F8)

0x0005

0000

- 0x0005 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 9 (B0F9)

0x0006

0000

- 0x0006 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

B1

 

Bank 1 Flash 0 (B1F0)

0x0007

0000

- 0x0007 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

Bank 1 Flash 1 (B1F1)

0x0008

0000

- 0x0008 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 2 Flash 0 (B2F0)

0x0009

0000

- 0x0009 FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

B2

 

Bank 2 Flash 1 (B2F1)

0x000A

0000

- 0x000A FFFF

64 KB

 

 

 

 

 

 

 

 

 

16-bit

 

 

 

Bank 2 Flash 2 (B2F2)

0x000B

0000

- 0x000B FFFF

64 KB

 

 

 

(X-BUS)

 

 

 

 

 

 

 

 

 

B3

 

Bank 3 Flash 0 (B3F0)

0x000C

0000

- 0x000C FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

Bank 3 Flash 1 (B3F1)

0x000D

0000

- 0x000D FFFF

64 KB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 above refers to the configuration when bit ROMS1 of SYSCON register is set. When Bootstrap mode is entered:

Test-Flash is seen and available for code fetches (address 00’0000h)

User IFlash is only available for read and write accesses

Write accesses must be made with addresses starting in segment 1 from 01'0000h, whatever ROMS1 bit in SYSCON value

Read accesses are made in segment 0 or in segment 1 depending of ROMS1 value.

In Bootstrap mode, by default ROMS1 = 0, so the first 32 Kbytes of IFlash are mapped in segment 0.

Example: In default configuration, to program address 0, user must put the value 01'0000h in the FARL and FARH registers, but to verify the content of the address 0 a read to 00'0000h must be performed.

Table 5 shows the control register interface composition: this set of registers can be addressed by the CPU.

26/231

ST10F276E

 

Internal Flash memory

 

 

 

 

 

 

 

Table 5.

Control register interface

 

 

 

 

 

 

 

 

 

 

Bank

Description

Addresses

Size

ST10

 

bus size

 

 

 

 

 

 

 

 

 

 

 

 

FCR1-0

Flash control registers 1-0

0x000E 0000 - 0x000E 0007

8 byte

 

 

 

 

 

 

 

 

FDR1-0

Flash data registers 1-0

0x000E 0008 - 0x000E 000F

8 byte

 

 

 

 

 

 

 

 

FAR

Flash address registers

0x000E 0010 - 0x000E 0013

4 byte

 

 

 

 

 

 

 

 

FER

Flash error register

0x000E 0014 - 0x000E 0015

2 byte

 

 

 

 

 

 

 

 

FNVWPXR

Flash non-volatile protection

0x000E DFB0 - 0x000E DFB3

4 byte

 

 

X register

16-bit

 

 

 

 

 

 

FNVWPIR

Flash non-volatile protection

0x000E DFB4 - 0x000E DFB7

4 byte

(X-BUS)

 

I register

 

 

 

 

 

 

 

 

 

 

 

 

 

FNVAPR0

Flash non-volatile access

0x000E DFB8 - 0x000E DFB9

2 byte

 

 

protection register 0

 

 

 

 

 

 

 

 

 

 

 

 

 

FNVAPR1

Flash non-volatile access

0x000E DFBC - 0x000E DFBF

4 byte

 

 

protection register 1

 

 

 

 

 

 

 

 

 

 

 

 

 

XFICR

XFlash interface control register

0x000E E000 - 0x000E E001

2 byte

 

 

 

 

 

 

 

4.2.3Low power mode

 

The Flash modules are automatically switched off executing PWRDN instruction. The

 

consumption is drastically reduced, but exiting this state can require a long time (tPD).

Note:

Recovery time from Power Down mode for the Flash modules is anyway shorter than the

 

main oscillator start-up time. To avoid any problem in restarting to fetch code from the Flash,

 

it is important to size properly the external circuit on RPD pin.

 

Power-off Flash mode is entered only at the end of the eventually running Flash write

 

operation.

4.2.4

Write operation

 

The Flash modules have one single register interface mapped in the memory space of the

 

XFlash module (0x0E 0000 to 0x0E 0013). All the operations are enabled through four 16-bit

 

control registers: Flash Control Register 1-0 High/Low (FCR1H/L-FCR0H/L). Eight other 16-

 

bit registers are used to store Flash Address and Data for Program operations (FARH/L and

 

FDR1H/L-FDR0H/L) and Write Operation Error flags (FERH/L). All registers are accessible

 

with 8 and 16-bit instructions (since mapped on ST10 XBUS).

Note:

Before accessing the XFlash module (and consequently also the Flash register to be used

 

for program/erasing operations), bit XFLASHEN in XPERCON register and bit XPEN in

 

SYSCON register shall be set.

 

The four banks have their own dedicated sense amplifiers, so that any bank can be read

 

while any other bank is written. However simultaneous write operations (“write” means

 

either Program or Erase) on different banks are forbidden: when there is a write operation

 

on going (Program or Erase) anywhere in the Flash, no other write operation can be

 

performed.

 

During a Flash write operation any attempt to read the bank under modification will output

 

invalid data (software trap 009Bh). This means that the Flash bank is not fetchable when a

 

write operation is active: the write operation commands must be executed from another

 

27/231

 

 

Internal Flash memory

ST10F276E

 

 

 

bank, or from the other module or again from another memory (internal RAM or external

 

memory).

 

Note:

During a Write operation, when bit LOCK of FCR0 is set, it is forbidden to write into the

 

Flash Control Registers.

 

4.2.5

Power supply drop

 

 

If during a write operation the internal low voltage supply drops below a certain internal

 

voltage threshold, any write operation running is suddenly interrupted and the modules are

reset to Read mode. At following Power-on, an interrupted Flash write operation must be repeated.

4.3Registers description

4.3.1Flash control register 0 low

The Flash control register 0 low (FCR0L) together with the Flash control register 0 high (FCR0H) is used to enable and to monitor all the write operations for both the Flash modules. The user has no access in write mode to the test-Flash (B0TF). Besides, testFlash block is seen by the user in Bootstrap mode only.

FCR0L (0x0E 0000)

 

 

 

 

FCR

 

 

 

 

 

Reset value: 0000h

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reserved

 

 

 

 

BSY1

BSY0

LOCK

Res.

BSY3

BSY2

Res.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

R

 

 

R

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.

Flash control register 0 low

Bit

Function

 

 

Bank 3:2 Busy (XFLASH)

These bits indicate that a write operation is running on the corresponding bank of XFLASH. They are automatically set when bit WMS is set. Setting Protection operation sets bit BSY2 (since protection registers are in the Block B2). When these

BSY(3:2) bits are set every read access to the corresponding bank will output invalid data (software trap 009Bh), while every write access to the bank will be ignored. At the end of the write operation or during a Program or Erase Suspend these bits are automatically reset and the bank returns to read mode. After a Program or Erase Resume these bits are automatically set again.

28/231

ST10F276E

Internal Flash memory

 

 

Table 6. Flash control register 0 low (continued)

Bit

Function

 

 

Flash registers access locked

When this bit is set, it means that the access to the Flash Control Registers FCR0H/- FCR1H/L, FDR0H/L-FDR1H/L, FARH/L and FER is locked by the FPEC: any read access to the registers will output invalid data (software trap 009Bh) and any write

LOCK access will be ineffective. LOCK bit is automatically set when the Flash bit WMS is set. This is the only bit the user can always access to detect the status of the Flash: once it

is found low, the rest of FCR0L and all the other Flash registers are accessible by the user as well.

Note that FER content can be read when LOCK is low, but its content is updated only when also BSY bits are reset.

Bank 1:0 Busy (IFLASH)

These bits indicate that a write operation is running in the corresponding bank of IFLASH. They are automatically set when bit WMS is set. When these bits are set

BSY(1:0) every read access to the corresponding bank will output invalid data (software trap 009Bh), while every write access to the bank will be ignored. At the end of the write

operation or during a Program or Erase Suspend these bits are automatically reset and the bank returns to read mode. After a Program or Erase Resume these bits are automatically set again.

4.3.2Flash control register 0 high

The Flash control register 0 high (FCR0H) together with the Flash control register 0 Low (FCR0L) is used to enable and to monitor all the write operations for both the Flash modules. The user has no access in write mode to the Test-Flash (B0TF). Besides, testFlash block is seen by the user in Bootstrap mode only.

FCR0H (0x0E 0002)

 

 

 

FCR

 

 

 

 

 

Reset value: 0000h

15

14

13

12

11

10

9

8

7

6

5

4

3

 

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WMS

SUSP

WPG

DWPG

SER

Reserved

SPR

SMOD

 

 

 

Reserved

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RW

RW

RW

RW

RW

 

 

RW

RW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.

Flash control register 0 high

Bit

Function

 

 

 

Select module

SMOD

If this bit is reset, the Write Operation is performed on XFLASH Module; if this bit is

set, the Write Operation is performed on IFLASH Module. SMOD bit is automatically

 

 

reset at the end of the Write operation.

 

 

 

Set protection

This bit must be set to select the Set Protection operation. The Set Protection operation allows to program 0s in place of 1s in the Flash Non-volatile Protection

SPR Registers. The Flash Address in which to program must be written in the FARH/L registers, while the Flash Data to be programmed must be written in the FDR0H/L before starting the execution by setting bit WMS. A sequence error is flagged by bit SEQER of FER if the address written in FARH/L is not in the range 0x0EDFB00x0EDFBF. SPR bit is automatically reset at the end of the Set Protection operation.

29/231

Internal Flash memory

ST10F276E

 

 

Table 7. Flash control register 0 high (continued)

Bit

Function

 

 

Sector erase

This bit must be set to select the Sector Erase operation in the Flash modules. The Sector Erase operation allows to erase all the Flash locations to 0xFF. From 1 to all the

SER sectors of the same bank (excluded Test-Flash for Bank B0) can be selected to be erased through bits BxFy of FCR1H/L registers before starting the execution by setting bit WMS. It is not necessary to pre-program the sectors to 0x00, because this is done automatically. SER bit is automatically reset at the end of the Sector Erase operation.

Double word program

This bit must be set to select the Double Word (64 bits) Program operation in the Flash modules. The Double Word Program operation allows to program 0s in place of 1s.

DWPG The Flash Address in which to program (aligned with even words) must be written in the FARH/L registers, while the 2 Flash Data to be programmed must be written in the FDR0H/L registers (even word) and FDR1H/L registers (odd word) before starting the execution by setting bit WMS. DWPG bit is automatically reset at the end of the Double Word Program operation.

Word program

This bit must be set to select the Word (32 bits) Program operation in the Flash modules. The Word Program operation allows to program 0s in place of 1s. The Flash

WPG Address to be programmed must be written in the FARH/L registers, while the Flash Data to be programmed must be written in the FDR0H/L registers before starting the execution by setting bit WMS. WPG bit is automatically reset at the end of the Word Program operation.

Suspend

This bit must be set to suspend the current Program (Word or Double Word) or Sector Erase operation in order to read data in one of the sectors of the bank under modification or to program data in another bank. The Suspend operation resets the Flash bank to normal read mode (automatically resetting bits BSYx). When in

SUSP Program Suspend, the two Flash modules accept only the following operations: Read and Program Resume. When in Erase Suspend the modules accept only the following operations: Read, Erase Resume and Program (Word or Double Word; Program operations cannot be suspended during Erase Suspend). To resume the suspended operation, the WMS bit must be set again, together with the selection bit corresponding to the operation to resume (WPG, DWPG, SER).

Note: It is forbidden to start a new Write operation with bit SUSP already set.

Write mode start

This bit must be set to start every write operation in the Flash modules. At the end of the write operation or during a Suspend, this bit is automatically reset. To resume a

WMS suspended operation, this bit must be set again. It is forbidden to set this bit if bit ERR of FER is high (the operation is not accepted). It is also forbidden to start a new write (program or erase) operation (by setting WMS high) when bit SUSP of FCR0 is high. Resetting this bit by software has no effect.

30/231

Loading...
+ 201 hidden pages