ST ST10F273M User Manual

ST10F273M

16-bit MCU with 512 Kbyte Flash memory and 36 Kbyte RAM

Features

High performance 16-bit CPU with DSP functions

50ns instruction cycle time at 40 MHz max CPU clock

Multiply/accumulate unit (MAC) 16 x 16-bit multiplication, 40-bit accumulator

Enhanced boolean bit manipulations

Single-cycle context switching support

Memory organization

512 Kbyte on-chip Flash memory single voltage with erase/program controller (full performance, 32-bit fetch)

100K erasing/programming cycles.

Up to 16 Mbyte linear address space for code and data (5 Mbytes with CAN or I2C)

2 Kbyte on-chip internal RAM (IRAM)

34 Kbyte on-chip extension RAM (XRAM)

Programmable external bus configuration and characteristics for different address ranges

5 programmable chip-select signals

Hold-acknowledge bus arbitration support

Interrupt

8-channel peripheral event controller for single cycle interrupt driven data transfer

16-priority-level interrupt system with 56 sources, sampling rate down to 25ns

Timers

2 multifunctional general purpose timer units with 5 timers

Two 16-channel capture / compare units

4-channel PWM unit + 4-channel XPWM

PQFP144 (28 x 28 x 3.4mm)

LQFP144 (20 x 20 x 1.4mm)

(Plastic Quad Flat Package)

(Low Profile Quad Flat Package)

 

 

24-channel A/D converter

16-channel 10-bit, accuracy +/-2 LSB

8-channel 10-bit, accuracy +/-5 LSB

4.85µs Minimum conversion time

Serial channels

2 synch. / asynch. serial channels

2 high-speed synchronous channels

I2C standard interface

2 CAN 2.0B interfaces operating on 1 or 2 CAN buses (64 or 2x32 messages, C-CAN version)

Fail-safe protection

Programmable watchdog timer

Oscillator watchdog

On-chip bootstrap loader

Clock generation

On-chip PLL and 4 to 12 MHz oscillator

Direct or prescaled clock input

Real time clock and 32 kHz on-chip oscillator

Up to 111 general purpose I/O lines

Individually programmable as input, output or special function

Programmable threshold (hysteresis)

Idle, power down and standby modes

Single voltage supply: 5 V ±10% (embedded regulator for 1.8V core supply)

Temperature range: -40 / +125 °C

July 2007

Rev 2

1/182

www.st.com

Contents

ST10F273M

 

 

Contents

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

1.1

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

1.2

Special characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

1.2.1 X-Peripheral clock gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 Improved supply ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2

Pin data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

3

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

4

Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

5

Internal Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

5.1

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

5.2

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

5.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2.2 Module structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2.3 Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4 Flash control registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1 Flash control register 0 low (FCR0L) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.4.2 Flash control register 0 high (FCR0H) . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.4.3 Flash control register 1 low (FCR1L) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.4 Flash control register 1 high (FCR1H) . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.5 Flash data register 0 low (FDR0L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.6 Flash data register 0 high (FDR0H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4.7 Flash data register 1 low (FDR1L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4.8 Flash data register 1 high (FDR1H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4.9 Flash address register low (FARL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4.10 Flash address register high (FARH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.4.11 Flash error register (FER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.4.12 XFlash interface control dummy register (XFICR) . . . . . . . . . . . . . . . . . 39

5.5

Protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

 

5.5.1

Protection registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

2/182

ST10F273M

Contents

 

 

5.5.2 Flash non-volatile write protection I register low (FNVWPIRL) . . . . . . . 40 5.5.3 Flash non-volatile write protection I register high (FNVWPIRH) . . . . . . 41

5.5.4Flash non-volatile write protection I register low Mirror (FNVWPIRL-m) 41

5.5.5Flash non-volatile write protection I register high Mirror (FVWPIRH-m) 41

5.5.6 Flash non-volatile access protection register 0 (FNVAPR0) . . . . . . . . . 42

5.5.7Flash non-volatile access protection register 1 low (FNVAPR1L) . . . . . 42

5.5.8Flash non-volatile access protection register 1 high (FNVAPR1H) . . . . 43

5.5.9 Access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.5.10 Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.5.11 Temporary unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Write operation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.7 Write operation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6

Bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

 

6.1

Selection among user-code, standard or selective bootstrap . . . . . . . . . .

48

 

6.2

Standard bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

 

6.3

Alternate and selective boot mode (ABM and SBM) . . . . . . . . . . . . . . . .

49

6.3.1 Activation of the ABM and SBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3.2 User mode signature integrity check . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3.3 Selective boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7

Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

 

7.1

Multiplier-accumulator unit (MAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

 

7.2

Instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

7.3

MAC co-processor specific instructions . . . . . . . . . . . . . . . . . . . . . . . . . .

54

8

External bus controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55

9

Interrupt system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

56

 

9.1

X-Peripheral interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

 

9.2

Exception and error traps list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60

10

Capture / compare (CAPCOM) units . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

11

General purpose timer unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

 

11.1

GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

3/182

Contents

 

 

 

ST10F273M

 

 

 

 

 

 

11.2

GPT2 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 65

12

PWM modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 67

13

Parallel ports

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 68

 

13.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 68

 

13.2

I/O’s special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 68

 

 

13.2.1

Open drain mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 68

 

 

13.2.2

Input threshold control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 69

 

13.3

Alternate port functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 69

14

A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 71

15

Serial channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 73

15.1 Asynchronous / synchronous serial interfaces . . . . . . . . . . . . . . . . . . . . . 73 15.2 ASCx in asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 15.3 ASCx in synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 15.4 High speed synchronous serial interfaces . . . . . . . . . . . . . . . . . . . . . . . . 74

16

I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

17

CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77

 

17.1

Configuration support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77

 

17.2

CAN bus configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77

17.2.1 Single CAN bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 17.2.2 Multiple CAN bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 17.2.3 Parallel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

18

Real time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80

19

Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

81

20

System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

82

 

20.1

Input filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

82

 

20.2

Asynchronous reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

83

 

20.3

Synchronous reset (warm reset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

88

4/182

ST10F273M

Contents

 

 

20.4 Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 20.5 Watchdog timer reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 20.6 Bidirectional reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 20.7 Reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 20.8 Reset application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 20.9 Reset summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

21

Power reduction modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

108

 

21.1

Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

108

 

21.2

Power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

108

21.2.1 Protected power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 21.2.2 Interruptible power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

21.3 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

21.3.1 Entering standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 21.3.2 Exiting standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 21.3.3 Real time clock and standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 21.3.4 Power reduction modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

22

Programmable output clock divider . . . . . . . . . . . . . . . . . . . . . . . . . .

113

23

Register set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

 

23.1

Special function registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

 

23.2

X-registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

121

 

23.3

Flash registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

126

 

23.4

Identification registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

126

24

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

24.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 24.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 24.3 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 24.4 Parameter interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 24.5 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 24.6 Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 24.7 A/D converter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

24.7.1 Conversion timing control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5/182

Contents

ST10F273M

 

 

24.7.2 A/D conversion accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 24.7.3 Total unadjusted error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 24.7.4 Analog reference pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

24.8 AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

24.8.1

Test waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

24.8.2

Definition of internal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

24.8.3

Clock generation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

148

24.8.4

Prescaler operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

149

24.8.5

Direct drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

149

24.8.6

Oscillator watchdog (OWD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

149

24.8.7

Phase locked loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

150

24.8.8

Voltage controlled oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

150

24.8.9

PLL jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

151

24.8.10

PLL lock / unlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

153

24.8.11

Main oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

154

24.8.12

32 kHz oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

155

24.8.13

External clock drive XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

156

24.8.14

Memory cycle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157

24.8.15

External memory bus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157

24.8.16

Multiplexed bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157

24.8.17

Demultiplexed bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

164

24.8.18

CLKOUT and READY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

170

24.8.19

External bus arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

171

24.8.20

High-speed synchronous serial interface (SSC) timing . . . . . . . . . . . .

174

25

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

177

 

25.1

ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

177

 

25.2

Mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . .

177

26

Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

180

27

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

181

6/182

ST10F273M

List of tables

 

 

List of tables

Table 1. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 2. Summary of IFlash address range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 3. Flash module address space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 4. Flash module sectorization (read operations). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 5. Flash module sectorization (write operations, or ROMS1 = ‘1’) . . . . . . . . . . . . . . . . . . . . . 29 Table 6. Flash control registers summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 7. FCR0L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 8. FCR0H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 9. FCR1L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 10. FCR1H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 11. Bank (BxS) and sectors (BxFy) status bits meaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 12. FDR0L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 13. FDR0H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 14. FDR1L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 15. FDR1H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 16. FARL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 17. FARH register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 18. FER register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 19. XFlash interface control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 20. FNVWPIRL register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 21. FNVWPRIH register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 22. FNVAPR0 register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 23. FNVAPR1L register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 24. FNVAPR1H register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 25. Summary of access protection level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 26. Flash write operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 27. ST10F273M boot mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 28. Standard instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 29. MAC instruction set summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 30. Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 31. X-Interrupt detailed mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 32. Trap priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 33. Compare modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 34. CAPCOM timer input frequencies, resolutions and periods at 40 MHz . . . . . . . . . . . . . . . 62 Table 35. GPT1 timer input frequencies, resolutions and periods at 40 MHz. . . . . . . . . . . . . . . . . . . 63 Table 36. GPT2 timer input frequencies, resolutions and periods at 40 MHz. . . . . . . . . . . . . . . . . . . 65 Table 37. PWM unit frequencies and resolutions at 40 MHz CPU clock . . . . . . . . . . . . . . . . . . . . . . 67 Table 38. ASC asynchronous baudrates by reload value and deviation errors . . . . . . . . . . . . . . . . . 73 Table 39. ASC synchronous baudrates by reload value and deviation errors . . . . . . . . . . . . . . . . . . 74 Table 40. SSC synchronous baudrate and reload values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 41. WDTREL reload value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 42. Reset event definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 43. Reset event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table 44. PORT0 latched configuration for the different reset events . . . . . . . . . . . . . . . . . . . . . . . 106 Table 45. Power reduction modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 46. List of special function registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 47. List of XBus registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table 48. List of Flash control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7/182

List of tables

ST10F273M

 

 

Table 49. IDMANUF register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 50. IDCHIP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 51. IDMEM register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 52. IDPROG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 53. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 54. Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Table 55. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 56. Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 57. DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 58. Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Table 59. Flash data retention characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Table 60. A/D converter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Table 61. A/D converter programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Table 62. On-chip clock generator selections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Table 63. Internal PLL divider mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 64. PLL characteristics (VDD = 5V ± 10%, VSS = 0V, TA = -40°C to +125°C) . . . . . . . . . . . . 153 Table 65. Main oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 66. Main oscillator negative resistance (module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 67. 32 kHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 68. Minimum values of negative resistance (module) for 32 kHz oscillator . . . . . . . . . . . . . . 155 Table 69. External clock drive XTAL1 timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Table 70. Memory cycle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 71. Multiplexed bus timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 72. Demultiplexed bus timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Table 73. CLKOUT and READY timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 74. External bus arbitration timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Table 75. SSC master mode timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Table 76. SSC slave mode timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Table 77. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Table 78. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8/182

ST10F273M

List of figures

 

 

List of figures

Figure 1. ST10F273M Logic symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 2. Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 3. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 4. ST10F273M memory mapping (XADRS3 = 800Bh - reset value) . . . . . . . . . . . . . . . . . . . 25 Figure 5. ST10F273M memory mapping (XADRS3 = E009h - user programmed value) . . . . . . . . . 26 Figure 6. Flash structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 7. Write operation control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 8. CPU block diagram (MAC unit not included) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 9. MAC unit architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 10. X-Interrupt basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 11. Block diagram of GPT1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 12. Block diagram of GPT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 13. Block diagram of PWM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 14. Connection to single CAN bus via separate CAN transceivers . . . . . . . . . . . . . . . . . . . . . 78 Figure 15. Connection to single CAN bus via common CAN transceivers. . . . . . . . . . . . . . . . . . . . . . 78 Figure 16. Connection to two different CAN buses (for example for gateway application) . . . . . . . . . 79 Figure 17. Connection to one CAN bus with internal parallel mode enabled. . . . . . . . . . . . . . . . . . . . 79 Figure 18. Asynchronous power-on RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Figure 19. Asynchronous power-on RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Figure 20. Asynchronous hardware RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Figure 21. Asynchronous hardware RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 22. Synchronous short / long hardware RESET (EA = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 23. Synchronous short / long hardware RESET (EA = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Figure 24. Synchronous long hardware RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Figure 25. Synchronous long hardware RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Figure 26. SW / WDT unidirectional RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Figure 27. SW / WDT unidirectional RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Figure 28. SW / WDT bidirectional RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 29. SW / WDT bidirectional RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Figure 30. SW / WDT bidirectional RESET (EA = 0) followed by a HW RESET . . . . . . . . . . . . . . . . 100 Figure 31. Minimum external reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 32. System reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Figure 33. Internal (simplified) reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Figure 34. Example of software or watchdog bidirectional reset (EA = 1) . . . . . . . . . . . . . . . . . . . . . 103 Figure 35. Example of software or watchdog bidirectional reset (EA = 0) . . . . . . . . . . . . . . . . . . . . . 104 Figure 36. PORT0 bits latched into the different registers after reset . . . . . . . . . . . . . . . . . . . . . . . . 107 Figure 37. External RC circuitry on RPD pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Figure 38. Port2 test mode structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Figure 39. Supply current versus the operating frequency (RUN and IDLE modes) . . . . . . . . . . . . . 135 Figure 40. A/D conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Figure 41. A/D converter input pins scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Figure 42. Charge-sharing timing diagram during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Figure 43. Anti-aliasing filter and conversion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Figure 44. Input/output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Figure 45. Float waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Figure 46. Generation mechanisms for the CPU clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Figure 47. ST10F273M PLL jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 48. Crystal oscillator and resonator connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9/182

List of figures

ST10F273M

 

 

Figure 49. 32 kHz crystal oscillator connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Figure 50. External clock drive XTAL1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 51. External memory cycle: Multiplexed bus, with/without read/write delay, normal ALE. . . . 160 Figure 52. External memory cycle: Multiplexed bus, with/without read/write delay, extended ALE. . 161 Figure 53. External memory cycle: Multiplexed bus, with/without r/w delay, normal ALE, r/w CS. . . 162 Figure 54. External memory cycle: Multiplexed bus, with/without r/w delay, extended ALE, r/w CS . 163 Figure 55. External memory cycle: Demultiplexed bus, with/without r/w delay, normal ALE . . . . . . . 166 Figure 56. External memory cycle: Demultiplexed bus, with/without r/w delay, extended ALE . . . . . 167 Figure 57. External memory cycle: Demultipl. bus, with/without r/w delay, normal ALE, r/w CS . . . . 168 Figure 58. External memory cycle: Demultiplexed bus, without r/w delay, extended ALE, r/w CS . . 169 Figure 59. CLKOUT and READY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 60. External bus arbitration (releasing the bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Figure 61. External bus arbitration (regaining the bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Figure 62. SSC master timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Figure 63. SSC slave timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Figure 64. PQFP144 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Figure 65. LQFP144 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10/182

ST10F273M

Introduction

 

 

1 Introduction

1.1Description

The ST10F273M device is a new derivative of the STMicroelectronics ST10 family of 16-bit single-chip CMOS microcontrollers.

The ST10F273M combines high CPU performance (up to 20 million instructions per second) with high peripheral functionality and enhanced I/O capabilities. It also provides on-chip high-speed single voltage Flash memory, on-chip high-speed RAM, and clock generation via PLL.

The ST10F273M is processed in 0.18mm CMOS technology. The MCU core and the logic is supplied with a 5V to 1.8V on-chip voltage regulator. The part is supplied with a single 5V supply and I/Os work at 5V.

The ST10F273M is an optimized version of the ST10F273E, upward compatible with the following set of differences:

Maximum CPU frequency is 40 MHz

A single bank of IFlash has been implemented but the programming interface has been kept compatible with the ST10F273E

Identification registers: the IDMEM register reflects the Flash type difference and allows to differentiate the two devices by software

Improved EMC behavior thanks to the introduction of an internal RC filter on the 5V for the ballast transistors

The clock to the X-Peripherals is gated: X-Peripheral not used will not get the clock in order to reduce the power consumption.

1.2Special characteristics

1.2.1X-Peripheral clock gating

This new feature have been implemented on the ST10F273M: Once the EINIT instruction has been executed, only the X-Peripherals enabled in the XPERCON register will be clocked.

The new feature allows to reduce the power consumption and also should improve the emissions as it avoids to propagate useless clock signals across the device.

1.2.2Improved supply ring

An RC filter has been introduced in the 5V power supply ring of the ballast transistor. In addition, the supply rings for the internal voltage regulators and the IOs have been split.

These two modifications should improve the behavior of the device regarding conducted emissions.

11/182

Introduction

ST10F273M

 

 

Figure 1. ST10F273M Logic symbol

XTAL1

XTAL2

XTAL3

XTAL4

RSTIN

RSTOUT

VAREF

VAGND

NMI

EA / VSTBY

READY

ALE

RD

WR / WRL

Port 5

16-bit

V18 VDD VSS

Port 0 16-bit

Port 1 16-bit

Port 2 16-bit

Port 3 15-bit

ST10F273M

 

Port 4

 

 

 

8-bit

Port 6 8-bit

Port 7 8-bit

Port 8 8-bit

RPD

12/182

ST10F273M

Pin data

 

 

2 Pin data

Figure 2. Pin configuration (top view)

P6.0 / CS0 1

P6.1 / CS1 2

P6.2 / CS2 3

P6.3 / CS3 4

P6.4 / CS4 5

P6.5 / HOLD / SCLK1 6

P6.6 / HLDA / MTSR1 7

P6.7 / BREQ / MRST1 8

P8.0 / XPOUT0 / CC16IO 9

P8.1 / XPOUT1 / CC17IO 10

P8.2 / XPOUT2 / CC18IO 11

P8.3 / XPOUT3 / CC19IO 12

P8.4 / CC20IO 13

P8.5 / CC21IO 14

P8.6 / RxD1 / CC22IO 15

P8.7 / TxD1 / CC23IO 16 VDD 17 VSS 18

P7.0 / POUT0 19

P7.1 / POUT1 20

P7.2 / POUT2 21

P7.3 / POUT3 22

P7.4 / CC28IO 23

P7.5 / CC29IO 24

P7.6 / CC30IO 25

P7.7 / CC31IO 26

P5.0 / AN0 27

P5.1 / AN1 28

P5.2 / AN2 29

P5.3 / AN3 30

P5.4 / AN4 31

P5.5 / AN5 32

P5.6 / AN6 33

P5.7 / AN7 34

P5.8 / AN8 35

P5.9 / AN9 36

XTAL4

XTAL3

 

NMI

 

RSTOUT

 

RSTIN VSS XTAL1 XTAL2 VDD P1H.7 / A15 / CC27I

P1H.6 / A14 / CC26I

P1H.5 / A13 / CC25I

P1H.4 / A12 / CC24I

P1H.3 / A11

P1H.2 / A10

P1H.1 / A9

P1H.0 / A8

VSS VDD P1L.7 / A7 / AN23

P1L.6 / A6 / AN22

P1L.5 / A5 / AN21

P1L.4 / A4 / AN20

P1L.3 / A3 / AN19

P1L.2 / A2 / AN18

P1L.1 / A1 / AN17

P1L.0 / A0 / AN16

P0H.7 / AD15

P0H.6 / AD14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

ST10F273M

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VAREF VAGND P5.10 / AN10 / T6EUD P5.11 / AN11 / T5EUD P5.12 / AN12 / T6IN P5.13 / AN13 / T5IN P5.14 / AN14 / T4EUD P5.15 / AN15 / T2EUD VSS VDD P2.0 / CC0IO P2.1 / CC1IO P2.2 / CC2IO P2.3 / CC3IO P2.4 / CC4IO P2.5 / CC5IO P2.6 / CC6IO P2.7 / CC7IO VSS V18 P2.8 / CC8IO / EX0IN P2.9 / CC9IO / EX1IN P2.10 / CC10IO / EX2IN P2.11 / CC11IO / EX3IN P2.12 / CC12IO / EX4IN P2.13 / CC13IO / EX5IN P2.14 / CC14IO / EX6IN / CC15IO / EX7IN / T7IN

P3.0 / T0IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2.15

 

P0H.5 / AD13

P0H.4 / AD12

 

 

 

 

 

 

 

115

 

114

P3.1 / T6OUT 66 P3.2 / CAPIN 67

113 P0H.3 / AD11

P3.3 / T3OUT 68

P0H.2 / AD10

P0H.1 / AD9

 

 

 

 

 

 

 

112

 

111

P3.4 / T3EUD 69 P3.5 / T4IN 70

110 VSS

VSS 71

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

109

 

 

 

 

 

 

 

 

 

 

108

 

P0H.0 / AD8

107

 

P0L.7 / AD7

106

 

P0L.6 / AD6

105

 

P0L.5 / AD5

104

 

P0L.4 / AD4

103

 

P0L.3 / AD3

102

 

P0L.2 / AD2

101

 

P0L.1 / AD1

100

 

P0L.0

/ AD0

99

 

EA / VSTBY

98

 

ALE

 

 

 

 

 

 

97

 

READY

 

 

 

 

96

 

WR

/WRL

 

 

 

95

 

RD

 

 

 

 

 

 

94

 

VSS

 

 

 

 

 

 

93

 

VDD

 

 

 

 

 

 

92

 

P4.7

/ A23 / CAN2_TxD / SDA

91

 

P4.6

/ A22 / CAN1_TxD / CAN2_TxD

90

 

P4.5

/ A21 / CAN1_RxD / CAN2_RxD

89

 

P4.4

/ A20 / CAN2_RxD / SCL

88

 

P4.3

/

A19

87

 

P4.2

/

A18

86

 

P4.1

/

A17

85

 

P4.0

/

A16

84

 

RPD

 

 

 

 

 

 

83

 

VSS

 

 

 

 

 

 

82

 

VDD

 

 

 

 

 

 

81

 

P3.15

/ CLKOUT

80

 

P3.13

/ SCLK0

79

 

P3.12

/ BHE /

WRH

 

78

 

P3.11

/ RxD0

77

 

P3.10

/ TxD0

76

 

P3.9

/ MTSR0

75

 

P3.8

/ MRST0

74

 

P3.7

/ T2IN

73

 

P3.6

/ T3IN

72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

13/182

Pin data

 

 

 

 

 

 

 

 

 

 

 

ST10F273M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

Pin description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

 

 

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

8-bit bidirectional I/O port, bit-wise programmable for input or output via direction

 

 

 

 

 

bit. Programming an I/O pin as input forces the corresponding output driver to

 

 

 

1 - 8

I/O

high impedance state. Port 6 outputs can be configured as push-pull or open

 

 

 

 

 

drain drivers. The input threshold of Port 6 is selectable (TTL or CMOS). The

 

 

 

 

 

following Port 6 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

O

P6.0

 

CS0

 

 

 

 

Chip select 0 output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

O

P6.4

 

 

 

 

 

 

Chip select 4 output

 

P6.0 - P6.7

 

CS4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

P6.5

 

 

 

 

 

 

 

External master hold request input

 

 

 

6

 

HOLD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

SCLK1

SSC1: master clock output / slave clock input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

P6.6

 

 

 

 

 

 

Hold acknowledge output

 

 

 

7

HLDA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

MTSR1

SSC1: master-transmitter / slave-receiver O/I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

P6.7

 

 

 

 

 

 

 

Bus request output

 

 

 

8

 

BREQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

MRST1

SSC1: master-receiver / slave-transmitter I/O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8-bit bidirectional I/O port, bit-wise programmable for input or output via direction

 

 

 

 

 

bit. Programming an I/O pin as input forces the corresponding output driver to

 

 

 

9-16

I/O

high impedance state. Port 8 outputs can be configured as push-pull or open

 

 

 

 

 

drain drivers. The input threshold of Port 8 is selectable (TTL or CMOS).

 

 

 

 

 

The following Port 8 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

9

I/O

P8.0

CC16IO

CAPCOM2: CC16 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

XPWM0

PWM1: channel 0 output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

P8.0 - P8.7

 

12

I/O

P8.3

CC19IO

CAPCOM2: CC19 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

XPWM0

PWM1: channel 3 output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

I/O

P8.4

CC20IO

CAPCOM2: CC20 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

14

I/O

P8.5

CC21IO

CAPCOM2: CC21 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

15

I/O

P8.6

CC22IO

CAPCOM2: CC22 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

RxD1

ASC1: Data input (Asynchronous) or I/O (Synchronous)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

I/O

P8.7

CC23IO

CAPCOM2: CC23 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

TxD1

ASC1: Clock / Data output (Asynchronous/Synchronous)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14/182

ST10F273M

 

 

 

 

 

Pin data

 

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

8-bit bidirectional I/O port, bit-wise programmable for input or output via direction

 

 

 

 

 

bit. Programming an I/O pin as input forces the corresponding output driver to

 

 

 

19-26

I/O

high impedance state. Port 7 outputs can be configured as push-pull or open

 

 

 

 

 

drain drivers. The input threshold of Port 7 is selectable (TTL or CMOS).

 

 

 

 

 

The following Port 7 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

19

O

P7.0

POUT0

PWM0: channel 0 output

 

P7.0 - P7.7

 

 

 

 

 

 

 

 

...

...

...

...

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

O

P7.3

POUT3

PWM0: channel 3 output

 

 

 

 

 

 

 

 

 

 

 

23

I/O

P7.4

CC28IO

CAPCOM2: CC28 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

...

 

 

 

 

 

 

 

 

 

 

 

26

I/O

P7.7

CC31IO

CAPCOM2: CC31 capture input / compare output

 

 

 

 

 

 

 

 

 

 

 

 

 

16-bit input-only port with Schmitt-Trigger characteristics. The pins of Port 5 can

 

 

 

27-36

I

be the analog input channels (up to 16) for the A/D converter, where P5.x equals

 

 

 

ANx (Analog input channel x), or they are timer inputs. The input threshold of

 

 

 

39-44

I

 

 

 

Port 5 is selectable (TTL or CMOS). The following Port 5 pins have alternate

 

 

 

 

 

 

 

 

 

 

functions:

 

 

 

 

 

 

 

 

 

 

P5.0 - P5.9

 

39

I

P5.10

T6EUD

GPT2: timer T6 external up/down control input

 

 

 

 

 

 

 

 

 

40

I

P5.11

T5EUD

GPT2: timer T5 external up/down control input

 

P5.10 - P5.15

 

 

 

 

 

 

 

 

 

 

 

41

I

P5.12

T6IN

GPT2: timer T6 count input

 

 

 

 

 

 

 

 

 

 

 

42

I

P5.13

T5IN

GPT2: timer T5 count input

 

 

 

 

 

 

 

 

 

 

 

43

I

P5.14

T4EUD

GPT1: timer T4 external up/down control input

 

 

 

 

 

 

 

 

 

 

 

44

I

P5.15

T2EUD

GPT1: timer T2 external up/down control input

 

 

 

 

 

 

 

 

 

 

 

 

 

16-bit bidirectional I/O port, bit-wise programmable for input or output via

 

 

 

47-54

 

direction bit. Programming an I/O pin as input forces the corresponding output

 

 

 

I/O

driver to high impedance state. Port 2 outputs can be configured as push-pull or

 

 

 

57-64

 

 

 

 

open drain drivers. The input threshold of Port 2 is selectable (TTL or CMOS).

 

 

 

 

 

 

 

 

 

 

The following Port 2 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

47

I/O

P2.0

CC0IO

CAPCOM: CC0 capture input/compare output

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

...

 

P2.0 - P2.7

 

 

 

 

 

 

 

 

54

I/O

P2.7

CC7IO

CAPCOM: CC7 capture input/compare output

 

P2.8 - P2.15

 

 

 

 

 

 

57

I/O

P2.8

CC8IO

CAPCOM: CC8 capture input/compare output

 

 

 

 

 

 

 

 

 

 

 

 

I

EX0IN

Fast external interrupt 0 input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

...

...

...

...

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

CC15IO

CAPCOM: CC15 capture input/compare output

 

 

 

 

 

 

 

 

 

 

 

64

I

P2.15

EX7IN

Fast external interrupt 7 input

 

 

 

 

 

 

 

 

 

 

 

 

I

 

T7IN

CAPCOM2: timer T7 count input

 

 

 

 

 

 

 

 

 

15/182

Pin data

 

 

 

 

 

 

 

 

ST10F273M

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

15-bit (P3.14 is missing) bidirectional I/O port, bit-wise programmable for input or

 

 

 

65-70,

I/O

output via direction bit. Programming an I/O pin as input forces the

 

 

 

73-80,

I/O

corresponding output driver to high impedance state. Port 3 outputs can be

 

 

 

81

I/O

configured as push-pull or open drain drivers. The input threshold of Port 3 is

 

 

 

 

 

selectable (TTL or CMOS). The following Port 3 pins have alternate functions:

 

 

 

 

 

 

 

 

 

 

 

 

65

I

P3.0

 

T0IN

CAPCOM1: timer T0 count input

 

 

 

 

 

 

 

 

 

 

 

66

O

P3.1

T6OUT

GPT2: timer T6 toggle latch output

 

 

 

 

 

 

 

 

 

 

 

 

67

I

P3.2

 

CAPIN

GPT2: register CAPREL capture input

 

 

 

 

 

 

 

 

 

 

 

68

O

P3.3

T3OUT

GPT1: timer T3 toggle latch output

 

 

 

 

 

 

 

 

 

 

 

69

I

P3.4

T3EUD

GPT1: timer T3 external up/down control input

 

 

 

 

 

 

 

 

 

P3.0 - P3.5

 

70

I

P3.5

T4IN

GPT1; timer T4 input for count/gate/reload/capture

 

 

 

 

 

 

 

 

 

 

 

 

73

I

P3.6

T3IN

GPT1: timer T3 count/gate input

 

P3.6 - P3.13,

 

P3.15

 

 

 

 

 

 

 

 

 

 

 

74

I

P3.7

T2IN

GPT1: timer T2 input for count/gate/reload / capture

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75

I/O

P3.8

 

MRST0

SSC0: master-receiver/slave-transmitter I/O

 

 

 

 

 

 

 

 

 

 

 

76

I/O

P3.9

MTSR0

SSC0: master-transmitter/slave-receiver O/I

 

 

 

 

 

 

 

 

 

 

 

77

O

P3.10

TxD0

ASC0: clock / data output (asynchronous/synchronous)

 

 

 

 

 

 

 

 

 

 

 

 

78

I/O

P3.11

 

RxD0

ASC0: data input (asynchronous) or I/O (synchronous)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External memory high byte enable signal

 

 

 

79

O

P3.12

 

BHE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External memory high byte write strobe

 

 

 

 

 

 

 

WRH

 

 

 

 

 

 

 

 

 

 

 

 

80

I/O

P3.13

SCLK0

SSC0: master clock output / slave clock input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81

O

P3.15

CLKOUT

System clock output (programmable divider on CPU

 

 

 

clock)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16/182

ST10F273M

 

 

 

 

 

 

 

 

 

 

 

Pin data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

 

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or

 

 

 

 

 

 

 

 

 

 

 

 

 

output via direction bit. Programming an I/O pin as input forces the

 

 

 

 

 

 

 

 

 

 

 

 

 

corresponding output driver to high impedance state. The input threshold is

 

 

 

 

 

 

 

 

 

 

 

85-92

I/O

selectable (TTL or CMOS). Port 4.4, 4.5, 4.6 and 4.7 outputs can be configured

 

 

 

 

 

 

 

 

 

 

 

 

 

as push-pull or open drain drivers.

 

 

 

 

 

 

 

 

 

 

 

 

 

In case of an external bus configuration, Port 4 can be used to output the

 

 

 

 

 

 

 

 

 

 

 

 

 

segment address lines:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85

O

P4.0

A16

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86

O

P4.1

A17

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87

O

P4.2

A18

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

O

P4.3

A19

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

A20

Segment address line

 

 

 

 

 

 

 

 

 

P4.0 –P4.7

 

89

I

P4.4

CAN2_RxD

CAN2: receive data input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

SCL

I2C Interface: serial clock

 

 

 

 

 

 

 

 

 

 

 

 

O

 

A21

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

I

P4.5

CAN1_RxD

CAN1: receive data input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

CAN2_RxD

CAN2: receive data input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

A22

Segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91

O

P4.6

CAN1_TxD

CAN1: transmit data output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

CAN2_TxD

CAN2: transmit data output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

A23

Most significant segment address line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92

O

P4.7

CAN2_TxD

CAN2: transmit data output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

SDA

I2C Interface: serial data

 

 

 

 

 

 

 

 

 

 

 

 

 

External memory read strobe.

 

 

is activated for every external instruction or

 

 

 

 

 

 

 

 

 

 

 

 

 

RD

 

 

 

 

RD

 

95

O

 

 

 

 

 

data read access.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External memory write strobe. In

 

 

 

-mode this pin is activated for every

 

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

 

 

 

 

 

 

 

 

external data write access. In

WRL

mode this pin is activated for low byte data

 

 

WR/WRL

 

96

O

 

 

 

write accesses on a 16-bit bus, and for every data write access on an 8-bit bus.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See WRCFG in the SYSCON register for mode selection.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ready input. The active level is programmable. When the ready function is

 

 

READY/

 

97

I

enabled, the selected inactive level at this pin, during an external memory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

READY

access, will force the insertion of waitstate cycles until the pin returns to the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

selected active level.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALE

 

98

O

Address latch enable output. In case of use of external addressing or of

 

 

 

 

multiplexed mode, this signal is the latch command of the address lines.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17/182

Pin data

 

 

 

 

 

ST10F273M

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External access enable pin.

 

 

 

 

 

 

 

 

A low level applied to this pin during and after Reset forces the ST10F273M to

 

 

 

 

 

 

 

start the program from the external memory space. A high level forces

 

 

 

 

 

 

 

ST10F273M to start in the internal memory space. This pin is also used (when

 

 

 

 

 

 

 

Standby mode is entered, that is ST10F273M under reset and main VDD turned

 

 

 

 

 

 

 

off) to bias the 32 kHz oscillator amplifier circuit and to provide a reference

 

 

 

 

 

 

 

voltage for the low-power embedded voltage regulator which generates the

 

 

EA / VSTBY

 

99

I

 

 

 

internal 1.8V supply for the RTC module (when not disabled) and to retain data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

inside the Standby portion of the XRAM (16 Kbyte).

 

 

 

 

 

 

 

It can range from 4.5 to 5.5V (6V for a reduced amount of time during the device

 

 

 

 

 

 

 

life, 4.0V when RTC and 32 kHz on-chip oscillator amplifier are turned off). In

 

 

 

 

 

 

 

running mode, this pin can be tied low during reset without affecting 32 kHz

 

 

 

 

 

 

 

oscillator, RTC and XRAM activities, since the presence of a stable VDD

 

 

 

 

 

 

 

guarantees the proper biasing of all those modules.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two 8-bit bidirectional I/O ports P0L and P0H, bit-wise programmable for input or

 

 

 

 

 

 

 

output via direction bit. Programming an I/O pin as input forces the

 

 

 

 

 

 

 

corresponding output driver to high impedance state. The input threshold of

 

 

 

 

 

 

 

Port 0 is selectable (TTL or CMOS).

 

 

 

 

 

 

 

In case of an external bus configuration, PORT0 serves as the address (A) and

 

 

 

 

 

 

 

as the address / data (AD) bus in multiplexed bus modes and as the data (D) bus

 

 

 

 

 

 

 

in demultiplexed bus modes.

 

 

 

 

 

 

 

 

Demultiplexed bus modes

 

 

P0L.0 -P0L.7,

100-107,

 

Data path width

8-bit

16-bit

 

 

P0H.0

 

108,

I/O

 

 

 

 

 

 

 

P0H.1 - P0H.7

111-117

 

P0L.0 – P0L.7:

D0 – D7

D0 - D7

 

 

 

 

 

 

 

P0H.0 – P0H.7:

I/O

D8 - D15

 

 

 

 

 

 

 

Multiplexed bus modes

 

 

 

 

 

 

 

 

Data path width

8-bit

16-bit

 

 

 

 

 

 

 

P0L.0 – P0L.7:

AD0 – AD7

AD0 - AD7

 

 

 

 

 

 

 

P0H.0 – P0H.7:

A8 – A15

AD8 - AD15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two 8-bit bidirectional I/O ports P1L and P1H, bit-wise programmable for input or

 

 

 

 

 

 

 

output via direction bit. Programming an I/O pin as input forces the

 

 

 

 

 

 

 

corresponding output driver to high impedance state. PORT1 is used as the 16-

 

 

 

 

 

 

 

bit address bus (A) in demultiplexed bus modes: if at least BUSCONx is

 

 

 

 

 

118-125

 

configured such the demultiplexed mode is selected, the pis of PORT1 are not

 

 

 

 

 

I/O available for general purpose I/O function. The input threshold of Port 1 is

 

 

 

 

 

128-135

 

 

 

 

 

 

selectable (TTL or CMOS).

 

 

 

 

 

 

 

 

 

 

P1L.0 - P1L.7

The pins of P1L also serve as the additional (up to 8) analog input channels for

P1H.0 - P1H.7

the A/D converter, where P1L.x equals ANy (Analog input channel y, where y = x + 16). This additional function have higher priority on demultiplexed bus function. The following PORT1 pins have alternate functions:

 

132

I

P1H.4

CC24IO

CAPCOM2: CC24 capture input

 

 

 

 

 

 

 

133

I

P1H.5

CC25IO

CAPCOM2: CC25 capture input

 

 

 

 

 

 

 

134

I

P1H.6

CC26IO

CAPCOM2: CC26 capture input

 

 

 

 

 

 

 

135

I

P1H.7

CC27IO

CAPCOM2: CC27 capture input

 

 

 

 

 

 

18/182

ST10F273M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

Pin description (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Pin

Type

 

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

XTAL1

 

138

I

XTAL1

Main oscillator amplifier circuit and/or external clock input.

 

 

 

 

 

 

 

 

 

 

 

 

XTAL2

 

137

O

XTAL2

Main oscillator amplifier circuit output.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To clock the device from an external source, drive XTAL1 while leaving XTAL2

 

 

 

 

 

 

 

 

 

 

 

unconnected. Minimum and maximum high / low and rise / fall times specified in

 

 

 

 

 

 

 

 

 

 

 

the AC Characteristics must be observed.

 

 

 

 

 

 

 

 

 

 

 

 

XTAL3

 

143

I

XTAL3

32 kHz oscillator amplifier circuit input

 

 

 

 

 

 

 

 

 

 

 

 

XTAL4

 

144

O

XTAL4

32 kHz oscillator amplifier circuit output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When 32 kHz oscillator amplifier is not used, to avoid spurious consumption,

 

 

 

 

 

 

 

 

 

 

 

XTAL3 shall be tied to ground while XTAL4 shall be left open. Besides, bit OFF32

 

 

 

 

 

 

 

 

 

 

 

in RTCCON register shall be set. 32 kHz oscillator can only be driven by an

 

 

 

 

 

 

 

 

 

 

 

external crystal, and not by a different clock source.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Input with CMOS Schmitt-Trigger characteristics. A low level at this pin for

 

 

 

 

 

 

 

 

 

 

 

a specified duration while the oscillator is running resets the ST10F273M. An

 

 

 

 

 

 

 

 

 

140

I

internal pull-up resistor permits power-on reset using only a capacitor connected

 

 

 

RSTIN

 

 

 

 

 

to VSS. In bidirectional reset mode (enabled by setting bit BDRSTEN in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYSCON register), the

RSTIN

line is pulled low for the duration of the internal

 

 

 

 

 

 

 

 

 

 

 

reset sequence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal Reset Indication Output. This pin is driven to a low level during

 

 

RSTOUT

 

 

141

O

hardware, software or watchdog timer reset.

RSTOUT

remains low until the EINIT

 

 

 

 

 

 

 

 

 

 

 

(end of initialization) instruction is executed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU

 

 

 

 

 

 

 

 

 

 

 

to vector to the NMI trap routine. If bit PWDCFG = ‘0’ in SYSCON register, when

 

 

 

 

 

 

 

 

 

 

 

the PWRDN (power down) instruction is executed, the

NMI

pin must be low in

 

 

 

 

NMI

 

 

142

I

order to force the ST10F273M to go into power down mode. If

NMI

is high and

 

 

 

 

 

 

 

 

 

 

 

PWDCFG = ‘0’, when PWRDN is executed, the part will continue to run in

 

 

 

 

 

 

 

 

 

 

 

normal mode.

 

 

 

 

 

 

 

 

 

 

 

If not used, pin

 

should be pulled high externally.

 

 

 

 

 

 

 

 

 

 

 

NMI

 

 

 

 

 

 

 

 

 

 

 

VAREF

 

37

-

A/D converter reference voltage and analog supply

 

 

 

VAGND

 

38

-

A/D converter reference and analog ground

 

 

 

RPD

 

84

-

Timing pin for the return from interruptible power down mode and synchronous /

 

 

 

 

asynchronous reset selection.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17, 46,

 

Digital supply voltage = + 5V during normal operation, idle and power down

 

 

 

 

 

 

 

 

 

72,82,93,

 

 

 

 

 

VDD

 

-

modes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

109, 126,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be turned off when Standby RAM mode is selected.

 

 

 

 

 

 

 

 

 

136

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18,45,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55,71,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

83,94,

-

Digital ground

 

 

 

 

 

 

 

 

 

110, 127,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

139

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V18

 

56

-

1.8V decoupling pin: a decoupling capacitor (typical value of 10nF, max 100nF)

 

 

 

 

 

must be connected between this pin and nearest VSS pin.

 

 

 

 

 

 

 

 

 

 

 

 

19/182

ST ST10F273M User Manual

Functional description

ST10F273M

 

 

3 Functional description

The architecture of the ST10F273M combines advantages of both RISC and CISC processors and an advanced peripheral subsystem. The block diagram gives an overview of the different on-chip components and the high bandwidth internal bus structure of the ST10F273M.

Figure 3. Block diagram

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

IFlash

32

 

 

 

 

 

16

 

 

 

 

 

 

 

CPU-core and MAC unit

 

IRAM

 

 

 

 

 

512K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2K

 

 

XRAM1

16

 

 

 

 

 

 

 

 

 

Watchdog

 

 

2K

 

 

16

 

 

 

PEC

 

 

 

 

(PEC)

 

 

 

 

 

 

 

 

 

 

XRAM2

16

 

 

16

 

 

 

 

 

 

Oscillator

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

32K

 

 

 

 

 

 

 

 

 

32 kHz

 

(16K STBY)

 

 

XPWM

 

 

 

 

 

 

 

oscillator

 

 

XRTC

16

16

 

 

 

Interrupt controller

 

 

PLL

 

 

 

 

XASC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

16

 

 

 

 

 

 

 

 

5V-1.8V

 

 

XI2C

 

 

XSSC

 

 

 

 

 

 

 

 

 

 

16

16

 

 

 

 

 

 

 

 

voltage

 

 

 

 

 

 

 

 

 

 

 

regulator

 

 

XCAN1

 

 

XCAN2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

0

 

 

 

 

 

 

 

 

 

 

 

 

Port 1 Port

 

 

 

 

GPT1 / GPT2

 

 

 

 

 

 

 

16

 

External bus

controller

10-bit ADC

ASC0

SSC0

PWM

CAPCOM2

CAPCOM1

Port 2

16

 

 

 

8

4

 

 

 

 

 

BRG

BRG

 

 

 

 

 

Port

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port 6

 

Port 5

 

Port 3

 

Port 7

 

Port 8

 

 

8

 

 

16

 

 

15

 

8

 

8

 

 

20/182

ST10F273M

Memory organization

 

 

4 Memory organization

The memory space of the ST10F273M is configured in a unified memory architecture. Code memory, data memory, registers and I/O ports are organized within the same linear address space of 16 Mbytes. The entire memory space can be accessed Bytewise or Wordwise.

Particular portions of the on-chip memory have additionally been made directly bit addressable.

IFlash: 512 Kbytes of on-chip Flash memory implemented as a unique Bank (Bank0). Bank0 is divided in 12 blocks (B0F0...B0F11).

Note:

Read-while-write operations are not allowed: Write commands must be executed from a non

 

IFlash memory area (on-chip RAM or external memory).

 

 

When Bootstrap mode is selected, the Test-Flash Block B0TF (4 Kbytes) appears at

 

address 00’0000h: Refer to the device User Manual for more details on the memory

 

mapping in Bootstrap mode. The summary of address range for IFlash is the following:

 

Table 2.

Summary of IFlash address range

 

 

 

 

 

 

 

 

Blocks

User mode

Size (bytes)

 

 

 

 

 

 

 

B0TF

Not visible

4 K

 

 

 

 

 

 

 

B0F0

00’0000h - 00’1FFFh

8 K

 

 

 

 

 

 

 

B0F1

00’2000h - 00’3FFFh

8 K

 

 

 

 

 

 

 

B0F2

00’4000h - 00’5FFFh

8 K

 

 

 

 

 

 

 

B0F3

00’6000h - 00’7FFFh

8 K

 

 

 

 

 

 

 

B0F4

01’8000h - 01’FFFFh

32 K

 

 

 

 

 

 

 

B0F5

02’0000h - 02’FFFFh

64 K

 

 

 

 

 

 

 

B0F6

03’0000h - 03’FFFFh

64 K

 

 

 

 

 

 

 

B0F7

04’0000h - 04’FFFFh

64 K

 

 

 

 

 

 

 

B0F8

05’0000h - 05’FFFFh

64 K

 

 

 

 

 

 

 

B0F9

06’0000h - 06’FFFFh

64 K

 

 

 

 

 

B1F0 / B0F10 (1)

07’0000h - 07’FFFFh

64 K

 

B1F1 / B0F11 (1)

08’0000h - 08’FFFFh

64 K

Note:

A single Flash bank is implemented on the ST10F273M compared to the ST10F273E. The

 

last two sectors (B0F10 and B0F11) can be seen as the Bank1 of the ST10F273E in order

 

to maintain the compatibility with the existing Flash programming drivers. For this, the

control and status bit of the blocks B0F10 and B0F11 have been duplicated to be usable as blocks B1F0 and B1F1 of the ST10F273E.

XFLASH / Flash Control Registers: Address range 0E’0000h-0E’FFFFh is reserved for the Flash Control Register and other internal service memory space used by the Flash Program/Erase Controller. XFLASHEN bit in XPERCON register must be set to access the Flash Control Register. Note that when Flash Control Registers are not accessible, no program/erase operations are possible. The Flash Control Registers are accessed in 16-bit demultiplexed bus-mode without read/write delay. Byte and word accesses are allowed.

21/182

Memory organization

ST10F273M

 

 

 

 

 

IRAM: 2 Kbytes of on-chip internal RAM (dual-port) is provided as a storage for data,

 

system stack, general purpose register banks and code. A register bank is 16 Wordwide (R0

 

to R15) and / or Bytewide (RL0, RH0, …, RL7, RH7) general purpose registers group.

 

XRAM: 34 Kbytes of on-chip extension RAM (single port XRAM) is provided as a storage for

 

data, user stack and code.

 

 

The XRAM is divided into two areas, the first 2 Kbytes named XRAM1 and the second

 

32 Kbytes named XRAM2, connected to the internal XBUS and are accessed like an

 

external memory in 16-bit demultiplexed bus-mode without wait state or read/write delay

 

(50ns access at 40 MHz CPU clock). Byte and Word accesses are allowed.

 

 

The XRAM1 address range is 00’E000h - 00’E7FFh if XPEN (bit 2 of SYSCON register),

 

and XRAM1EN (bit 2 of XPERCON register) are set.

 

 

If XRAM1EN or XPEN is cleared, then any access in the address range 00’E000h -

 

00’E7FFh will be directed to external memory interface, using the BUSCONx register

 

corresponding to address matching ADDRSELx register.

 

 

The XRAM2 address range is F’0000h - F’7FFFFh if XPEN (bit 2 of SYSCON register), and

 

XRAM2EN (bit 3 of XPERCON register) are set.

 

 

If bit XPEN is cleared, then any access in the address range programmed for XRAM2 will be

 

directed to external memory interface, using the BUSCONx register corresponding to

 

address matching ADDRSELx register.

 

 

The 16 kbytes lower portion of the XRAM2 (address range F’0000h - F’3FFFFh) represents

 

also the Standby RAM, which can be maintained biased through

EA

/ VSTBY pin when the

 

main supply VDD is turned off.

 

 

As the XRAM appears like external memory, it cannot be used as system stack or as

 

register banks. The XRAM is not provided for single bit storage and therefore is not bit

 

addressable.

 

 

SFR/ESFR: 1024 bytes (2 x 512 bytes) of address space is reserved for the special function

 

register (SFR) areas. SFRs are Wordwide registers which are used to control and to monitor

 

the function of the different on-chip units.

 

 

CAN1: Address range 00’EF00h - 00’EFFFh is reserved for the CAN1 Module access. The

 

CAN1 is enabled by setting XPEN bit 2 of the SYSCON register and by setting CAN1EN bit

 

0 of the XPERCON register. Accesses to the CAN Module use demultiplexed addresses

 

and a 16-bit data bus (only word accesses are possible). Two wait states give an access

 

time of 100ns at 40 MHz CPU clock. No tri-state wait states are used.

 

 

CAN2: Address range 00’EE00h - 00’EEFFh is reserved for the CAN2 Module access. The

 

CAN2 is enabled by setting XPEN bit 2 of the SYSCON register and by setting CAN2EN bit

 

1 of the new XPERCON register. Accesses to the CAN Module use demultiplexed

 

addresses and a 16-bit data bus (only word accesses are possible). Two wait states give an

 

access time of 100ns at 40 MHz CPU clock. No tri-state wait states are used.

 

Note:

If one or the two CAN modules are used, Port 4 cannot be programmed to output all eight

 

segment address lines. Thus, only four segment address lines can be used, reducing the

 

external memory space to 5 Mbytes (1 Mbyte per CS line).

 

RTC: Address range 00’ED00h - 00’EDFFh is reserved for the RTC Module access. The RTC is enabled by setting XPEN bit 2 of the SYSCON register and bit 4 of the XPERCON register. Accesses to the RTC Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 100ns at 40 MHz CPU clock. No tristate waitstate is used.

22/182

ST10F273M

Memory organization

 

 

PWM1: Address range 00’EC00h - 00’ECFFh is reserved for the PWM1 Module access. The PWM1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 6 of the XPERCON register. Accesses to the PWM1 Module use demultiplexed addresses and a 16bit data bus (only word accesses are possible). Two waitstates give an access time of 100ns at 40 MHz CPU clock. No tristate waitstate is used. Only word access is allowed.

ASC1: Address range 00’E900h - 00’E9FFh is reserved for the ASC1 Module access. The ASC1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 7 of the XPERCON register. Accesses to the ASC1 Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 100ns at 40 MHz CPU clock. No tristate waitstate is used.

SSC1: Address range 00’E800h - 00’E8FFh is reserved for the SSC1 Module access. The SSC1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 8 of the XPERCON register. Accesses to the SSC1 Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 100ns at 40 MHz CPU clock. No tristate waitstate is used.

I2C: Address range 00’EA00h - 00’EAFFh is reserved for the I2C Module access. The I2C is enabled by setting XPEN bit 2 of the SYSCON register and bit 9 of the XPERCON register. Accesses to the I2C Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 100ns at 40 MHz CPU clock. No tristate waitstate is used.

X-Miscellaneous: Address range 00’EB00h - 00’EBFFh is reserved for the access to a set of XBUS additional features. They are enabled by setting XPEN bit 2 of the SYSCON register and bit 10 of the XPERCON register. Accesses to this additional features use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 100ns at 40 MHz CPU clock. No tristate waitstate is used. The following set of features are provided:

CLKOUT programmable divider

XBUS interrupt management registers

ADC multiplexing on P1L register

Port1L digital disable register for extra ADC channels

CAN2 multiplexing on P4.5/P4.6

CAN1-2 main clock prescaler

Main Voltage Regulator disable for power-down mode

TTL / CMOS threshold selection for Port0, Port1 and Port5

In order to meet the needs of designs where more memory is required than is provided on chip, up to 16 Mbytes of external memory can be connected to the microcontroller.

Visibility of XBUS peripherals

In order to keep the ST10F273M compatible with the ST10F168 / ST10F269, the XBUS peripherals can be selected to be visible on the external address / data bus. Different bits for X-Peripheral enabling in XPERCON register must be set. If these bits are cleared before the global enabling with XPEN bit in SYSCON register, the corresponding address space, port pins and interrupts are not occupied by the peripherals, thus the peripheral is not visible and not available. Refer to Chapter 23: Register set on page 114.

23/182

Memory organization ST10F273M

 

XPERCON and X-Peripheral clock gating

 

As already mentioned, the XPERCON register must be programmed to enable the single

 

XBus modules separately. The XPERCON is a read/write ESFR register.

 

The new feature of Clock Gating has been implemented by means of this register: Once the

 

EINIT instruction has been executed, all the peripherals (except RAMs and XMISC) not

 

enabled in the XPERCON register are not be clocked. The clock gating can reduce power

 

consumption and improve EMI when the user does not use all X-Peripherals.

Note:

When the clock has been gated in the disabled peripherals, no Reset will be raised once the

 

EINIT instruction has been executed.

24/182

ST10F273M

Memory organization

 

 

Figure 4. ST10F273M memory mapping (XADRS3 = 800Bh - reset value)

Code

Data

Code

Data

Segment

Page

Segment

Page

FF FFFF

1023 11 FFFF

 

67

 

 

255

 

17

 

66

 

 

 

 

 

65

 

 

 

 

11 0000

 

64

 

 

 

 

10 FFFF

 

67

 

 

 

 

16

 

66

 

 

 

 

 

65

 

 

 

 

10 0000

Reserved

64

 

 

 

 

0F FFFF

63

 

 

 

 

 

 

 

 

 

 

15

 

62

 

 

 

 

XRAM2

61

32K

 

 

 

0F 0000

(StandBy)

60

 

 

 

 

 

 

 

0E FFFF

Flash

59

 

 

 

 

58

64K

Default)

 

 

0D FFFF

Control

 

 

55

 

 

14

57

 

 

 

0E 0000

Registers

56

 

 

 

 

 

 

 

 

 

 

 

B3F1

54

 

-

 

 

0C FFFF

Reserved

51

 

(512K

 

 

13

(XFLASH)

53

 

 

 

 

0D 0000

 

52

 

800Bh=

 

 

0B FFFF

 

47

 

 

 

12

B3F0

50

 

 

 

 

Reserved

49

 

 

 

 

(XFLASH)

 

 

 

 

0C 0000

 

48

 

 

 

 

11

B2F2

46

 

XADRS3

 

 

Reserved

45

 

 

 

(XFLASH)

 

 

 

 

0B 0000

 

44

 

 

 

 

0A FFFF

 

43

 

 

 

 

10

B2F1

42

 

 

 

 

Reserved(XFLASH)

41

 

 

 

 

0A 0000

 

40

 

 

 

 

09 FFFF

 

39

 

 

 

 

9

B2F0

38

 

 

 

 

Reserved(XFLASH)

37

 

 

 

 

09 0000

 

36

 

 

 

 

08 FFFF

B0F11

35

 

 

 

 

8

34

 

 

 

 

(B1F1)

33

 

 

 

 

08 0000

32

 

 

 

 

 

 

 

 

 

07 FFFF

B0F10

31

 

 

 

 

7

30

 

 

 

 

(B1F0)

29

 

 

 

 

07 0000

28

 

 

 

 

 

 

 

 

 

06 FFFF

B0F9

27

 

 

 

 

6

26

 

 

 

 

 

25

 

 

 

 

06 0000

 

24

 

 

 

 

05 FFFF

B0F8

23

 

 

 

 

5

22

 

 

 

 

 

21

 

 

 

 

05 0000

 

20

 

 

 

 

04 FFFF

B0F7

19

 

 

 

 

4

18

 

 

 

 

 

17

 

 

 

 

04 0000

 

16

 

 

 

 

03 FFFF

 

15

 

 

 

 

3

B0F6

14

 

 

 

 

 

13

 

 

 

 

03 0000

 

12

 

 

 

 

02 FFFF

B0F5

11

 

 

 

 

2

10

 

 

 

 

 

9

 

 

 

 

02 0000

 

8

 

 

 

 

01 FFFF

B0F4

7

 

 

 

 

1

 

6

 

 

 

 

Ext. Mem

5

 

 

 

 

01 0000

4

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

00 FFFF

Ext. Mem

 

 

 

 

0

2

 

 

0

0

B0F3

 

 

 

00 0000

B0F2

1

 

 

 

 

 

 

 

 

 

B0F1

 

 

 

00 0000

 

 

B0F0

0

 

 

16 MB

Flash + XRAM - 1Mbyte

00 FFFF

SFR

512

00 FE00

 

 

00 FDFF

 

 

 

 

 

 

 

 

X-Peripherals (2Kbyte)

 

 

I-RAM

 

2K

00 F000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00 F600

 

 

 

 

 

00 EFFF

 

 

 

XCAN1

 

256

 

 

 

 

 

 

 

 

 

 

00 F5FF

 

 

 

 

 

00 EF00

 

 

 

 

 

 

 

 

 

 

 

 

Reserved

 

 

1K

00 EEFF

 

 

 

XCAN2

 

256

 

 

 

 

 

 

 

 

 

00 F200

 

 

 

 

 

00 EE00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00 F1FF

 

ESFR

512

00 EDFF

 

 

 

 

 

 

 

 

 

 

00 F000

 

 

 

 

XRTC

 

256

00 EFFF

 

XCAN1

256

00 ED00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XCAN2

256

 

 

 

 

 

 

 

 

 

 

 

 

XRTC

256

00 ECFF

 

 

 

XPWM

 

 

 

 

XPWM

256

00 EC00

 

 

 

256

 

XMiscellaneous

256

 

 

 

 

 

 

 

 

 

 

 

 

XI2C

256

00 EBFF

 

XMiscellaneous

 

256

 

 

XASC

256

 

 

 

 

 

 

 

 

00 E800

 

XSSC

 

256

00 EB00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00 E7FF

 

 

 

 

 

00 EAFF

 

 

 

XI2C

 

256

 

 

 

 

 

 

 

 

 

 

 

 

 

XRAM1

 

 

00 EA00

 

 

 

 

 

 

 

 

 

 

 

 

 

2K

00 E9FF

 

 

 

XASC

 

256

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00 E900

 

 

 

 

 

 

 

 

 

 

00 E000

 

 

 

 

 

00 E8FF

 

 

 

XSSC

 

256

 

 

 

 

 

 

 

 

 

 

00 DFFF

 

 

 

 

 

00 E800

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00 E7FF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ext. Memory 8K

Address Area defined by

XADRS3 by default after reset

00 C000

Data Page 3 (Segment 0) - 16Kbyte

25/182

Memory organization

ST10F273M

 

 

Figure 5. ST10F273M memory mapping (XADRS3 = E009h - user programmed value)

Code

Data

Code

Data

Segment

Page

Segment

Page

FF FFFF

1023 11 FFFF

 

67

 

 

255

17

 

66

 

 

 

 

65

 

 

 

11 0000

 

64

 

 

 

10 FFFF

 

67

 

 

 

16

 

66

 

 

 

 

65

 

 

 

10 0000

XRAM2

64

 

E009h

 

15

61

 

 

0F FFFF

Reserved

63

32K

 

 

 

62

 

 

0F 0000

(StandBy)

60

32K

=

 

XADRS3

 

0E 0000

Registers

56

 

 

0E FFFF

Flash

59

 

 

 

14

Control

5758

64K

 

 

0D FFFF

 

55

 

 

 

13

 

54

 

 

 

 

53

 

 

 

 

 

0D 0000

 

52

 

 

 

0C FFFF

 

51

 

 

 

12

 

50

 

 

 

 

49

 

 

 

0C 0000

Ext

48

 

 

 

0B FFFF

47

 

 

 

11

Memory 4546

 

 

 

0B 0000

 

44

 

 

 

0A FFFF

 

43

 

 

 

10

 

42

 

 

 

 

41

 

 

 

0A 0000

 

40

 

 

 

09 FFFF

 

39

 

 

 

9

 

38

 

 

 

 

37

 

 

 

09 0000

 

36

 

 

 

08 FFFF

B0F11

35

 

 

 

8

34

 

 

 

(B1F1)

33

 

 

 

08 0000

32

 

 

 

 

 

 

 

07 FFFF

B0F10

31

 

 

 

7

30

 

 

 

(B1F0)

29

 

 

 

07 0000

28

 

 

 

 

 

 

 

06 FFFF

B0F9

27

 

 

 

6

26

 

 

 

 

25

 

 

 

06 0000

 

24

 

 

 

05 FFFF

B0F8

23

 

 

 

5

22

 

 

 

 

21

 

 

 

05 0000

 

20

 

 

 

04 FFFF

 

19

 

 

 

4

B0F7

18

 

 

 

 

17

 

 

 

04 0000

 

16

 

 

 

03 FFFF

 

15

 

 

 

3

B0F6

14

 

 

 

 

13

 

 

 

03 0000

 

12

 

 

 

02 FFFF

B0F5

11

 

 

 

2

10

 

 

 

 

9

 

 

 

02 0000

 

8

 

 

 

01 FFFF

B0F4

7

 

 

 

1

6

 

 

 

 

 

 

 

Ext Mem

5

 

 

 

 

 

 

 

01 0000

 

4

 

 

 

00 FFFF

 

3

0

 

 

0

Ext Mem

2

0

00 0000

B0F3

1

 

 

 

B0F2

 

 

 

 

B0F1

 

00 0000

 

 

 

B0F0

0

00 FFFF

 

 

 

 

 

 

SFR

512

00 FE00

 

 

 

 

 

 

00 FDFF

 

I-RAM

 

2K

 

 

 

00 F600

 

 

 

 

 

00 F5FF

 

 

 

 

1K

 

 

Reserved

 

 

00 F200

 

 

 

 

 

00 F1FF

 

ESFR

512

00 F000

 

 

 

 

 

 

00 EFFF

 

XCAN1

256

 

 

XCAN2

256

 

 

XRTC

256

 

 

XPWM

256

 

XMiscellaneous

256

 

 

XI2C

256

 

 

XASC

256

00 E800

 

XSSC

 

256

00 E7FF

 

XRAM1

 

2K

 

 

 

00 E000

 

 

 

 

 

00 DFFF

 

 

 

 

 

Ext. Memory 8K

00 C000

X-Peripherals (2Kbyte)

00 F000

00 EFFF

XCAN1 256

00 EF00

00 EEFF

XCAN2 256

00 EE00

00 EDFF

XRTC 256

00 ED00

00 ECFF

XPWM 256

00 EC00

00 EBFF

XMiscellaneous 256

00 EB00

00 EAFF

XI2C 256

00 EA00

00 E9FF XASC 256

00 E900

00 E8FF

XSSC 256

00 E800

00 E7FF

Address Area defined by

XADRS3 after reprogramming

Note: E009h defines a 128K wide window starting from 0E’0000h

16 MB

Flash + XRAM - 1Mbyte

Data Page 3 (Segment 0) - 16Kbyte

26/182

ST10F273M

Internal Flash memory

 

 

5 Internal Flash memory

5.1Overview

The on-chip Flash is composed of one matrix module of one bank of 512 Kbytes, named Bank0, that can be read and modified. This module is called IFlash because it is on the ST10 Internal bus.

Figure 6. Flash structure

IFlash

Bank 0: 512 Kbyte

program memory

+

4 Kbyte Test-Flash

Control Section

HV and Ref.

generator

Program/erase

controller

+

Flash control

registers

I-BUS interface

 

X-BUS interface

 

 

 

The programming operations of the Flash are managed by an embedded Flash Program/Erase Controller (FPEC). The high voltages needed for Program/Erase operations are generated internally.

The Data bus is 32-bit wide for fetch accesses to IFlash. Read/write accesses to IFlash Control Registers area are 16-bit wide.

5.2Functional description

5.2.1Structure

Table 3 below shows the address space reserved for the Flash module.

Table 3.

Flash module address space

 

 

 

 

Description

 

Addresses

Size

 

 

 

 

IFlash sectors

0x00

0000 to 0x08 FFFF

512 Kbytes

 

 

 

 

Registers and Flash internal reserved area

0x0E

0000 to 0x0E FFFF

64 Kbytes

 

 

 

 

 

5.2.2Module structure

The IFlash module is composed of a bank (Bank 0) of 512 Kbytes of program memory divided in 12 sectors (B0F0...B0F11). Bank 0 also contains a reserved sector named TestFlash.

27/182

Internal Flash memory

ST10F273M

 

 

The Addresses from 0x0E 0000 to 0x0E FFFF are reserved for the Control Register Interface and other internal service memory space used by the Flash Program/Erase controller.

The following tables show the memory mapping of the Flash when it is accessed in read mode (Table 4: Flash module sectorization (read operations)), and when accessed in write or erase mode (Table 5: Flash module sectorization (write operations, or ROMS1 = ‘1’)).

Note:

With this second mapping, the first four sectors are remapped into code segment 1 (same

 

as obtained setting bit ROMS1 in SYSCON register).

 

 

Table 4.

Flash module sectorization (read operations)

 

 

 

 

 

 

 

 

Bank

 

Description

Addresses

Size (bytes)

 

 

 

 

 

 

 

 

 

Bank 0 Flash 0 (B0F0)

0x00 0000 - 0x00 1FFF

8 K

 

 

 

 

 

 

 

 

 

Bank 0 Flash 1 (B0F1)

0x00 2000 - 0x00 3FFF

8 K

 

 

 

 

 

 

 

 

 

Bank 0 Flash 2 (B0F2)

0x00 4000 - 0x00 5FFF

8 K

 

 

 

 

 

 

 

 

 

Bank 0 Flash 3 (B0F3)

0x00 6000 - 0x00 7FFF

8 K

 

 

 

 

 

 

 

 

 

Bank 0 Flash 4 (B0F4)

0x01 8000 - 0x01 FFFF

32 K

 

 

 

 

 

 

 

B0

 

Bank 0 Flash 5 (B0F5)

0x02 0000 - 0x02 FFFF

64 K

 

 

 

 

 

 

 

Bank 0 Flash 6 (B0F6)

0x03 0000 - 0x03 FFFF

64 K

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0 Flash 7 (B0F7)

0x04 0000 - 0x04 FFFF

64 K

 

 

 

 

 

 

 

 

 

Bank 0 Flash 8 (B0F8)

0x05 0000 - 0x05 FFFF

64 K

 

 

 

 

 

 

 

 

 

Bank 0 Flash 9 (B0F9)

0x06 0000 - 0x06 FFFF

64 K

 

 

 

 

 

 

 

 

 

Bank 0 Flash 10 (B0F10 / B1F0) (1)

0x07 0000 - 0x07 FFFF

64 K

 

 

 

Bank 0 Flash 11 (B0F11 / B1F1) (1)

0x08 0000 - 0x08 FFFF

64 K

1.A single bank is implemented but the last two sectors can be seen as a Bank 1 in order to maintain compatibility with the Flash Programming routines developed for the ST10F273E (based on ST10F276E). This means that the Control and Status flags for the blocks B0F10 and B0F11 are duplicated to also be accessible as blocks B1F0 and B1F1.

28/182

ST10F273M

Internal Flash memory

 

 

Table 5. Flash module sectorization (write operations, or ROMS1 = ‘1’)

Bank

Description

Addresses

Size (bytes)

 

 

 

 

 

Bank 0 Test-Flash (B0TF)

0x00 0000 - 0x00 0FFF

4 K

 

 

 

 

 

Bank 0 Flash 0 (B0F0)

0x01 0000 - 0x01 1FFF

8 K

 

 

 

 

 

Bank 0 Flash 1 (B0F1)

0x01 2000 - 0x01 3FFF

8 K

 

 

 

 

 

Bank 0 Flash 2 (B0F2)

0x01 4000 - 0x01 5FFF

8 K

 

 

 

 

 

Bank 0 Flash 3 (B0F3)

0x01 6000 - 0x01 7FFF

32 K

 

 

 

 

 

Bank 0 Flash 4 (B0F4)

0x01 8000 - 0x01 FFFF

64 K

B0

 

 

 

Bank 0 Flash 5 (B0F5)

0x02 0000 - 0x02 FFFF

64 K

 

 

 

 

 

Bank 0 Flash 6 (B0F6)

0x03 0000 - 0x03 FFFF

64 K

 

 

 

 

 

Bank 0 Flash 7 (B0F7)

0x04 0000 - 0x04 FFFF

64 K

 

 

 

 

 

Bank 0 Flash 8 (B0F8)

0x05 0000 - 0x05 FFFF

64 K

 

 

 

 

 

Bank 0 Flash 9 (B0F9)

0x06 0000 - 0x06 FFFF

64 K

 

 

 

 

 

Bank 0 Flash 10 (B0F10 / B1F0) (1)

0x07 0000 - 0x07 FFFF

64 K

 

Bank 0 Flash 11 (B0F11 / B1F1) (1)

0x08 0000 - 0x08 FFFF

8 K

1.A single bank is implemented but the last two sectors can be seen as a Bank 1 in order to maintain compatibility with the Flash Programming routines developed for the ST10F273E (based on ST10F276E). This means that the Control and Status flags for the blocks B0F10 and B0F11 are duplicated to also be accessible as blocks B1F0 and B1F1.

Table 5 above refers to the configuration when bit ROMS1 of SYSCON register is set.

When Bootstrap mode is entered:

Test-Flash is seen and available for code fetches (address 0x00 0000)

User IFlash is only available for read and write accesses

Write accesses must be made with addresses starting in segment 1 from 0x01 0000, whatever ROMS1 bit in SYSCON value

Read accesses are made in segment 0 or in segment 1 depending of ROMS1 value.

In Bootstrap mode, by default ROMS1 = 0, so the first 32 Kbytes of IFlash are mapped in segment 0.

Example:

In default configuration, to program address 0, the user must put the value 0x01 0000 in the FARL and FARH registers but to verify the content of the address 0, a read to 0x00 0000 must be performed.

The next Table 6 shows the Control Register interface composition: This set of registers can be addressed by the CPU .

29/182

Internal Flash memory

 

 

 

ST10F273M

 

 

 

 

 

 

 

 

Table 6.

Flash control registers summary

 

 

 

 

 

 

 

 

 

 

 

Name

 

Description

Addresses

Size

Bus size

 

 

 

 

 

 

 

 

FCR1 - 0

 

Flash control registers 1 - 0 High &

0x0E 0000 - 0x0E 0007

8 byte

 

 

 

 

Low

 

 

 

 

 

 

 

 

 

 

 

FDR1 - 0

 

Flash data registers 1 - 0 High &

0x0E 0008 - 0x0E 000F

8 byte

 

 

 

Low

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FAR

 

Flash address registers

0x0E 0010 - 0x0E 0013

4 byte

 

 

 

 

 

 

 

 

 

FER

 

Flash error register

0x0E 0014 - 0x0E 0015

2 byte

 

 

 

 

 

 

 

 

 

FVWPIR-mirror

Flash non-volatile protection I

0x0E DFB0 - 0x0E DFB3

4 byte

16-bit

 

registers mirrored

 

 

 

 

 

(XBus)

 

 

 

 

 

 

 

FVWPIR

 

Flash volatile protection I registers

0x0E DFB4 - 0x0E DFB7

4 byte

 

 

 

 

 

 

 

 

 

FVAPR0

 

Flash volatile access protection

0x0E DFB8 - 0x0E DFB9

2 byte

 

 

 

register 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FVAPR1

 

Flash non-volatile access

0x0E DFBC - 0x0E DFBF

4 byte

 

 

 

protection register 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XFICR

 

XFlash Interface Control register

0x0E E000 - 0x0E E001

2 byte

 

 

 

(dummy register)

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:

FVWPIR-mirror is a mirror of the FVWPIR to maintain software compatibility with the

 

ST10F273E in the handling of the last two blocks B0F10/B1F0 and B0F11/B1F1.

 

XFICR is a dummy register that can be read and written (for compatibility with the ST10F273E) but its content has no effect on the XBus timings.

5.2.3Low power mode

 

The Flash module is automatically switched off executing PWRDN instruction. The

 

consumption is drastically reduced, but exiting this state can require a long time (tPD).

 

Recovery time from Power-down mode for the Flash modules is anyway shorter than the

 

main oscillator start-up time. To avoid any problem in restarting to fetch code from the Flash,

 

it is important to size properly the external circuit on RPD pin.

Note:

PWRDN instruction must not be executed while a Flash program/erase operation is in

 

progress.

5.3 Write operation

The Flash module has a single register interface mapped in the XBus memory space 0x0E 0000 - 0x0E 0015. All the operations are enabled through four 16-bit control registers: Flash Control Register 1-0 High/Low (FCR1H/L-FCR0H/L). Eight other 16-bit registers are used to store Flash Address and Data for Program operations (FARH/L and FDR1H/L- FDR0H/L) and Write Operation Error flags (FER). All registers are accessible with 8- and 16-bit instructions (since they are mapped on the XBus).

Note: To have access to the Flash Control Registers used for program/erasing operations, bit 5 (XFLASHEN) in XPERCON register must be set.

Caution: During a Flash write operation any attempt to read the IFlash will output the invalid data 009Bh (corresponding, for code fetch, to the software trap 009Bh). This means that the

30/182

Loading...
+ 152 hidden pages