ST SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 User Manual

SPC560P34L1, SPC560P34L3 SPC560P40L1, SPC560P40L3
32-bit Power Architecture® based MCU with 320 KB Flash memory
and 20 KB RAM for automotive chassis and safety applications
Features
complex (e200z0h) – Compliant with Power Architecture
embedded category
– Variable Length Encoding (VLE)
Memory organization
– Up to 256 KB on-chip code flash memory
with ECC and erase/program controller
– Additional 64 (4 × 16) KB on-chip data
flash memory with ECC for EEPROM emulation
– Up to 20 KB on-chip SRAM with ECC
Fail-safe protection
– Programmable watchdog timer – Non-maskable interrupt – Fault collection unit
Nexus Class 1 interface
Interrupts and events
– 16-channel eDMA controller – 16 priority level controller – Up to 25 external interrupts – PIT implements four 32-bit timers – 120 interrupts are routed via INTC
1 general purpose eTimer unit
– 6 timers each with up/down capabilities – 16-bit resolution, cascadable counters – Quadrature decode with rotation direction
flag
– Double buffer input capture and output
compare
GPIO (37 on LQFP64; 64 on LQFP100)
individually programmable as I/O or special function
Communications interfaces
– 2 LINFlex channels (1× Master/Slave, 1×
Master only)
®
LQFP100 (14 x 14 x 1.4 mm)
– Up to 3 DSPI channels with automatic chip
LQFP64 (10 x 10 x 1.4 mm
select generation (up to 8/4/4 chip selects)
– Up to 2 FlexCAN interface (2.0B Active)
with 32 message buffers
– 1 safety port based on FlexCAN with 32
message buffers and up to 8 Mbit/s at 64 MHz capability usable as second CAN when not used as safety port
One 10-bit analog-to-digital converter (ADC)
– Up to 16 input channels (16 on LQFP100 /
12 on LQFP64)
– Conversion time < 1 µs including sampling
time at full precision – Programmable Cross Triggering Unit (CTU) – 4 analog watchdogs with interrupt
capability
On-chip CAN/UART bootstrap loader with Boot
Assist Module (BAM)
1 FlexPWM unit: 8 complementary or
independent outputs with ADC synchronization signals

Table 1. Device summary

Package
LQFP100 SPC560P34L3 SPC560P40L3
LQFP64 SPC560P34L1 SPC560P40L1
192 Kbyte
Code Flash
256 Kbyte
Code Flash
December 2011 Doc ID 16100 Rev 5 1/103
www.st.com
1
Contents SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 High performance e200z0 core processor . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.3 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.4 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.5 Static random access memory (SRAM) . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.7 System status and configuration module (SSCM) . . . . . . . . . . . . . . . . . 16
1.5.8 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.9 Frequency-modulated phase-locked loop (FMPLL) . . . . . . . . . . . . . . . . 17
1.5.10 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.11 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.12 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.13 System timer module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.14 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.15 Fault collection unit (FCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.16 System integration unit – Lite (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.17 Boot and censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.18 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.19 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.20 Controller area network (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.21 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.22 Serial communication interface module (LINFlex) . . . . . . . . . . . . . . . . . 22
1.5.23 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 22
1.5.24 Pulse width modulator (FlexPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.25 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.26 Analog-to-digital converter (ADC) module . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.27 Cross triggering unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.28 Nexus Development Interface (NDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Contents
1.5.29 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.30 IEEE 1149.1 JTAG controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.31 On-chip voltage regulator (VREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Pin multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.2 General notes for specifications at maximum junction temperature . . . 52
3.6 Electromagnetic interference (EMI) characteristics . . . . . . . . . . . . . . . . . 54
3.7 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 54
3.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 54
3.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 54
3.8.2 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 56
3.9 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10.1 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10.2 DC electrical characteristics (5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.10.3 DC electrical characteristics (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.10.4 Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . 63
3.10.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.11 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.13 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . 67
3.14 Analog-to-digital converter (ADC) electrical characteristics . . . . . . . . . . . 67
Doc ID 16100 Rev 5 3/103
Contents SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
3.14.1 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.14.2 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.15 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.15.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.15.2 Flash memory power supply DC characteristics . . . . . . . . . . . . . . . . . . 75
3.15.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.16.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.17 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.17.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.17.4 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.17.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 LQFP100 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 LQFP64 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Appendix A Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. SPC560P34/SPC560P40 device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. SPC560P40 device configuration differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. SPC560P34/SPC560P40 series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6. System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 7. Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 8. Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 9. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 10. Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 11. Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 12. LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 13. EMI testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 14. ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 15. Approved NPN ballast components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 16. Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 17. Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 18. PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 19. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . . . . . . . . . . . . . . . 60
Table 20. Supply current (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 21. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . . . . . . . . . . . . . . . 61
Table 22. Supply current (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 23. I/O supply segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 24. I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 25. Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . 65
Table 26. Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . 65
Table 27. Input clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 28. FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 29. 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 30. ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 31. Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 32. Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 33. Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 34. Flash memory power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 35. Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 36. Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 37. RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 38. JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 39. Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 40. External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 41. DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 42. LQFP100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 43. LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 44. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Doc ID 16100 Rev 5 5/103
List of figures SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
List of figures
Figure 1. Block diagram (SPC560P40 full-featured configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. 64-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 3. 64-pin LQFP pinout – airbag configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4. 100-pin LQFP pinout – full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5. 100-pin LQFP pinout – airbag configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 6. Power supplies constraints (–0.3 V ≤ V Figure 7. Independent ADC supply (–0.3 V ≤ V Figure 8. Power supplies constraints (3.0 V ≤ V Figure 9. Independent ADC supply (3.0 V ≤ V
DD_HV_IOx
DD_HV_REG
DD_HV_IOx
DD_HV_REG
Figure 10. Voltage regulator configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 11. Power-up typical sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 12. Power-down typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 13. Brown-out typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 14. Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 15. ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 16. Input equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 17. Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 18. Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 19. Pad output delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 20. Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 21. Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 22. JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 23. JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 24. JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 25. Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 26. Nexus event trigger and test clock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 27. Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 28. External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 29. DSPI classic SPI timing – Master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 30. DSPI classic SPI timing – Master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 31. DSPI classic SPI timing – Slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 32. DSPI classic SPI timing – Slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 33. DSPI modified transfer format timing – Master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 34. DSPI modified transfer format timing – Master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 35. DSPI modified transfer format timing – Slave, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 37. DSPI PCS Strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 38. LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 39. LQFP64 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 40. Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.0 V). . . . . . . . . . . . . . . . . . . . . . . . . 47
6.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction

1 Introduction

1.1 Document overview

This document provides electrical specifications, pin assignments, and package diagrams for the SPC560P34/40 series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual.

1.2 Description

This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis applications—specifically, electrical hydraulic power steering (EHPS) and electric power steering (EPS)—as well as airbag applications.
This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology.
The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

1.3 Device comparison

Ta bl e 2
and their features—relative to full-featured version—to enable a comparison among the family members and an understanding of the range of functionality offered within this family.

Table 2. SPC560P34/SPC560P40 device comparison

provides a summary of different members of the SPC560P34/SPC560P40 family
Feature
Code flash memory (with ECC) 192 KB 256 KB
Data flash memory / EE option (with ECC) 64 KB
SRAM (with ECC) 12 KB 20 KB
Processor core 32-bit e200z0h
Instruction set VLE (variable length encoding)
CPU performance 0–64 MHz
FMPLL (frequency-modulated phase-locked loop) module
INTC (interrupt controller) channels 120
PIT (periodic interrupt timer) 1 (with four 32-bit timers)
SPC560P34 SPC560P40
Full-featured
1
Doc ID 16100 Rev 5 7/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 2. SPC560P34/SPC560P40 device comparison (continued)
Feature
eDMA (enhanced direct memory access) channels
FlexCAN (controller area network) 1
Safety port No
SPC560P34 SPC560P40
Full-featured
16
(1)
(1),(2)
2
Yes (via second
FlexCAN module)
FCU (fault collection unit) Yes
CTU (cross triggering unit) Yes Yes
eTimer 1 (16-bit, 6 channels)
FlexPWM (pulse-width modulation) channels
8
(capture capabity not
supported)
(capture capability not
8
supported)
Analog-to-digital converter (ADC) 1 (10-bit, 16 channels)
LINFlex
2
(1 × Master/Slave,
1 × Master only)
(1 × Master/Slave,
2
1 × Master only)
DSPI (deserial serial peripheral interface) 2 3
CRC (cyclic redundancy check) unit Yes
Junction temperature sensor No
JTAG controller Yes
Nexus port controller (NPC) Yes (Nexus Class 1)
Digital power supply
(3)
3.3 V or 5 V single supply with external transistor
Analog power supply 3.3 V or 5 V
Supply
Internal RC oscillator 16 MHz
External crystal oscillator 4–40 MHz
Packages
LQFP64
LQFP100
Temperature Standard ambient temperature –40 to 125 °C
1. Each FlexCAN module has 32 message buffers.
2. One FlexCAN module can act as a safety port with a bit rate as high as 8 Mbit/s at 64 MHz.
3. The different supply voltages vary according to the part number ordered.
SPC560P34/SPC560P40 is available in two configurations having different features: Full­featured and airbag.
Ta bl e 3
shows the main differences between the two versions of the
SPC560P40 MCU.
8/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
Table 3.
SRAM (with ECC) 16 KB 20 KB
FlexCAN (controller area network) 1 2
Safety port No
FlexPWM (pulse-width modulation) channels No
CTU (cross triggering unit) No Yes
SPC560P40 device configuration differences
Feature
Configuration
Airbag Full-featured
Ye s
(via second FlexCAN module)
8
(capture capability not
supported)

1.4 Block diagram

Figure 1
summarizes the functions of the blocks.
shows a top-level block diagram of the SPC560P34/SPC560P40 MCU.
Ta bl e 4
Doc ID 16100 Rev 5 9/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

Figure 1. Block diagram (SPC560P40 full-featured configuration)

External ballast
1.2 V regulator control
XOSC
16 MHz
RC oscillator
FMPLL_0
(System)
JTAG
Nexus port
controller
eDMA
eDMA
16 channels
16 channels
Master
e200z0 Core
32-bit
general
purpose
registers
Integer
execu tion
unit
Nexus 1
Instruction
32-bit
Master
Crossbar switch (XBAR, AMBA 2.0 v6 AHB)
Slave SlaveSlave
Special
purpose
registers
Instruction
unit
Branch
prediction
unit
Exception
handler
Var iable
length
encoded
instructions
Load/store
unit
Data 32-bit
Master
Interrupt
controller
Code Flash
(with ECC)
Legend:
ADC Analog-to-digital converter BAM Boot assist module CRC Cyclic redundancy check CTU Cross triggering unit DSPI Deserial serial peripheral interface ECSM Error correction status module eDMA Enhanced direct memory access eTimer Enhanced timer FCU Fault collection unit Flash Flash memory FlexCAN Controller area network FlexPWM Flexible pulse width modulation FMPLL Frequency-modulated phase-locked loop INTC Interrupt controller JTAG JTAG controller
Data Flash (with ECC)
CTU
FlexPWM
SRAM
(with ECC)
ADC
(10 bit, 16 ch)
PIT
WKPU
Peripheral bridge
STM
CRC
SSCM
LINFlex Serial communication interface (LIN support) MC_CGM Clock generation module MC_ME Mode entry module MC_PCU Power control unit MC_RGM Reset generation module PIT Periodic interrupt timer SIUL System Integration unit Lite SRAM Static random-access memory SSCM System status and configuration module STM System timer module SWT Software watchdog timer WKPU Wakeup unit XOSC External oscillator XBAR Crossbar switch
SWT
MC_RGM
eTimer
DSPI
(6 ch)
MC_CGM
MC_ME
LINFlex
SIUL
BAM
FlexCAN
Safety port
ECSM
FCU
10/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction

Table 4. SPC560P34/SPC560P40 series block summary

Block Function
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)
Clock generation module (MC_CGM)
Controller area network (FlexCAN)
Cross triggering unit (CTU)
Crossbar switch (XBAR)
Block of read-only memory containing VLE code which is executed according to the boot mode of the device
Provides logic and control required for the generation of system and peripheral clocks
Supports the standard CAN communications protocol
Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Supports simultaneous connections between two master ports and three slave ports; supports a 32-bit address bus width and a 32-bit data bus width
Cyclic redundancy check (CRC) CRC checksum generator
Deserial serial peripheral interface (DSPI)
Enhanced direct memory access (eDMA)
Provides a synchronous serial interface for communication with external devices
Performs complex data transfers with minimal intervention from a host processor via “
n
” programmable channels
Enhanced timer (eTimer) Provides enhanced programmable up/down modulo counting
Provides a myriad of miscellaneous control functions for the device including Error correction status module (ECSM)
program-visible information about configuration and revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
External oscillator (XOSC)
Provides an output clock used as input reference for FMPLL_0 or as reference
clock for specific modules depending on system needs
Fault collection unit (FCU) Provides functional safety to the device
Flash memory Provides non-volatile storage for program code, constants and variables
Frequency-modulated phase­locked loop (FMPLL)
Generates high-speed system clocks and supports programmable frequency
modulation
Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests
JTAG controller
LINFlex controller
Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
Manages a high number of LIN (Local Interconnect Network protocol)
messages efficiently with a minimum of CPU load
Provides a mechanism for controlling the device operational mode and mode
Mode entry module (MC_ME)
transition sequences in all functional states; also manages the power control
unit, reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Periodic interrupt timer (PIT) Produces periodic interrupts and triggers
Peripheral bridge (PBRIDGE) Is the interface between the system bus and on-chip peripherals
Power control unit (MC_PCU)
Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Doc ID 16100 Rev 5 11/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 4. SPC560P34/SPC560P40 series block summary (continued)
Block Function
Pulse width modulator (FlexPWM)
Reset generation module (MC_RGM)
Static random-access memory (SRAM)
Contains four PWM submodules, each of which capable of controlling a single
half-bridge power stage and two fault input channels
Centralizes reset sources and manages the device reset sequence of the
device
Provides storage for program code, constants, and variables
Provides control over all the electrical pad controls and up 32 ports with 16 bits System integration unit lite (SIUL)
of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
System status and configuration module (SSCM)
System timer module (STM)
Provides system configuration and status data (such as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
Provides a set of output compare events to support AUTOSAR
system tasks
System watchdog timer (SWT) Provides protection from runaway code
Supports up to 18 external sources that can generate interrupts or wakeup Wakeup unit (WKPU)
events, of which 1 can cause non-maskable interrupt requests or wakeup
events
1. AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org)
(1)
and operating
12/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction

1.5 Feature details

1.5.1 High performance e200z0 core processor

The e200z0 Power Architecture core provides the following features:
High performance e200z0 core processor for managing peripherals and interrupts
Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU
Harvard architecture
Variable length encoding (VLE), allowing mixed 16- and 32-bit instructions
Results in smaller code size footprint
Minimizes impact on performance
Branch processing acceleration using lookahead instruction buffer
Load/store unit
1-cycle load latency
Misaligned access support
No load-to-use pipeline bubbles
Thirty-two 32-bit general purpose registers (GPRs)
Separate instruction bus and load/store bus Harvard architecture
Hardware vectored interrupt support
Reservation instructions for implementing read-modify-write constructs
Long cycle time instructions, except for guarded loads, do not increase interrupt latency
Extensive system development support through Nexus debug port
Non-maskable interrupt support

1.5.2 Crossbar switch (XBAR)

The XBAR multi-port crossbar switch supports simultaneous connections between three master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width.
The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic will select the higher priority master and grant it ownership of the slave port. All other masters requesting that slave port will be stalled until the higher priority master completes its transactions. Requesting masters will be treated with equal priority and will be granted access a slave port in round-robin fashion, based upon the ID of the last master to be granted access.
Doc ID 16100 Rev 5 13/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
The crossbar provides the following features:
3 master ports:
e200z0 core complex instruction port
e200z0 core complex Load/Store Data port
–eDMA
3 slave ports:
Flash memory (Code and Data)
–SRAM
Peripheral bridge
32-bit internal address, 32-bit internal data paths
Fixed Priority Arbitration based on Port Master
Temporary dynamic priority elevation of masters

1.5.3 Enhanced direct memory access (eDMA)

The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels.
The eDMA module provides the following features:
16 channels support independent 8-, 16- or 32-bit single value or block transfers
Supports variable-sized queues and circular queues
Source and destination address registers are independently configured to either post-
increment or to remain constant
Each transfer is initiated by a peripheral, CPU, or eDMA channel request
Each eDMA channel can optionally send an interrupt request to the CPU on completion
of a single value or block transfer
DMA transfers possible between system memories, DSPIs, ADC, FlexPWM, eTimer
and CTU
Programmable DMA channel multiplexer allows assignment of any DMA source to any
available DMA channel with as many as 30 request sources
eDMA abort operation through software

1.5.4 Flash memory

The SPC560P34/SPC560P40 provides 320 KB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or data storage. The flash memory module is interfaced to the system bus by a dedicated flash memory controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains four 128-bit wide prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array accesses are registered and are forwarded to the system bus on the following cycle, incurring two wait-states.
14/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
The flash memory module provides the following features:
As much as 320 KB flash memory
6 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 128 KB) code flash memory
4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash memory
Full Read-While-Write (RWW) capability between code flash memory and data
flash memory
Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch
buffers can be configured to prefetch code or data or both)
Typical flash memory access time: no wait-state for buffer hits, 2 wait-states for page
buffer miss at 64 MHz
Hardware managed flash memory writes handled by 32-bit RISC Krypton engine
Hardware and software configurable read and write access protections on a per-master
basis
Configurable access timing allowing use in a wide range of system frequencies
Multiple-mapping support and mapping-based block access timing (up to 31 additional
cycles) allowing use for emulation of other memory types
Software programmable block program/erase restriction control
Erase of selected block(s)
Read page sizes
Code flash memory: 128 bits (4 words)
Data flash memory: 32 bits (1 word)
ECC with single-bit correction, double-bit detection for data integrity
Code flash memory: 64-bit ECC
Data flash memory: 32-bit ECC
Embedded hardware program and erase algorithm
Erase suspend and program abort
Censorship protection scheme to prevent flash memory content visibility
Hardware support for EEPROM emulation

1.5.5 Static random access memory (SRAM)

The SPC560P34/SPC560P40 SRAM module provides up to 20 KB of general-purpose memory.
The SRAM module provides the following features:
Supports read/write accesses mapped to the SRAM from any master
Up to 20 KB general purpose SRAM
Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of
memory
Typical SRAM access time: no wait-state for reads and 32-bit writes; 1 wait-state for 8-
and 16-bit writes if back-to-back with a read to same memory block
Doc ID 16100 Rev 5 15/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

1.5.6 Interrupt controller (INTC)

The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. The INTC handles 128 selectable-priority interrupt sources.
For high-priority interrupt requests, the time from the assertion of the interrupt request by the peripheral to the execution of the interrupt service routine (ISR) by the processor has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable.
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the same resource can not preempt each other.
The INTC provides the following features:
Unique 9-bit vector for each separate interrupt source
8 software triggerable interrupt sources
16 priority levels with fixed hardware arbitration within priority levels for each interrupt
source
Ability to modify the ISR or task priority: modifying the priority can be used to
implement the priority ceiling protocol for accessing shared resources.
1 external high priority interrupt (NMI) directly accessing the main core and I/O
processor (IOP) critical interrupt mechanism

1.5.7 System status and configuration module (SSCM)

The system status and configuration module (SSCM) provides central device functionality.
The SSCM includes these features:
System configuration and status
Memory sizes/status
Device mode and security status
Determine boot vector
Search code flash for bootable sector
DMA status
Debug status port enable and selection
Bus and peripheral abort enable/disable
16/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction

1.5.8 System clocks and clock generation

The following list summarizes the system clock and clock generation on the SPC560P34/SPC560P40:
Lock detect circuitry continuously monitors lock status
Loss of clock (LOC) detection for PLL outputs
Programmable output clock divider (÷1, ÷2, ÷4, ÷8)
FlexPWM module and eTimer module running at the same frequency as the e200z0h
core
Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency
trimming by user application

1.5.9 Frequency-modulated phase-locked loop (FMPLL)

The FMPLL allows the user to generate high speed system clocks from a 4–40 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all software configurable.
The FMPLL has the following major features:
Input clock frequency: 4–40 MHz
Maximum output frequency: 64 MHz
Voltage controlled oscillator (VCO)—frequency 256–512 MHz
Reduced frequency divider (RFD) for reduced frequency operation without forcing the
FMPLL to relock
Frequency-modulated PLL
Modulation enabled/disabled through software
Triangle wave modulation
Programmable modulation depth (±0.25% to ±4% deviation from center frequency):
programmable modulation frequency dependent on reference frequency
Self-clocked mode (SCM) operation

1.5.10 Main oscillator

The main oscillator provides these features:
Input frequency range: 4–40 MHz
Crystal input mode or oscillator input mode
PLL reference

1.5.11 Internal RC oscillator

This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap reference voltage.
Doc ID 16100 Rev 5 17/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
The RC oscillator provides these features:
Nominal frequency 16 MHz
±5 % variation over voltage and temperature after process trim
Clock output of the RC oscillator serves as system clock source in case loss of lock or
loss of clock is detected by the PLL
RC oscillator is used as the default system clock during startup

1.5.12 Periodic interrupt timer (PIT)

The PIT module implements these features:
4 general-purpose interrupt timers
32-bit counter resolution
Clocked by system clock frequency
Each channel usable as trigger for a DMA request

1.5.13 System timer module (STM)

The STM implements these features:
One 32-bit up counter with 8-bit prescaler
Four 32-bit compare channels
Independent interrupt source for each channel
Counter can be stopped in debug mode

1.5.14 Software watchdog timer (SWT)

The SWT has the following features:
32-bit time-out register to set the time-out period
Programmable selection of window mode or regular servicing
Programmable selection of reset or interrupt on an initial time-out
Master access protection
Hard and soft configuration lock bits
Reset configuration inputs allow timer to be enabled out of reset

1.5.15 Fault collection unit (FCU)

The FCU provides an independent fault reporting mechanism even if the CPU is malfunctioning.
The FCU module has the following features:
FCU status register reporting the device status
Continuous monitoring of critical fault signals
User selection of critical signals from different fault sources inside the device
Critical fault events trigger 2 external pins (user selected signal protocol) that can be
used externally to reset the device and/or other circuitry (for example, a safety relay)
Faults are latched into a register
18/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
1.5.16 System integration unit – Lite (SIUL)
The SPC560P34/SPC560P40 SIUL controls MCU pad configuration, external interrupt, general purpose I/O (GPIO), and internal peripheral multiplexing.
The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU.
The SIUL provides the following features:
Centralized general purpose input output (GPIO) control of up to 49 input/output pins
and 16 analog input-only pads (package dependent)
All GPIO pins can be independently configured to support pull-up, pull-down, or no pull
Reading and writing to GPIO supported both as individual pins and 16-bit wide ports
All peripheral pins, except ADC channels, can be alternatively configured as both
general purpose input or output pins
ADC channels support alternative configuration as general purpose inputs
Direct readback of the pin value is supported on all pins through the SIUL
Configurable digital input filter that can be applied to some general purpose input pins
for noise elimination
Up to 4 internal functions can be multiplexed onto 1 pin

1.5.17 Boot and censorship

Different booting modes are available in the SPC560P34/SPC560P40: booting from internal flash memory and booting via a serial link.
The default booting scheme uses the internal flash memory (an internal pull-down resistor is used to select this mode). Optionally, the user can boot via FlexCAN or LINFlex (using the boot assist module software).
A censorship scheme is provided to protect the content of the flash memory and offer increased security for the entire device.
A password mechanism is designed to grant the legitimate user access to the non-volatile memory.
Boot assist module (BAM)
The BAM is a block of read-only memory that is programmed once and is identical for all SPC560Pxx devices that are based on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been selected by the user.
The BAM provides the following features:
Serial bootloading via FlexCAN or LINFlex
Ability to accept a password via the used serial communication channel to grant the
legitimate user access to the non-volatile memory

1.5.18 Error correction status module (ECSM)

The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes, and information on
Doc ID 16100 Rev 5 19/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
platform memory errors reported by error-correcting codes and/or generic access error information for certain processor cores.
The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes these features:
Registers for capturing information on platform memory errors if error-correcting codes
(ECC) are implemented
For test purposes, optional registers to specify the generation of double-bit memory
errors are enabled on the SPC560P34/SPC560P40.
The sources of the ECC errors are:
Flash memory
SRAM

1.5.19 Peripheral bridge (PBRIDGE)

The PBRIDGE implements the following features:
Duplicated periphery
Master access privilege level per peripheral (per master: read access enable; write
access enable)
Write buffering for peripherals
Checker applied on PBRIDGE output toward periphery
Byte endianess swap capability

1.5.20 Controller area network (FlexCAN)

The SPC560P34/SPC560P40 MCU contains one controller area network (FlexCAN) module. This module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real­time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module contains 32 message buffers.
20/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
The FlexCAN module provides the following features:
Full implementation of the CAN protocol specification, version 2.0B
Standard data and remote frames
Extended data and remote frames
Up to 8-bytes data length
Programmable bit rate up to 1 Mbit/s
32 message buffers of up to 8-bytes data length
Each message buffer configurable as Rx or Tx, all supporting standard and extended
messages
Programmable loop-back mode supporting self-test operation
3 programmable mask registers
Programmable transmit-first scheme: lowest ID or lowest buffer number
Time stamp based on 16-bit free-running timer
Global network time, synchronized by a specific message
Maskable interrupts
Independent of the transmission medium (an external transceiver is assumed)
High immunity to EMI
Short latency time due to an arbitration scheme for high-priority messages
Transmit features
Supports configuration of multiple mailboxes to form message queues of scalable
depth
Arbitration scheme according to message ID or message buffer number
Internal arbitration to guarantee no inner or outer priority inversion
Transmit abort procedure and notification
Receive features
Individual programmable filters for each mailbox
8 mailboxes configurable as a 6-entry receive FIFO
8 programmable acceptance filters for receive FIFO
Programmable clock source
System clock
Direct oscillator clock to avoid PLL jitter

1.5.21 Safety port (FlexCAN)

The SPC560P34/SPC560P40 MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features:
Identical to the FlexCAN module
Bit rate up to 8 Mbit/s at 64 MHz CPU clock using direct connection between CAN
modules (no physical transceiver required)
32 message buffers of up to 8-bytes data length
Can be used as a second independent CAN module
Doc ID 16100 Rev 5 21/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

1.5.22 Serial communication interface module (LINFlex)

The LINFlex (local interconnect network flexible) on the SPC560P34/SPC560P40 features the following:
Supports LIN Master mode (both instances), LIN Slave mode (only one instance) and
UART mode
LIN state machine compliant to LIN1.3, 2.0 and 2.1 specifications
Handles LIN frame transmission and reception without CPU intervention
LIN features
Autonomous LIN frame handling
Message buffer to store Identifier and up to 8 data bytes
Supports message length of up to 64 bytes
Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing,
checksum, and time-out)
Classic or extended checksum calculation
Configurable Break duration of up to 36-bit times
Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)
Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection
Interrupt-driven operation with 16 interrupt sources
LIN slave mode features:
Autonomous LIN header handling
Autonomous LIN response handling
Optional discarding of irrelevant LIN responses using ID filter
UART mode:
Full-duplex operation
Standard non return-to-zero (NRZ) mark/space format
Data buffers with 4-byte receive, 4-byte transmit
Configurable word length (8-bit or 9-bit words)
Error detection and flagging
Parity, Noise and Framing errors
Interrupt-driven operation with four interrupt sources
Separate transmitter and receiver CPU interrupt sources
16-bit programmable baud-rate modulus counter and 16-bit fractional
2 receiver wake-up methods

1.5.23 Deserial serial peripheral interface (DSPI)

The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the SPC560P34/SPC560P40 MCU and external devices.
22/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
The DSPI modules provide these features:
Full duplex, synchronous transfers
Master or slave operation
Programmable master bit rates
Programmable clock polarity and phase
End-of-transmission interrupt flag
Programmable transfer baud rate
Programmable data frames from 4 to 16 bits
Up to 8 chip select lines available:
–8 on DSPI_0
4 each on DSPI_1 and DSPI_2
8 clock and transfer attributes registers
Chip select strobe available as alternate function on one of the chip select pins for
deglitching
FIFOs for buffering up to 4 transfers on the transmit and receive side
Queueing operation possible through use of the I/O processor or eDMA
General purpose I/O functionality on pins when not used for SPI

1.5.24 Pulse width modulator (FlexPWM)

The pulse width modulator module (PWM) contains four PWM submodules each of which is set up to control a single half-bridge power stage. There are also three fault channels.
This PWM is capable of controlling most motor types: AC induction motors (ACIM), permanent magnet AC motors (PMAC), both brushless (BLDC) and brush DC motors (BDC), switched (SRM) and variable reluctance motors (VRM), and stepper motors.
Doc ID 16100 Rev 5 23/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
The FlexPWM block implements the following features:
16-bit resolution for center, edge-aligned, and asymmetrical PWMs
Clock frequency same as that used for e200z0h core
PWM outputs can operate as complementary pairs or independent channels
Can accept signed numbers for PWM generation
Independent control of both edges of each PWM output
Synchronization to external hardware or other PWM supported
Double buffered PWM registers
Integral reload rates from 1 to 16
Half cycle reload capability
Multiple ADC trigger events can be generated per PWM cycle via hardware
Write protection for critical registers
Fault inputs can be assigned to control multiple PWM outputs
Programmable filters for fault inputs
Independently programmable PWM output polarity
Independent top and bottom deadtime insertion
Each complementary pair can operate with its own PWM frequency and deadtime
values
Individual software-control for each PWM output
All outputs can be programmed to change simultaneously via a “Force Out” event
PWMX pin can optionally output a third PWM signal from each submodule
Channels not used for PWM generation can be used for buffered output compare
functions
Channels not used for PWM generation can be used for input capture functions
Enhanced dual-edge capture functionality
eDMA support with automatic reload
2 fault inputs
Capture capability for PWMA, PWMB, and PWMX channels not supported
24/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction

1.5.25 eTimer

The SPC560P34/SPC560P40 includes one eTimer module which provides six 16-bit general purpose up/down timer/counter units with the following features:
Clock frequency same as that used for the e200z0h core
Individual channel capability
Input capture trigger
Output compare
Double buffer (to capture rising edge and falling edge)
Separate prescaler for each counter
Selectable clock source
0–100% pulse measurement
Rotation direction flag (quad decoder mode)
Maximum count rate
External event counting: max. count rate = peripheral clock/2
Internal clock counting: max. count rate = peripheral clock
Counters are:
Cascadable
Preloadable
Programmable count modulo
Quadrature decode capabilities
Counters can share available input pins
Count once or repeatedly
Pins available as GPIO when timer functionality not in use

1.5.26 Analog-to-digital converter (ADC) module

The ADC module provides the following features:
Analog part:
1 on-chip analog-to-digital converter
10-bit AD resolution
1 sample and hold unit
Conversion time, including sampling time, less than 1 µs (at full precision)
Typical sampling time is 150 ns minimum (at full precision)
DNL/INL ±1 LSB
–TUE <1.5LSB
Single-ended input signal up to 3.3 V/5.0 V
3.3 V/5.0 V input reference voltage
ADC and its reference can be supplied with a voltage independent from V
ADC supply can be equal or higher than V
ADC supply and ADC reference are not independent from each other (both
internally bonded to same pad)
Sample times of 2 (default), 8, 64 or 128 ADC clock cycles
DDIO
DDIO
Doc ID 16100 Rev 5 25/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Digital part:
16 input channels
4 analog watchdogs comparing ADC results against predefined levels (low, high,
range) before results are stored in the appropriate ADC result location
2 modes of operation: Motor Control mode or Regular mode
Regular mode features
Register based interface with the CPU: control register, status register and 1 result
register per channel
ADC state machine managing 3 request flows: regular command, hardware
injected command and software injected command
Selectable priority between software and hardware injected commands
DMA compatible interface
CTU-controlled mode features
Triggered mode only
4 independent result queues (1×16 entries, 2×8 entries, 1×4 entries)
Result alignment circuitry (left justified and right justified)
32-bit read mode allows to have channel ID on one of the 16-bit part
DMA compatible interfaces

1.5.27 Cross triggering unit (CTU)

The cross triggering unit allows automatic generation of ADC conversion requests on user selected conditions without CPU load during the PWM period and with minimized CPU load for dynamic configuration.
It implements the following features:
Double buffered trigger generation unit with up to 8 independent triggers generated
from external triggers
Trigger generation unit configurable in sequential mode or in triggered mode
Each trigger can be appropriately delayed to compensate the delay of external low
pass filter
Double buffered global trigger unit allowing eTimer synchronization and/or ADC
command generation
Double buffered ADC command list pointers to minimize ADC-trigger unit update
Double buffered ADC conversion command list with up to 24 ADC commands
Each trigger capable of generating consecutive commands
ADC conversion command allows to control ADC channel, single or synchronous
sampling, independent result queue selection

1.5.28 Nexus Development Interface (NDI)

The NDI (Nexus Development Interface) block is compliant with Nexus Class 1 of the IEEE­ISTO 5001-2003 standard. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NDI block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal busses to provide development support as per the IEEE-ISTO 5001-2003 Nexus Class 1 standard.
26/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction
The development support provided includes access to the MCU’s internal memory map and access to the processor’s internal registers.
The NDI provides the following features:
Configured via the IEEE 1149.1
All Nexus port pins operate at V
Nexus Class 1 supports Static debug
(no dedicated power supply)
DDIO

1.5.29 Cyclic redundancy check (CRC)

The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:
Support for CRC-16-CCITT (
16
12
26
+
+
5
x
+ 1
23
x
+
x
+
x
Support for CRC-32 (Ethernet protocol):
32
x
+
x
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP
x
25 protocol):
22
16
12
11
10
8
7
5
4
x
+
x
+
x
+
x
+
x
+
x
+
x
+
x
+
2
x
+
x
+ x + 1
registers at the maximum frequency

1.5.30 IEEE 1149.1 JTAG controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.
The JTAG controller provides the following features:
IEEE test access port (TAP) interface 4 pins (TDI, TMS, TCK, TDO)
Selectable modes of operation include JTAGC/debug or normal system operation.
5-bit instruction register that supports the following IEEE 1149.1-2001 defined
instructions:
BYPASS
IDCODE
–EXTEST
SAMPLE
SAMPLE/PRELOAD
5-bit instruction register that supports the additional following public instructions:
ACCESS_AUX_TAP_NPC
ACCESS_AUX_TAP_ONCE
3 test data registers:
Bypass register
Boundary scan register (size parameterized to support a variety of boundary scan
chain lengths)
Device identification register
TAP controller state machine that controls the operation of the data registers,
instruction register and associated circuitry
Doc ID 16100 Rev 5 27/103
Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

1.5.31 On-chip voltage regulator (VREG)

The on-chip voltage regulator module provides the following features:
Uses external NPN (negative-positive-negative) transistor
Regulates external 3.3 V/5.0 V down to 1.2 V for the core logic
Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V
28/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-

2 Package pinouts and signal descriptions

2.1 Package pinouts

The LQFP pinouts are shown in the following figures. For pin signal descriptions, please refer to
Figure 2. 64-pin LQFP pinout – Full featured configuration (top view)
Ta bl e 7
VDD_HV_IO1
VSS_HV_IO1
VDD_HV_OSC
VSS_HV_OSC
VSS_LV_COR0 VDD_LV_COR0
.
RESET
NMI A[6] A[7] A[8] A[5]
D[9]
XTAL
EXTAL
D[8]
A[15]
A[14]
B[6]
A[13]
A[9]
VSS_LV_COR2
VDD_LV_COR2
C[8]
VSS_HV_IO3
VDD_HV_IO3
646362616059585756555453525150
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LQFP64
A[12]
A[11]
A[10]
B[2]
B[1]
B[0]
49
A[4]
48
VPP TEST
47
D[14]]
46
D[12]
45
D[13
44
VSS_LV_COR1
43
VDD_LV_COR1
42
A[3]
41
VDD_HV_IO2
40
VSS_HV_IO2
39
TDO
38
TCK
37
TMS
36
TDI
35
C[12]
34
C[11]
33
171819202122232425
E[1]
B[7]
D[7]
C[1]
C[2]
B[8]
E[2]
B[9]
26272829303132
B[10]
B[11]
B[12]
E[3]/B[13]
VSS_HV_AD0
VDD_HV_AD0
BCTRL
VDD_HV_REG
Doc ID 16100 Rev 5 29/103
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
Figure 3. 64-pin LQFP pinout – airbag configuration (top view)
A[15]
A[14]
B[6]
A[13]
A[9]
VSS_LV_COR2
VDD_LV_COR2
C[8]
VSS_HV_IO3
VDD_HV_IO3
A[12]
A[11]
A[10]
B[2]
B[1]]
B[0]
NMI
A[6] A[7] A[8]
A[5] VDD_HV_IO1 VSS_HV_IO1
VDD_HV_OSC
VSS_HV_OSC
VSS_LV_COR0
VDD_LV_COR0
D[9]
XTAL
EXTAL
RESET
D[8]
646362616059585756555453525150
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LQFP64
49
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
A[4] VPP TEST D[14] D[12] D[13] VSS_LV_COR1 VDD_LV_COR1 A[3] VDD_HV_IO2 VSS_HV_IO2 TDO TCK TMS TDI C[12] C[11]
171819202122232425
E[1]
B[7]
D[7]
C[1]
C[2]
B[8]
E[2]
B[9]
26272829303132
B[10]
B[11]
B[12]
VSS_HV_AD0
VDD_HV_AD0
BCTRL
E[3]/B[13]
VDD_HV_REG
30/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Figure 4. 100-pin LQFP pinout – full featured configuration (top view)
A[15]
A[14]
C[6]
D[2]
B[6]
A[13]
A[9]
VSS_LV_COR2
VDD_LV_COR2
C[8]
D[4]
D[3]
VSS_HV_IO3
VDD_HV_IO3
D[0]
C[15]
C[9]
A[12]
A[11]
A[10]
B[3]
B[2]
C[10]
B[1]
B[0]
NMI A[6] D[1] A[7] C[4] A[8] C[5] A[5] C[7]
C[3] N.C. N.C.
VDD_HV_IO1
VSS_HV_IO1
VDD_HV_OSC
VSS_HV_OSC
VSS_LV_COR0 VDD_LV_COR0
D[9]
XTAL
EXTAL
RESET
D[8]
D[5]
D[6]
9998979695949392919089888786858483828180797877
100 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26272829303132333435363738394041424344454647484950
E[1]
B[7]
D[7]
B[8]
C[1]
C[2]
E[2]
N.C.
LQFP100
B[9]
N.C.
B[10]
B[11]
B[12]
E[6]/C[0]
E[3]/B[13]
E[5]/B[15]
E[4]/B[14]
E[7]/D[15]
VSS_HV_AD0
VDD_HV_AD0
N.C.
N.C.
N.C.
BCTRL
76
VDD_HV_REG
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
A[4] VPP TEST D[14] C[14] C[13] D[12] N.C. N.C. D[13] VSS_LV_COR1 VDD_LV_COR1 A[3] VDD_HV_IO2 VSS_HV_IO2 TDO TCK TMS TDI A[2] C[12] C[11] D[11] D[10] A[1] A[0]
Doc ID 16100 Rev 5 31/103
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
Figure 5. 100-pin LQFP pinout – airbag configuration (top view)
A[15]
A[14]
C[6]
D[2]
B[6]
A[13]
A[9]
VSS_LV_COR2
VDD_LV_COR2
C[8]
D[4]
D[3]
VSS_HV_IO3
VDD_HV_IO3
D[0]
C[15]
C[9]
A[12]
A[11]
A[10]
B[3]
B[2]
C[10]
B[1]
B[0]
NMI A[6] D[1] A[7] C[4] A[8] C[5] A[5] C[7]
C[3] N.C. N.C.
VDD_HV_IO1
VSS_HV_IO1
VDD_HV_OSC
VSS_HV_OSC
VSS_LV_COR0
VDD_LV_COR0
D[9]
XTAL
EXTAL
RESET
D[8]
D[5]
D[6]
9998979695949392919089888786858483828180797877
100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26272829303132333435363738394041424344454647484950
E[1]
B[7]
D[7]
B[8]
C[1]
C[2]
E[2]
N.C.
LQFP100
B[9]
N.C.
B[10]
B[11]
B[12]
E[6]/C[0]
E[3]/B[13]
E[5]/B[15]
E[4]/B[14]
E[7]/D[15]
VSS_HV_AD0
VDD_HV_AD0
76
75
A[4]
74
VPP TEST
73
D[14]
72
C[14]
71
C[13]
70
D[12]
69
N.C.
68
N.C.
67
D[13]
66
VSS_LV_COR1
65
VDD_LV_COR1
64
A[3]
63
VDD_HV_IO2
62
VSS_HV_IO2
61
TDO
60
TCK
59
TMS
58
TDI
57
A[2]
56
C[12]
55
C[11]
54
D[11]
53
D[10]
52
A[1]
51
A[0]
N.C.
N.C.
N.C.
BCTRL
VDD_HV_REG

2.2 Pin description

The following sections provide signal descriptions and related information about the functionality and configuration of the SPC560P34/SPC560P40 devices.

2.2.1 Power supply and reference voltage pins

Ta bl e 5
devices.
32/103 Doc ID 16100 Rev 5
lists the power supply and reference voltage for the SPC560P34/SPC560P40
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Table 5. Supply pins
Supply Pin
Symbol Description 64-pin 100-pin
VREG control and power supply pins. Pins available on 64-pin and 100-pin packages
BCTRL Voltage regulator external NPN ballast base control pin 31 47
V
DD_HV_REG
(3.3 V or 5.0 V)
Voltage regulator supply voltage 32 50
ADC_0 reference and supply voltage. Pins available on 64-pin and 100-pin packages
V
DD_HV_ADC0
V
SS_HV_ADC0
(1)
ADC_0 supply and high reference voltage 28 39
ADC_0 ground and low reference voltage 29 40
Power supply pins (3.3 V or 5.0 V). Pins available on 64-pin and 100-pin packages
V
DD_HV_IO1
V
SS_HV_IO1
V
DD_HV_IO2
V
SS_HV_IO2
V
DD_HV_IO3
V
SS_HV_IO3
V
DD_HV_OSC
V
SS_HV_OSC
Input/output supply voltage 6 13
Input/output ground 7 14
Input/output supply voltage and data Flash memory supply voltage 40 63
Input/output ground and Flash memory HV ground 39 62
Input/output supply voltage and code Flash memory supply voltage 55 87
Input/output ground and code Flash memory HV ground 56 88
Crystal oscillator amplifier supply voltage 9 16
Crystal oscillator amplifier ground 10 17
Power supply pins (1.2 V). Pins available on 64-pin and 100-pin packages
V
DD_LV_COR0
V
SS_LV_COR0
1.2 V supply pins for core logic and PLL. Decoupling capacitor must be connected between these pins and the nearest V
SS_LV_COR
pin.
1.2 V supply pins for core logic and PLL. Decoupling capacitor must be connected between these pins and the nearest V
DD_LV_COR
pin.
16 25
15 24
1.2 V supply pins for core logic and data Flash. Decoupling capacitor
V
DD_LV_COR1
must be connected between these pins and the nearest V
SS_LV_COR
42 65
pin.
1.2 V supply pins for core logic and data Flash. Decoupling capacitor
V
SS_LV_COR1
must be connected between these pins and the nearest V
DD_LV_COR
43 66
pin.
1.2 V supply pins for core logic and code Flash. Decoupling capacitor
V
DD_LV_COR2
must be connected between these pins and the nearest V
SS_LV_COR
58 92
pin.
1.2 V supply pins for core logic and code Flash. Decoupling capacitor
V
SS_LV_COR2
must be connected betwee.n these pins and the nearest V
DD_LV_COR
59 93
pin.
1. Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a double-bonding connection on V
DD_HV_ADCx/VSS_HV_ADCx
pins.
Doc ID 16100 Rev 5 33/103
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,

2.2.2 System pins

Ta bl e 6
devices. The pins listed in
and
Ta bl e 7
contain information on pin functions for the SPC560P34/SPC560P40
Ta bl e 6
are single-function pins. The pins shown in
Ta bl e 7
multi-function pins, programmable via their respective pad configuration register (PCR) values.
Table 6. System pins
Symbol Description Direction
NMI Non-maskable Interrupt Input only Slow 1 1
XTAL
EXTAL
TDI JTAG test data input Input only Slow 35 58
TMS JTAG state machine control Input only Slow 36 59
TCK JTAG clock Input only Slow 37 60
Dedicated pins
Analog output of the oscillator amplifier circuit—needs to be grounded if oscillator is used in bypass mode
Analog input of the oscillator amplifier circuit, when the oscillator is not in bypass mode
Analog input for the clock generator when the oscillator is in bypass mode
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
———1118
———1219
(1)
are
Pin
TDO JTAG test data output Output only Slow Fast 38 61
Reset pin
RESET
VPP_TEST
1. SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.
Bidirectional reset with Schmitt trigger characteristics and noise filter
Te s t p i n
Pin for testing purpose only. To be tied to ground in normal operating mode.
Bidirectional Medium 13 20
———4774

2.2.3 Pin multiplexing

Ta bl e 7
Each row of functions. The default function assigned to each pin after reset is the ALT0 function.
SPC560P34/SPC560P40 devices provide three main I/O pad types, depending on the associated functions:
defines the pin list and muxing for the SPC560P34/SPC560P40 devices.
Ta bl e 7
Slow pads
shows all the possible ways of configuring each pin, via alternate
are the most common, providing a compromise between transition time and
low electromagnetic emission.
Medium pads
provide fast enough transition for serial communication channels with
controlled current to reduce electromagnetic emission.
Fast pads
provide maximum speed. They are used for improved NEXUS debugging
capability.
34/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. For more information, see
specifications
Table 7. Pin muxing
Port
pin
A[0] PCR[0]
A[1] PCR[1]
A[2] PCR[2]
PCR
register
Alternate
function
(2)
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
— — —
.
(1),
Functions Peripheral
GPIO[0]
ETC[0]
SCK
F[0]
EIRQ[0]
GPIO[1]
ETC[1]
SOUT
F[1]
EIRQ[1]
GPIO[2]
ETC[2]
— A[3] SIN
ABS[0]
EIRQ[2]
Port A (16-bit)
SIUL
eTimer_0
DSPI_2
FCU_0
SIUL
SIUL
eTimer_0
DSPI_2
FCU_0
SIUL
SIUL
eTimer_0
FlexPWM_0
DSPI_2
MC_RGM
SIUL
(3)
I/O
direction
(4)
I/O I/O I/O
O
I
I/O I/O
O O
I
I/O I/O
O
I I I
SRC = 0 SRC = 1 64-pin 100-pin
Slow Medium 51
Slow Medium 52
Slow Medium 57
Section 3.16.1: Pad AC
Pad speed
(5)
Pin
A[3] PCR[3]
A[4] PCR[4]
A[5] PCR[5]
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
GPIO[3]
ETC[3]
CS0
B[3]
ABS[1]
EIRQ[3]
GPIO[4]
CS1
ETC[4]
FAB
EIRQ[4]
GPIO[5]
CS0
CS7
EIRQ[5]
SIUL
eTimer_0
DSPI_2
FlexPWM_0
MC_RGM
SIUL
SIUL
DSPI_2
eTimer_0
MC_RGM
SIUL
SIUL
DSPI_1
DSPI_0
SIUL
I/O I/O I/O
O
I/O
O
I/O
I/O I/O
O
Slow Medium 41 64
I I
Slow Medium 48 75
I I
Slow Medium 5 8
I
Doc ID 16100 Rev 5 35/103
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
A[6] PCR[6]
A[7] PCR[7]
A[8] PCR[8]
A[9] PCR[9]
A[10] PCR[10]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[6]
SCK
EIRQ[6]
GPIO[7]
SOUT
EIRQ[7]
GPIO[8]
— SIN
EIRQ[8]
GPIO[9]
CS1
— B[3]
FAULT[ 0]
GPIO[10]
CS0
B[0] X[2]
EIRQ[9]
SIUL
DSPI_1
— —
SIUL
SIUL
DSPI_1
— —
SIUL
SIUL
— — —
DSPI_1
SIUL
SIUL
DSPI_2
— FlexPWM_0 FlexPWM_0
SIUL
DSPI_2 FlexPWM_0 FlexPWM_0
SIUL
I/O I/O
— —
I/O
O — —
I/O
— — —
I/O
O —
O
I/O I/O
O
O
Slow Medium 2 2
I
Slow Medium 3 4
I
Slow Medium 4 6
I I
Slow Medium 60 94
I
Slow Medium 52 81
I
A[11] PCR[11]
A[12] PCR[12]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[11]
SCK
A[0] A[2]
EIRQ[10]
GPIO[12]
SOUT
A[2] B[2]
EIRQ[11]
SIUL
DSPI_2 FlexPWM_0 FlexPWM_0
SIUL
SIUL
DSPI_2 FlexPWM_0 FlexPWM_0
SIUL
36/103 Doc ID 16100 Rev 5
I/O I/O
O O
I/O
O O O
Slow Medium 53 82
I
Slow Medium 54 83
I
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
A[13] PCR[13]
A[14] PCR[14]
A[15] PCR[15]
B[0] PCR[16]
ALT0 ALT1 ALT2 ALT3
— — —
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
GPIO[13]
B[2]
SIN FAULT[ 0] EIRQ[12]
GPIO[14]
TXD
— —
EIRQ[13]
GPIO[15]
— — —
RXD
EIRQ[14]
GPIO[16]
TXD
DEBUG[0]
EIRQ[15]
SIUL
FlexPWM_0
DSPI_2
FlexPWM_0
SIUL
SIUL
Safety Port_0
— —
SIUL
SIUL
— — —
Safety Port_0
SIUL
Port B (16-bit)
SIUL
FlexCAN_0
SSCM
SIUL
I/O
O
I/O
O — —
I/O
— — —
I/O
O — —
Slow Medium 61 95 I I I
Slow Medium 63 99
I
Slow Medium 64 100
I I
Slow Medium 49 76
I
B[1] PCR[17]
B[2] PCR[18]
B[3] PCR[19]
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[17]
— —
DEBUG[1]
RXD
EIRQ[16]
GPIO[18]
TXD
DEBUG[2]
EIRQ[17]
GPIO[19]
— —
DEBUG[3]
RXD
SIUL
— —
SSCM
FlexCAN_0
SIUL
SIUL
LIN_0
SSCM
SIUL
SIUL
— —
SSCM
LIN_0
I/O
— — —
I/O
O — —
I/O
— — —
Slow Medium 50 77
I I
Slow Medium 51 79
I
Slow Medium 80
I
Doc ID 16100 Rev 5 37/103
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
B[6] PCR[22]
B[7] PCR[23]
B[8] PCR[24]
B[9] PCR[25]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
GPIO[22]
CLKOUT
CS2
EIRQ[18]
GPIO[23]
— — —
AN[0]
RXD
GPIO[24]
— — —
AN[1]
ETC[5]
GPIO[25]
— — —
AN[11]
SIUL
Control
DSPI_2
SIUL
SIUL
— — —
ADC_0
LIN_0
SIUL
— — —
ADC_0
eTimer_0
SIUL
— — —
ADC_0
I/O
O
O
Slow Medium 62 96
I
Input only 20 29
Input only 22 31
Input only 24 35
B[10] PCR[26]
B[11] PCR[27]
B[12] PCR[28]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[26]
— — —
AN[12]
GPIO[27]
— — —
AN[13]
GPIO[28]
— — —
AN[14]
SIUL
— — —
ADC_0
SIUL
— — —
ADC_0
SIUL
— — —
ADC_0
Input only 25 36
Input only 26 37
Input only 27 38
38/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
B[13] PCR[29]
B[14] PCR[30]
B[15] PCR[31]
ALT0 ALT1 ALT2 ALT3
— — —
ALT0 ALT1 ALT2 ALT3
— — — —
ALT0 ALT1 ALT2 ALT3
— — —
GPIO[29]
— — —
AN[6]
emu. AN[0]
RXD
GPIO[30]
— — —
AN[7]
emu. AN[1]
ETC[4]
EIRQ[19]
GPIO[31]
— — —
AN[8]
emu. AN[2]
EIRQ[20]
SIUL
— — —
ADC_0
emu. ADC_1
LIN_1
SIUL
— — —
ADC_0
emu. ADC_1
eTimer_0
SIUL
SIUL
— — —
ADC_0
emu. ADC_1
SIUL
Input only 30 42
(6)
Input only 44
(6)
Input only 43
(6)
C[0] PCR[32]
C[1] PCR[33]
C[2] PCR[34]
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[32]
— — —
AN[9]
emu. AN[3]
GPIO[33]
— — —
AN[2]
GPIO[34]
— — —
AN[3]
Port C (16-bit)
SIUL
— — —
ADC_0
emu. ADC_1
SIUL
— — —
ADC_0
SIUL
— — —
ADC_0
Input only 45
(6)
Input only 19 28
Input only 21 30
Doc ID 16100 Rev 5 39/103
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
C[3] PCR[35]
C[4] PCR[36]
C[5] PCR[37]
C[6] PCR[38]
C[7] PCR[39]
C[8] PCR[40]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[35]
CS1
TXD
EIRQ[21]
GPIO[36]
CS0
X[1]
DEBUG[4]
EIRQ[22]
GPIO[37]
SCK
DEBUG[5]
EIRQ[23]
GPIO[38]
SOUT
B[1]
DEBUG[6]
EIRQ[24]
GPIO[39]
A[1]
DEBUG[7]
SIN
GPIO[40]
CS1
CS6
SIUL
DSPI_0
LIN_1
SIUL
SIUL
DSPI_0
FlexPWM_0
SSCM
SIUL
SIUL
DSPI_0
SSCM
SIUL
SIUL
DSPI_0
FlexPWM_0
SSCM
SIUL
SIUL
FlexPWM_0
SSCM
DSPI_0
SIUL
DSPI_1
DSPI_0
I/O
O —
O
I/O I/O
O —
I/O I/O
— —
I/O
O
O —
I/O
O —
I/O
O —
O
Slow Medium 10
I
Slow Medium 5
I
Slow Medium 7
I
Slow Medium 98
I
Slow Medium 9
I
Slow Medium 57 91
C[9] PCR[41]
C[10] PCR[42]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[41]
CS3
X[3]
GPIO[42]
CS2
A[3]
FAULT[ 1]
SIUL
DSPI_2
FlexPWM_0
SIUL
DSPI_2
— FlexPWM_0 FlexPWM_0
40/103 Doc ID 16100 Rev 5
I/O
O
O
I/O
O
O
Slow Medium 84
Slow Medium 78
I
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
C[11] PCR[43]
C[12] PCR[44]
C[13] PCR[45]
C[14] PCR[46]
C[15] PCR[47]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
— —
GPIO[43]
ETC[4]
CS2
GPIO[44]
ETC[5]
CS3
GPIO[45]
— — —
EXT_IN
EXT_SYNC
GPIO[46]
EXT_TGR
GPIO[47]
— —
A[1]
EXT_IN
EXT_SYNC
SIUL
eTimer_0
DSPI_2
SIUL
eTimer_0
DSPI_2
SIUL
CTU_0
FlexPWM_0
SIUL
CTU_0
SIUL
— FlexPWM_0
CTU_0
FlexPWM_0
I/O I/O
O
I/O I/O
O
I/O
— — —
I/O
O
I/O
— —
O
Slow Medium 33 55
Slow Medium 34 56
Slow Medium 71
I I
Slow Medium 72
Slow Medium 85
I I
D[0] PCR[48]
D[1] PCR[49]
D[2] PCR[50]
D[3] PCR[51]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[48]
— —
B[1]
GPIO[49]
— —
EXT_TRG
GPIO[50]
— —
X[3]
GPIO[51]
— —
A[3]
Port D (16-bit)
SIUL
— FlexPWM_0
SIUL
CTU_0
SIUL
— FlexPWM_0
SIUL
— FlexPWM_0
I/O
— —
O
I/O
— —
O
I/O
— —
O
I/O
— —
O
Slow Medium 86
Slow Medium 3
Slow Medium 97
Slow Medium 89
Doc ID 16100 Rev 5 41/103
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
D[4] PCR[52]
D[5] PCR[53]
D[6] PCR[54]
D[7] PCR[55]
D[8] PCR[56]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[52]
— —
B[3]
GPIO[53]
CS3
F[0]
GPIO[54]
CS2
— —
FAULT[ 1]
GPIO[55]
CS3
F[1]
CS4
GPIO[56]
CS2
CS5
SIUL
— FlexPWM_0
SIUL
DSPI_0
FCU_0
SIUL
DSPI_0
— FlexPWM_0
SIUL
DSPI_1
FCU_0
DSPI_0
SIUL
DSPI_1
DSPI_0
I/O
— —
O
I/O
O O
I/O
O — —
I/O
O
O
O
I/O
O —
O
Slow Medium 90
Slow Medium 22
Slow Medium 23
I
Slow Medium 17 26
Slow Medium 14 21
D[9] PCR[57]
D[10] PCR[58]
D[11] PCR[59]
D[12] PCR[60]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[57]
X[0]
TXD
GPIO[58]
A[0]
— —
GPIO[59]
B[0]
— —
GPIO[60]
X[1]
— —
RXD
SIUL
FlexPWM_0
LIN_1
SIUL
FlexPWM_0
— —
SIUL
FlexPWM_0
— —
SIUL
FlexPWM_0
— —
LIN_1
I/O
O
O —
I/O
O — —
I/O
O — —
I/O
O — —
Slow Medium 8 15
Slow Medium 53
Slow Medium 54
Slow Medium 45 70
I
42/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip-
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
D[13] PCR[61]
D[14] PCR[62]
D[15] PCR[63]
E[1] PCR[65]
E[2] PCR[66]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
— —
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[61]
A[1]
— —
GPIO[62]
B[1]
— —
GPIO[63]
— — —
AN[10]
emu. AN[4]
GPIO[65]
— — —
AN[4]
GPIO[66]
— — —
AN[5]
SIUL
FlexPWM_0
— —
SIUL
FlexPWM_0
— —
SIUL
— — —
ADC_0
emu. ADC_1
Port E (16-bit)
SIUL
— — —
ADC_0
SIUL
— — —
ADC_0
I/O
O —
Slow Medium 44 67
I/O
O —
Slow Medium 46 73
Input only 41
(6)
Input only 18 27
Input only 23 32
E[3] PCR[67]
E[4] PCR[68]
E[5] PCR[69]
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
ALT0 ALT1 ALT2 ALT3
GPIO[67]
— — —
AN[6]
GPIO[68]
— — —
AN[7]
GPIO[69]
— — —
AN[8]
SIUL
— —
Input only 30 42
ADC_0
SIUL
— —
Input only 44
ADC_0
SIUL
— —
Input only 43
ADC_0
Doc ID 16100 Rev 5 43/103
Package pinouts and signal descriptions SPC560P34L1, SPC560P34L3, SPC560P40L1,
Table 7. Pin muxing (continued)
Port
pin
PCR
register
Alternate
function
(2)
(1),
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
SRC = 0 SRC = 1 64-pin 100-pin
(5)
Pin
ALT0 ALT1
E[6] PCR[70]
ALT2 ALT3
ALT0 ALT1
E[7] PCR[71]
ALT2 ALT3
1. ALT0 is the primary (default) function for each port after reset.
2. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 → ALT0; PCR.PA = 01 ALT1; PCR.PA = 10 ALT2; PCR.PA = 11 ALT3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”.
3. Module included on the MCU.
4. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
5. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.
6. ADC0.AN emulates ADC1.AN. This feature is used to provide software compatibility between SPC560P34/SPC560P40 and SPC560P50. Refer to ADC chapter of reference manual for more details.
GPIO[70]
— — —
AN[9]
GPIO[71]
— — —
AN[10]
SIUL
— — —
ADC_0
SIUL
— — —
ADC_0
Input only 45
Input only 41
44/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics

3 Electrical characteristics

3.1 Introduction

This section contains device electrical characteristics as well as temperature and power considerations.
This microcontroller contains input protection against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V
). This can be done by the internal pull-up or pull-down resistors, which are provided
SS
by the device for most general purpose pins.
The following tables provide the device characteristics and its demands on the system.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column.
Caution: All of the following parameter values can vary depending on the application and must be
confirmed during silicon characterization or silicon reliability trial.

3.2 Parameter classification

The electrical parameters are guaranteed by various methods. To give the customer a better understanding, the classifications listed in accordingly in the tables where appropriate.

Table 8. Parameter classifications

Classification tag Tag description
Ta bl e 8
are used and the parameters are tagged
DD
P Those parameters are guaranteed during production testing on each individual device.
C
T
D Those parameters are derived mainly from simulations.
Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
Note: The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
Doc ID 16100 Rev 5 45/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

3.3 Absolute maximum ratings

Table 9. Absolute maximum ratings

(1)
Symbol Parameter Conditions
V
SS
SR Device ground 0 0 V
3.3 V/5.0 V input/output supply voltage (supply).
V
DD_HV_IOx
(3)
SR
Code flash memory supply with V
DD_HV_IO3
memory with V
and data flash
DD_HV_IO2
3.3 V/5.0 V input/output supply voltage (ground).
V
SS_HV_IOx
V
DD_HV_OSC
V
SS_HV_OSC
V
DD_HV_ADC0
V
SS_HV_ADC0
V
DD_HV_REG
TV
DD
SR
Code flash memory ground with V
SS_HV_IO3
memory with V
3.3 V/5.0 V crystal oscillator
SR
amplifier supply voltage (supply)
3.3 V/5.0 V crystal oscillator
SR
amplifier supply voltage (ground)
3.3 V/5.0 V ADC_0 supply and
SR
high- reference voltage
3.3 V/5.0 V ADC_0 ground and
SR
low- reference voltage
3.3 V/5.0 V voltage-regulator
SR
supply voltage
Slope characteristics on all V
SR
during power up
and data flash
SS_HV_IO2
(4)
DD
Relative to V
V
DD_HV_REG
V
DD_HV_REG
Relative to V
Value
Unit
Min Max
(2)
—–0.36.0V
—–0.10.1V
—–0.36.0
V
DD_HV_IOx
–0.3 V
DD_HV_IOx
+0.3
—–0.10.1V
< 2.7 V –0.3 V
DD_HV_REG
+0.3
V
> 2.7 V –0.3 6.0
—–0.10.1V
—–0.36.0
V
DD_HV_IOx
–0.3 V
DD_HV_IOx
+0.3
0.5 250 V/ms
V
DD_LV_CORx
V
SS_LV_CORx
V
IN
I
INJPAD
I
INJSUM
T
STG
T
J
1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.
CC1.2 V supply pins for core logic
(supply)
1.2 V supply pins for core logic
SR
(ground)
Voltage on any pin with respect
SR
to ground (V
Input current on any pin during
SR
overload condition
Absolute sum of all input currents
SR
during overload condition
SS_HV_IOx
)
Relative to V
—–0.11.5V
—–0.10.1V
—–0.36.0
DD_HV_IOx
–0.3 V
DD_HV_IOx
+0.3
(5)
–10 10 mA
–50 50 mA
SR Storage temperature –55 150 °C SR Junction temperature under bias −40 150 °C
46/103 Doc ID 16100 Rev 5
V
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
2. Absolute maximum voltages are currently maximum burn-in voltages.
3. The difference between each couple of voltage supplies must be less than 300 mV, ⏐V
4. Guaranteed by device validation.
5. Only when V
DD_HV_IOx
< 5.2 V.
DD_HV_IOy–VDD_HV_IOx
< 300 mV.
Figure 6
shows the constraints of the different power supplies.
Figure 6. Power supplies constraints (–0.3 V ≤ V
VDD_HV_xxx
6.0 V
–0.3 V
–0.3 V
The SPC560P34/SPC560P40 supply architecture allows the ADC supply to be managed independently from the standard V
DD_HV
power supply.
DD_HV_IOx
supply.
6.0 V)
Figure 7
VDD_HV_IOx
6.0 V
shows the constraints of the ADC
Doc ID 16100 Rev 5 47/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Figure 7. Independent ADC supply (–0.3 V ≤ V
VDD_HV_ADCx
6.0 V
–0.3 V
–0.3 V
2.7 V
DD_HV_REG
6.0 V)
VDD_HV_REG
6.0 V

3.4 Recommended operating conditions

Table 10. Recommended operating conditions (5.0 V)

V
DD_HV_IOx
V
SS_HV_IOx
V
DD_HV_OSC
V
SS_HV_OSC
V
DD_HV_REG
Symbol Parameter Conditions
V
SS
SR Device ground 0 0 V
(2)
5.0 V input/output supply
SR
voltage
Input/output ground
SR
voltage
—4.5 5.5V
—0 0V
—4.5 5.5
5.0 V crystal oscillator
SR
amplifier supply voltage
Relative to V
DD_HV_IOx
5.0 V crystal oscillator
SR
amplifier reference
—0 0V
voltage
—4.5 5.5
5.0 V voltage regulator
SR
supply voltage
Relative to V
DD_HV_IOx
V
DD_HV_IOx
V
DD_HV_IOx
Val ue
Min Max
–0.1 V
–0.1 V
DD_HV_IOx
DD_HV_IOx
(1)
Unit
V
+0.1
V
+0.1
48/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Table 10. Recommended operating conditions (5.0 V) (continued)
Val ue
Symbol Parameter Conditions
Min Max
(1)
Unit
V
DD_HV_ADC0
V
SS_HV_ADC0
V
DD_LV_REGCOR
,(4)
V
SS_LV_REGCOR
V
DD_LV_CORx
V
SS_LV_CORx
T
1. Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.
2. The difference between each couple of voltage supplies must be less than 100 mV,
V
DD_HV_IOx
3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on­chip voltage regulator—but for the device to function properly the low voltage grounds (V voltage grounds (V emitter.
4. The low voltage supplies (V – V
DD_LV_COR1
voltage supply to the data flash memory module. Similarly, V – V
DD_LV_REGCOR
(3)
(3)
3,4
3
A
< 100 mV.
and V
5.0 V ADC_0 supply and
SR
high reference voltage
ADC_0 ground and low
SR
reference voltage
Relative to V
DD_HV_REG
V
DD_HV_REG
–0.1
—0 0V
CC Internal supply voltage V
SR Internal reference voltage 0 0 V
CC Internal supply voltage V
SR Internal reference voltage 0 0 V
f
=60MHz 40 125 °C
Ambient temperature
SR
under bias
SS_HV_xxx
and V
) and the low voltage supply pins (V
DD_LV_xxx
DD_LV_COR2
DD_LV_RECORx
) are not all independent.
are shorted internally via double bonding connections with lines that provide the low
are physically shorted internally, as are V
CPU
f
=64MHz 40 105 °C
CPU
DD_LV_xxx
SS_LV_COR1
V
DD_HV_IOy
) must be connected to the external ballast
and V
SS_LV_COR2
SS_LV_xxx
SS_LV_REGCOR
) must be shorted to high
are internally shorted.
and V
SS_LV_CORx
.
—4.5 5.5
V

Table 11. Recommended operating conditions (3.3 V)

Symbol Parameter Conditions
V
SS
V
DD_HV_IOx
V
SS_HV_IOx
SR Device ground 0 0 V
(2)
3.3 V input/output supply
SR
voltage
Input/output ground
SR
voltage
—3.0 3.6V
—0 0V
—3.0 3.6
3.3 V crystal oscillator
V
DD_HV_OSC
SR
amplifier supply voltage
Relative to V
DD_HV_IOx
3.3 V crystal oscillator
V
SS_HV_OSC
SR
amplifier reference
—0 0V
voltage
Doc ID 16100 Rev 5 49/103
Min Max
V
DD_HV_IOx
–0.1 V
Val ue
DD_HV_IOx
(1)
Unit
V
+0.1
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 11. Recommended operating conditions (3.3 V) (continued)
Val ue
Symbol Parameter Conditions
Min Max
(1)
Unit
V
DD_HV_REG
3.3 V voltage regulator
SR
supply voltage
Relative to V
DD_HV_IOx
V
DD_HV_IOx
–0.1 V
DD_HV_IOx
+0.1
—3.0 5.5
3.3 V ADC_0 supply and
—3.0 3.6
(3)
SR
high reference voltage
ADC_0 ground and low
SR
reference voltage
Relative to V
DD_HV_REG
V
DD_HV_REG
0.1 5.5
—0 0V
CC Internal supply voltage V
(3)
SR Internal reference voltage 0 0 V
(3),(4)
CC Internal supply voltage V
(3)
SR Internal reference voltage 0 0 V
f
=60MHz 40 125 °C
SR
< 100 mV.
SS_HV_xxx
and V
DD_LV_COR2
and V
Ambient temperature under bias
) and the low voltage supply pins (V
DD_LV_xxx
DD_LV_RECORx
) are not all independent.
are shorted internally via double bonding connections with lines that provide the low
are physically shorted internally, as are V
CPU
f
=64MHz 40 105 °C
CPU
DD_LV_xxx
SS_LV_COR1
V
DD_HV_IOy
) must be connected to the external ballast
and V
SS_LV_COR2
SS_LV_xxx
SS_LV_REGCOR
) must be shorted to high
are internally shorted.
and V
SS_LV_CORx
.
V
DD_HV_ADC0
V
SS_HV_ADC0
V
DD_LV_REGCOR
,(4)
V
SS_LV_REGCOR
V
DD_LV_CORx
V
SS_LV_CORx
T
A
1. Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.
2. The difference between each couple of voltage supplies must be less than 100 mV,
V
DD_HV_IOx
3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on­chip voltage regulator—but for the device to function properly the low voltage grounds (V voltage grounds (V emitter.
4. The low voltage supplies (V – V
DD_LV_COR1
voltage supply to the data flash memory module. Similarly, V – V
DD_LV_REGCOR
V
V
Figure 8
shows the constraints of the different power supplies.
50/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Figure 8. Power supplies constraints
VDD_HV_xxx
5.5 V
3.3 V
3.0 V
The SPC560P34/SPC560P40 supply architecture allows the ADC supply to be managed independently from the standard V power supply.
(a)
(3.0 V ≤ V
3.0 V
DD_HV
DD_HV_IOx
3.3 V
supply.
5.5 V)
Figure 9
VDD_HV_IOx
5.5 V
shows the constraints of the ADC
Figure 9. Independent ADC supply (3.0 V
VDD_HV_ADCx
5.5 V
3.0 V
V
DD_HV_REG
3.0 V
5.5 V)
VDD_HV_REG
5.5 V
a. IO AC and DC characteristics are guaranteed only in the range of 3.0–3.6 V when PAD3V5V is low, and in the range of
4.5–5.5 V when PAD3V5V is high.
Doc ID 16100 Rev 5 51/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

3.5 Thermal characteristics

3.5.1 Package thermal characteristics

Table 12. LQFP thermal characteristics
Typical value
Symbol Parameter Conditions
Unit
100-pin 64-pin
R
R
R
θJCtop
Ψ Ψ
1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification
2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature
5. Thermal characterization parameter indicating the temperature difference between the package top and the junction
Thermal resistance junction-to-ambient, natural
θJA
convection
Thermal resistance junction-to-board
θJB
Thermal resistance junction-to-case (top)
Junction-to-board, natural convection
JB
Junction-to-case, natural convection
JC
for this package.
the specified package. When Greek letters are not available, the symbols are typed as RthJB or Theta-JB.
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC.
(1)
(2)
(3)
(4)
(5)
Single layer board—1s 63 57 °C/W
Four layer board—2s2p 51 41 °C/W
Four layer board—2s2p 33 22 °C/W
Single layer board—1s 15 13 °C/W
Operating conditions 33 22 °C/W
Operating conditions 1 1 °C/W

3.5.2 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, TJ, can be obtained from
Equation 1 T
= TA + (R
J
θJA
* PD)
where:
T
= ambient temperature for the package (°C)
A
R
= junction-to-ambient thermal resistance (°C/W)
θJA
P
= power dissipation in the package (W)
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.
When a heat sink is used, the thermal resistance is expressed in
Equation 2
junction-to-case thermal resistance and a case-to-ambient thermal resistance:
Equation 1
:
as the sum of a
52/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Equation 2 R
θJA
= R
θJC
+ R
θCA
where:
R
= junction-to-ambient thermal resistance (°C/W)
θJA
R
= junction-to-case thermal resistance (°C/W)
θJC
R
= case-to-ambient thermal resistance (°C/W)
θCA
R
is device related and cannot be influenced by the user. The user controls the thermal
θJC
environment to change the case-to-ambient thermal resistance, R
. For instance, the user
θCA
can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.
To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ
) can be used to determine the
JT
junction temperature with a measurement of the temperature at the top center of the package case using
Equation 3 T
J
Equation 3
= TT + (ΨJT x PD)
:
where:
T
= thermocouple temperature on top of the package (°C)
T
Ψ
= thermal characterization parameter (°C/W)
JT
P
= power dissipation in the package (W)
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.
References:
Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134U.S.A. (408) 943-6900
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at (800) 854-7179 or (303) 397-7956.
JEDEC specifications are available on the WEB at http://www.jedec.org.
1. C.E. Triplett and B. Joiner,
Automotive Engine Controller Module
An Experimental Characterization of a 272 PBGA Within an
, Proceedings of SemiTherm, San Diego, 1998,
pp. 47–54.
2. G. Kromann, S. Shidore, and S. Addison,
Applications
3. B. Joiner and V. Adams,
, Electronic Packaging and Production, pp. 53–58, March 1998.
Measurement and Simulation of Junction to Board Thermal
Resistance and Its Application in Thermal Modeling
Thermal Modeling of a PBGA for Air-Cooled
, Proceedings of SemiTherm, San
Diego, 1999, pp. 212–220.
Doc ID 16100 Rev 5 53/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

3.6 Electromagnetic interference (EMI) characteristics

Table 13. EMI testing specifications

Symbol Parameter Conditions Clocks Frequency
150 kHz–150 MHz 11
150–1000 MHz 13
IEC level M
150 kHz–150 MHz 8
150–1000 MHz 12
IEC level N
150 kHz–150 MHz 9
150–1000 MHz 12
IEC level M
150 kHz–150 MHz 7
150–1000 MHz 12
IEC level N
V
EME
Radiated emissions
= 5.0 V; TA=25°C
V
DD
Other device configuration, test conditions and EM testing per standard IEC61967-2
= 3.3 V; TA=25°C
V
DD
Other device configuration, test conditions and EM testing per standard IEC61967-2
=8MHz
f
OSC
f
=64MHz
CPU
No PLL frequency modulation
f
=8MHz
OSC
f
=64MHz
CPU
±4% PLL frequency modulation
f
=8MHz
OSC
f
=64MHz
CPU
No PLL frequency modulation
f
=8MHz
OSC
f
=64MHz
CPU
±4% PLL frequency modulation
Level
(Typ)
Unit
dBµV
dBµV
dBµV
dBµV

3.7 Electrostatic discharge (ESD) characteristics

Table 14. ESD ratings
Symbol Parameter Conditions Value Unit
V
ESD(HBM)
V
ESD(CDM)
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
SR Electrostatic discharge (Human Body Model) 2000 V
SR Electrostatic discharge (Charged Device Model)
(1),(2)
750 (corners)
500 (other)

3.8 Power management electrical characteristics

3.8.1 Voltage regulator electrical characteristics

The internal voltage regulator requires an external NPN ballast, approved ballast list availbale in placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the V L
(refer to
Reg
Ta bl e 1 5
Figure 16
, to be connected as shown in
DD_HV_REG
, BCTRL and V
).
Figure 10
. Capacitances should be
DD_LV_CORx
pins to less than
V
54/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Note: The voltage regulator output cannot be used to drive external circuits. Output pins are to be
used only for decoupling capacitance.
V
DD_LV_COR
possible to provide V
must be generated using internal regulator and external NPN transistor. It is not
DD_LV_COR
through external regulator.
For the SPC560P34/SPC560P40 microcontroller, capacitor(s), with total values not below C
, should be placed between V
DEC1
DD_LV_CORx/VSS_LV_CORx
transistor emitter. 4 capacitors, with total values not below C microcontroller pins between each V V
DD_LV_REGCOR/VSS_LV_REGCOR
C
, should be placed between the V
DEC3
DD_LV_CORx/VSS_LV_CORx
pair. Additionally, capacitor(s) with total values not below
DD_HV_REG/VSS_HV_REG
close to external ballast
, should be placed close to
DEC2
supply pairs and the
pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature.
All reported information are valid for voltage and temperature ranges described in recommended operating condition,
Ta bl e 1 0
and
Ta b le 1 1
.
Figure 10. Voltage regulator configuration
VDD_HV_REG
SPC560P34/SPC560P40
BCTRL
VDD_LV_COR
1. Refer to
Table 15. Approved NPN ballast components
BCP68
Table 15
Part Manufacturer Approved derivatives
.
ON Semi BCP68
NXP BCP68-25
Infineon BCP68-25
C
DEC2
BJT
(1)
C
DEC1
C
DEC3
(1)
BCX68 Infineon BCX68-10; BCX68-16; BCX-25
BC868 NXP BC868
BC817
Infineon BC817-16; BC817-25; BC817SU
NXP BC817-16; BC817-25
Doc ID 16100 Rev 5 55/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 15. Approved NPN ballast components (continued)
Part Manufacturer Approved derivatives
ST BCP56-16
(1)
BCP56
Infineon BCP56-10; BCP56-16
ON Semi BCP56-10
NXP BCP56-10; BCP56-16
1. For automotive applications please check with the appropriate transistor vendor for automotive grade
certification
Table 16. Voltage regulator electrical characteristics
Symbol C Parameter Conditions
Output voltage under
V
DD_LV_REGCOR
CC P
maximum load run supply current
Post-trimming 1.15 1.32 V
configuration
BJT from capacitors (i.e. X7R or X8R
C
DEC1
SR
External decoupling/stability
capacitors) with nominal value of 10 µF
ceramic capacitor
BJT BC817, one capacitance of 22 µF
R
C
C
REG
DEC2
DEC3
SR
SR
SR
Resulting ESR of either one or all three C
DEC1
External decoupling/stability ceramic capacitor
External decoupling/stability ceramic capacitor on VDD_HV_REG
Absolute maximum value between 100 kHz and 10 MHz
Four capacitances (i.e. X7R or X8R capacitors) with nominal value of 440 nF
Three capacitors (i.e. X7R or X8R capacitors) with nominal value of 10 µF; C equal or greater than C
Resulting ESL of
L
Reg
SR
V
DD_HV_REG
and V
DD_LV_CORx
, BCTRL
pins
Val ue
Unit
Min Typ Max
Ta b l e 1 5
. Three
19.5 30 µF
14.3 22 µF
——45mΩ
1200 1760 nF
DEC3
has to be
DEC1
19.5 30 µF
——5nH

3.8.2 Voltage monitor electrical characteristics

The device implements a power on reset module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the V is supplied:
POR monitors V
during the power-up phase to ensure device is maintained in a safe
DD
reset state
LVDHV3 monitors V
LVDHV5 monitors V
LVDLVCOR monitors low voltage digital power domain
56/103 Doc ID 16100 Rev 5
to ensure device reset below minimum functional supply
DD
when application uses device in the 5.0 V ± 10% range
DD
DD
and the V
voltage while device
DD_LV
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Table 17. Low voltage monitor electrical characteristics
Symbol C Parameter Conditions
V
PORH
V
PORUP
V
REGLVDMOK_H
V
REGLVDMOK_L
V
FLLVDMOK_H
V
FLLVDMOK_L
V
IOLVDMOK_H
V
IOLVDMOK_L
V
IOLVDM5OK_H
V
IOLVDM5OK_L
V
MLVDDOK_H
V
MLVDDOK_L
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 °C to T
T Power-on reset threshold 1.5 2.7 V
P Supply for functional POR module TA = 25 °C 1.0 V
P Regulator low voltage detector high threshold 2.95 V
P Regulator low voltage detector low threshold 2.6 V
P Flash low voltage detector high threshold 2.95 V
P Flash low voltage detector low threshold 2.6 V
P I/O low voltage detector high threshold 2.95 V
P I/O low voltage detector low threshold 2.6 V
P I/O 5 V low voltage detector high threshold 4.4 V
P I/O 5 V low voltage detector low threshold 3.8 V
P Digital supply low voltage detector high 1.145 V
P Digital supply low voltage detector low 1.08 V
, unless otherwise specified.
A MAX
(1)
Value
Unit
Min Max

3.9 Power up/down sequencing

To prevent an overstress event or a malfunction within and outside the device, the SPC560P34/SPC560P40 implements the following sequence to ensure each module is started only when all conditions for switching it ON are available:
A POWER_ON module working on voltage regulator supply controls the correct start-
up of the regulator. This is a key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5 V. Associated POWER_ON (or POR) signal is active low.
Several low voltage detectors, working on voltage regulator supply monitor the voltage
of the critical modules (voltage regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active.
A POWER_OK signal is generated when all critical supplies monitored by the LVD are
available. This signal is active high and released to all modules including I/Os, flash memory and 16 MHz RC oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated modules are set into a safe state.
Doc ID 16100 Rev 5 57/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

Figure 11. Power-up typical sequence

V
LVDHV3H
VDD_HV_REG
POWER_ON
LVDM (HV)
VDD_LV_REGCOR
LVDD (LV)
POWER_OK
RC16MHz Oscillator
Internal Reset Generation Module FSM
V
POR_UP
V
PORH
V
MLVDOK_H
~1us
P0 P1
3.3V
0V
3.3V
0V
3.3V
0V
1.2V 0V
3.3V
0V
3.3V
0V
1.2V 0V
1.2V 0V

Figure 12. Power-down typical sequence

V
LVDHV3L
V
VDD_HV_REG
LVDM (HV)
POWER_ON
VDD_LV_REGCOR
LVDD (LV)
POWER_OK
RC16MHz Oscillator
Internal Reset Generation Module FSM
PORH
P0IDLE
3.3V
0V
3.3V
0V
3.3V
0V
1.2V 0V
3.3V
0V
3.3V
0V
1.2V 0V
1.2V 0V
58/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics

Figure 13. Brown-out typical sequence

V
V
VDD_HV_REG
LVDM (HV)
POWER_ON
VDD_LV_REGCOR
LVDD (LV)
POWER_OK
RC16MHz Oscillator
Internal Reset Generation Module FSM
LVDHV3L
LVDHV3H
P0IDLE
~1us
P1
3.3V
0V
3.3V
0V
3.3V
0V
1.2V 0V
3.3V
0V
3.3V
0V
1.2V 0V
1.2V 0V

3.10 DC electrical characteristics

3.10.1 NVUSRO register

Portions of the device configuration, such as high voltage supply and watchdog enable/disable after reset are controlled via bit values in the non-volatile user options (NVUSRO) register.
For a detailed description of the NVUSRO register, please refer to the device reference manual.
NVUSRO[PAD3V5V] field description
The DC electrical characteristics are dependent on the PAD3V5V bit value. how NVUSRO[PAD3V5V] controls the device configuration.
Table 18. PAD3V5V field description
(1)
Val ue
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
1. Default manufacturing value before flash initialization is ‘1’ (3.3 V).
Description
Ta bl e 1 8
shows
Doc ID 16100 Rev 5 59/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

3.10.2 DC electrical characteristics (5 V)

Ta bl e 1 9
gives the DC electrical characteristics at 5 V (4.5 V < V
NVUSRO[PAD3V5V] = 0).
Table 19. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)
Symbol C Parameter Conditions
V
IL
V
IH
V
HYS
V
OL_S
V
OH_S
V
OL_M
V
OH_M
Min Max
D
0.4
(1)
Low level input voltage
P—0.35V
P
High level input voltage
—0.65V
DD_HV_IOx
D—V
T Schmitt trigger hysteresis 0.1 V
Slow, low level output
P
voltage
Slow, high level output
P
voltage
Medium, low level output
P
voltage
Medium, high level output
P
voltage
=3mA 0.1V
I
OL
IOH= 3mA 0.8V
=3mA 0.1V
I
OL
= 3mA 0.8V
I
OH
DD_HV_IOx
DD_HV_IOx
DD_HV_IOx
DD_HV_IOx
Val ue
DD_HV_IOx
< 5.5 V,
Unit
—V
(1)
V
V
V
V
DD_HV_IOx
—V
+0.4
—V
DD_HV_IOx
—V
DD_HV_IOx
—V
V
OL_F
V
OH_F
I
PU
I
PD
I
IL
I
IL
C
IN
1. “SR” parameter values must not exceed the absolute maximum ratings shown in
Fast, low level output
P
voltage
Fast, high level output
P
voltage
P Equivalent pull-up current
P Equivalent pull-down current
Input leakage current
P
(all bidirectional ports)
Input leakage current
P
(all ADC input-only ports)
IOL=14mA 0.1V
= 14 mA 0.8 V
I
OH
V
IN=VIL
V
IN=VIH
V
IN=VIL
V
IN=VIH
= 40 to 125 °C −11µA
T
A
= 40 to 125 °C −0.5 0.5 µA
T
A
D Input capacitance 10 pF
V
DD_HV_IOx
DD_HV_IOx
—V
130
µA
10
10
µA
—130
Table 9
.
60/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Table 20. Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)
(1)
Value
Symbol C Parameter Conditions
Typ Max
T
RUN—Maximum mode
(2)
40 MHz 44 55
P 64 MHz 52 65
I
DD_LV_CORx
T RUN—Typical mode
P
HALT mode
STOP mode
(4)
(5)
(3)
Flash during read V
I
DD_FLASH
Supply current
T
Flash during erase operation on 1 flash module
I
DD_ADC
I
DD_OSC
1. All values to be confirmed after characterization/data collection.
2. Maximum mode: FlexPWM, ADC, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0 enabled, 125 °C ambient. I/O supply current excluded.
3. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0, 105 °C ambient. I/O supply current excluded.
4. Halt mode configurations: Code fetched from SRAM, code flash memory and data flash memory in low power mode, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.
5. STOP “P” mode Device Under Test (DUT) configuration: Code fetched from SRAM, code flash memory and data flash memory off, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.
TADC
T Oscillator V
V
DD_LV_CORx
forced at 1.3 V
DD_HV_FL
V
DD_HV_FL
V
DD_HV_ADC0
f
=16MHz
ADC
DD_HV_OSC
externally
at 5.0 V 8 10
at 5.0 V 15 19
at 5.0 V
at 5.0 V 8 MHz 2.6 3.2
40 MHz 38 46
64 MHz 45 54
—1.510
—110
ADC_0 3 4
Unit
mA

3.10.3 DC electrical characteristics (3.3 V)

Ta bl e 2 1
NVUSRO[PAD3V5V] = 1); see
Table 21. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)
Symbol C Parameter Conditions
V
IL
V
IH
V
HYS
V
OL_S
V
OH_S
V
OL_M
D
Low level input voltage
P—0.35V
P
High level input voltage
D—V
T Schmitt trigger hysteresis 0.1 V
P Slow, low level output voltage IOL= 1.5 mA 0.5 V
P Slow, high level output voltage IOH= 1.5 mA V
P Medium, low level output voltage IOL=2mA 0.5 V
gives the DC electrical characteristics at 3.3 V (3.0 V < V
Figure 14
Doc ID 16100 Rev 5 61/103
.
Min Max
0.4
—0.65V
DD_HV_IOx
(2)
DD_HV_IOx
DD_HV_IOx
0.8 V
DD_HV_IOx
(1)
Val ue
DD_HV_IOx
< 3.6 V,
Unit
—V
(2)
V
V
DD_HV_IOx
—V
+0.4
—V
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 21. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)
Symbol C Parameter Conditions
Min Max
V
OH_M
V
OL_F
V
OH_F
I
PU
I
PD
I
IL
I
IL
C
IN
1. These specifications are design targets and subject to change per device characterization.
2. “SR” parameter values must not exceed the absolute maximum ratings shown in
Medium, high level output
P
voltage
= 2mA V
I
OH
DD_HV_IOx
0.8 V
P Fast, low level output voltage IOL=11mA 0.5 V
P Fast, high level output voltage IOH= 11 mA V
V
P Equivalent pull-up current
P Equivalent pull-down current
Input leakage current (all
P
bidirectional ports)
Input leakage current (all ADC
P
input-only ports)
IN=VIL
VIN=V
V
IN=VIL
V
IN=VIH
= 40 to
T
A
125 °C
= 40 to
T
A
125 °C
IH
DD_HV_IOx
0.8 V
130 10
10
—130
—1µA
—0.5µA
D Input capacitance 10 pF
Table 9
.
(1)
(continued)
Val ue
Unit
µA
µA
Table 22. Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)
(1)
Val ue
Symbol C Parameter Conditions
Typ M ax
RUN—Maximum mode
(2)
40 MHz 44 55
64 MHz 52 65
T
I
DD_LV_CORx
P
I
DD_ADC
I
DD_OSC
1. All values to be confirmed after characterization/data collection.
2. Maximum mode: FlexPWM, ADC, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0 enabled, 125 °C ambient. I/O supply current excluded.
3. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0, 105 °C ambient. I/O supply current excluded.
4. Halt mode configurations: Code fetched from SRAM, code flash memory and data flash memory in low power mode, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.
5. STOP “P” mode Device Under Test (DUT) configuration: Code fetched from SRAM, code flash memory and data flash memory off, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.
TADC
T Oscillator V
RUN—Typical mode
HALT mode
STOP mode
Supply current
(4)
(5)
(3)
V
DD_LV_CORx
forced at 1.3 V
V
DD_HV_ADC0
f
=16MHz
ADC
DD_HV_OSC
externally
at 3.3 V
at 3.3 V 8 MHz 2.6 3.2
40 MHz 38 46
64 MHz 45 54
—1.510
—110
ADC_0 3 4
Unit
mA
62/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics

3.10.4 Input DC electrical characteristics definition

Figure 14
shows the DC electrical characteristics behavior as function of time.
Figure 14. Input DC electrical characteristics definition
V
IN
V
DD
V
IH
V
IL
(GPDI register of SIUL)
PDIx = ‘1’
PDIx = ‘0’

3.10.5 I/O pad current specification

V
HYS
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V
Table 23. I/O supply segment
DD/VSS
Package
12345
LQFP100 pin15–pin26 pin27–pin46 pin51–pin61 pin64–pin86 pin89–pin10
LQFP64 pin8–pin17 pin18–pin30 pin33–pin38 pin41–pin54 pin57–pin5
Table 24. I/O consumption
Symbol C Parameter Conditions
Dynamic I/O current
C
I
SWTSLW
(2)
C
D
for SLOW configuration
supply pair as described in
Supply segment
V
DD
C
L
= 25 pF
PAD3V5V = 0
V
DD
PAD3V5V = 1
Ta b le 2 3
(1)
.
= 5.0 V ± 10%,
= 3.3 V ± 10%,
Val ue
Min Typ Max
——20
——16
Unit
mA
Doc ID 16100 Rev 5 63/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 24. I/O consumption (continued)
Symbol C Parameter Conditions
Dynamic I/O current
C
I
SWTMED
(2)
C
D
for MEDIUM configuration
CL = 25 pF
(1)
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
= 3.3 V ± 10%,
V
DD
PAD3V5V = 1
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
= 3.3 V ± 10%,
V
DD
I
SWTFST
(2)
Dynamic I/O current
C
D
for FAST
C
configuration
C
L
= 25 pF
PAD3V5V = 1
CL = 25 pF, 2 MHz
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
I
RMSSLW
Root medium
C
square I/O current
D
C
for SLOW configuration
C
= 25 pF, 4 MHz 3.2
L
C
= 100 pF, 2 MHz 6.6
L
CL = 25 pF, 2 MHz
C
= 25 pF, 4 MHz 2.3
L
C
= 100 pF, 2 MHz 4.7
L
CL = 25 pF, 13 MHz
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
I
RMSMED
Root medium
C
square I/O current
D
C
for MEDIUM configuration
C
= 25 pF, 40 MHz 13.4
L
C
= 100 pF, 13 MHz 18.3
L
CL = 25 pF, 13 MHz
C
= 25 pF, 40 MHz 8.5
L
C
= 100 pF, 13 MHz 11
L
CL = 25 pF, 40 MHz
V
= 5.0 V ± 10%,
C
= 25 pF, 64 MHz 33
Root medium
C
I
RMSFST
square I/O current
D
C
for FAST configuration
Sum of all the static
I
AVGSEG
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified.
2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
S
D
I/O current within a
R
supply segment
L
C
= 100 pF, 40 MHz 56
L
= 25 pF, 40 MHz
C
L
C
= 25 pF, 64 MHz 20
L
C
= 100 pF, 40 MHz 35
L
= 5.0 V ± 10%, PAD3V5V = 0 70
V
DD
= 3.3 V ± 10%, PAD3V5V = 1 65
V
DD
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
Val ue
Unit
Min Typ Max
——29
mA
——17
——110
mA
——50
——2.3
mA
——1.6
——6.6
mA
——5
——22
mA
——14
mA

3.11 Main oscillator electrical characteristics

The SPC560P34/SPC560P40 provides an oscillator/resonator driver.
64/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Table 25. Main oscillator output electrical characteristics (5.0 V,
NVUSRO[PAD3V5V] = 0)
Value
Symbol C Parameter Conditions
Min Max
Unit
f
V
t
OSCSU
SR — Oscillator frequency 4 40 MHz
OSC
g
— P Transconductance 6.5 25 mA/V
m
— T Oscillation amplitude on XTAL pin 1 V
OSC
— T Start-up time
T
(1),(2)
8—ms
4MHz 5 30
T8MHz526
CLCC
T12MHz523
XTAL load capacitance
(3)
T16MHz519
T20MHz516
T40MHz58
1. The start-up time is dependent upon crystal characteristics, board leakage, etc. High ESR and excessive capacitive loads can cause long start-up time.
2. Value captured when amplitude reaches 90% of XTAL.
3. This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for this oscillator, load capacitors should not exceed these limits.
Table 26. Main oscillator output electrical characteristics (3.3 V,
NVUSRO[PAD3V5V] = 1)
Val ue
Symbol C Parameter Conditions
Min Max
Unit
pf
f
V
t
OSCSU
SR — Oscillator frequency 4 40 MHz
OSC
— P Transconductance 4 20 mA/V
g
m
— T Oscillation amplitude on XTAL pin 1 V
OSC
— T Start-up time
T
(1),(2)
8—ms
4MHz 5 30
T8MHz526
C
T12MHz523
CC
L
XTAL load capacitance
T16MHz519
(3)
T20MHz516
T40MHz58
1. The start-up time is dependent upon crystal characteristics, board leakage, etc. High ESR and excessive capacitive loads can cause long start-up time.
2. Value captured when amplitude reaches 90% of XTAL.
3. This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for this oscillator, load capacitors should not exceed these limits.
Doc ID 16100 Rev 5 65/103
pf
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

Table 27. Input clock characteristics

Value
Symbol Parameter
Min Typ Max
Unit
f
OSC
f
t
rCLK
t
SR Oscillator frequency 4 40 MHz
SR Frequency in bypass 64 MHz
CLK
SR Rise/fall time in bypass 1 ns
SR Duty cycle 47.5 50 52.5 %
DC

3.12 FMPLL electrical characteristics

Table 28. FMPLL electrical characteristics

Symbol C Parameter Conditions
f
ref_crystal
f
ref_ext
f
PLLIN
f
FMPLLOUT
f
FREE
t
CYC
f
LORL
f
LORH
f
SCM
C
JITTER
t
lpll
t
dc
f
LCK
f
UL
f
CS
f
DS
f
MOD
1. V
DD_LV_CORx
2. Considering operation with PLL not bypassed.
3. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode.
(1)
Val ue
Unit
Min Max
D PLL reference frequency range
Phase detector input frequency range
D
(after pre-divider)
(2)
Crystal reference 4 40 MHz
—416MHz
D Clock frequency range in normal mode 16 64 MHz
P Free-running frequency
D System clock period 1 / f
D
Loss of reference frequency window
Measured using clock division—typically /16
Lower limit 1.6 3.7
(3)
20 150 MHz
SYS
ns
MHz
D Upper limit 24 56
D Self-clocked mode frequency
Short-term jitter
CLKOUT period
T
jitter
(6),(7),(8),(9)
Long-term jitter (average over 2 ms interval)
DPLL lock time
(11), (12)
(4),(5)
(10)
—20150MHz
f
maximum −44%f
SYS
f
=16MHz
PLLIN
(resonator), f
PLLCLK
at
—10 ns
64 MHz, 4000 cycles
——200µs
CLKOUT
D Duty cycle of reference 40 60 % D Frequency LOCK range −66%f D Frequency un-LOCK range −18 18 % f
D
Modulation depth
Center spread ±0.25
±4.0
(13)
%f
SYS
SYS
SYS
DDown spread−0.5 −8.0
D Modulation frequency
= 1.2 V ±10%; VSS = 0 V; TA = –40 to 125 °C, unless otherwise specified.
(14)
——70kHz
66/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
4. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the f window.
5. f
6. This value is determined by the crystal manufacturer and board design.
7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f
8. Proper PC board layout procedures must be followed to achieve specifications.
9. Values are obtained with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C
10. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4.
11. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this
12. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the
13. This value is true when operating at frequencies above 60 MHz, otherwise f
14. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.
self clock range is 20–150 MHz. f
VCO
mode.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V C
percentage for a given interval.
JITTER
or f
and either f
PLL, load capacitors should not exceed these limits.
synthesizer control register (SYNCR).
CS
(depending on whether center spread or down spread modulation is enabled).
DS
represents f
SCM
DD_LV_COR0
and V
after PLL output divider (ERFD) of 2 through 16 in enhanced
SYS
SS_LV_COR0
and variation in crystal oscillator frequency increase the
is 2% (above 64 MHz).
CS
SYS
JITTER
LOR
.

3.13 16 MHz RC oscillator electrical characteristics

Table 29. 16 MHz RC oscillator electrical characteristics

Symbol C Parameter Conditions
Value
Min Typ Max
Unit
f
RC
P RC oscillator frequency TA = 25 °C 16 MHz
Fast internal RC oscillator variation over
Δ
RCMVAR
P
temperature and supply with respect to f
= 25 °C in high-frequency configuration
T
A
RC
at
5— 5%

3.14 Analog-to-digital converter (ADC) electrical characteristics

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.
Doc ID 16100 Rev 5 67/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

Figure 15. ADC characteristics and error definitions

code out
1023
1022
1021
1020
1019
1018
Offset Error (EO)
1 LSB ideal = V
(2)
7
(1)
6
5
(5)
4
3
2
(4)
(3)
(1) Example of an actual transfer curve
(2) The ideal transfer cur ve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
Gain Error (E
/ 1024
DD_ADC
)
G
1
0
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
Offset Error (E
O
)
1 LSB (ideal)
V
(LSB
in(A)

3.14.1 Input impedance and ADC accuracy

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high-frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; it sources charge during the sampling phase, when the analog signal source is a high­impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be measured.
68/103 Doc ID 16100 Rev 5
ideal
)
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C
being substantially a switched capacitance, with a frequency
S
equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C obtained (R
= 1 / (fc × CS), where fc represents the conversion rate at the considered
EQ
equal to 3 pF, a resistance of 330 kΩ is
S
channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C must be designed to respect the
) and the sum of RS + RF + RL + RSW + RAD, the external circuit
S
Equation 4
:
Equation 4
RSRFRLR
V
A
Equation 4
generates a constraint for external network design, in particular on resistive path.
Internal switch resistances (R
+++ +
-------------------------------------------------------------------------- -
and RAD) can be neglected with respect to external
SW
R
EQ
SWRAD
<
1
-- -LSB 2
resistances.
Figure 16. Input equivalent circuit
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
V
DD
Source Filter Current Limiter
R
S
V
A
RS: Source impedance R
: Filter resistance
F
: Filter capacitance
C
F
: Current limiter resistance
R
L
R
: Channel selection switch impedance
SW1
: Sampling switch impedance
R
AD
: Pin capacitance (two contributions, C
C
P
: Sampling capacitance
C
S
R
F
C
F
and CP2)
P1
Channel
Selection
R
L
C
P1
R
SW1
Sampling
R
AD
C
P2
C
S
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C equivalent circuit reported in
, CP1 and C
F
are initially charged at the source voltage VA (refer to the
P2
Figure 16
): A charge sharing phenomenon is installed when
the sampling phase is started (A/D switch closed).
Doc ID 16100 Rev 5 69/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Figure 17. Transient behavior during sampling phase
V
CS
V
A
V
A2
V
A1
Voltage Transient on C
1
2
S
t
s
ΔV < 0.5 LSB
τ1 < (RSW + RAD) CS << t
τ2 = RL (CS + CP1 + CP2)
t
s
In particular two different transient periods can be distinguished:
A first and quick charge transfer from the internal capacitance C
sampling capacitance C
occurs (CS is supposed initially completely discharged):
S
and CP2 to the
P1
considering a worst case (since the time constant in reality would be faster) in which C
is reported in parallel to C
P2
C
are in series, and the time constant is
S
(call CP = CP1 + CP2), the two capacitances CP and
P1
Equation 5
CPC
τ
R
1
+()=
SWRAD
--------------------- -
S
CPCS+
Equation 5
can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t much longer than the internal time constant:
Equation 6
The charge of C the voltage V
A1
τ
1RSWRAD
and CP2 is redistributed also on CS, determining a new value of
P1
on the capacitance according to
+()< C
Equation 7
V
A1CSCP1CP2
A second charge transfer involves also C
capacitance) through the resistance R and C
were in parallel to CP1 (since the time constant in reality would be faster), the
S
++() V
: again considering the worst case in which CP2
L
time constant is:
is always
s
t
«
s
S
Equation 7
C
A
(that is typically bigger than the on-chip
F
+()=
P1CP2
:
70/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Equation 8
τ
< C
2RL
++()
SCP1CP2
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t constraints on R
sizing is obtained:
L
s
, a
Equation 9
10 τ
10 R
2
Of course, R combination with R
shall be sized also according to the current limitation constraints, in
L
(source impedance) and RF (filter resistance). Being CF
S
definitively bigger than C
LCSCP1CP2
, CP2 and CS, then the final voltage V
P1
the charge transfer transient) will be much higher than V respected (charge balance assuming now C
++()= t
already charged at VA1):
S
<
s
.
Equation 10
A1
(at the end of
A2
must be
Equation 10
V
A2CSCP1CP2CF
+++() V
The two transients above are not influenced by the voltage source that, due to the presence of the R C
with respect to the ideal source VA; the time constant RFCF of the filter is very high with
S
respect to the sampling time (t
filter, is not able to provide the extra charge to compensate the voltage drop on
FCF
). The filter is typically designed to act as anti-aliasing.
s
Figure 18. Spectral representation of input signal
Analog Source Bandwidth (VA)
Noise
f
0
Anti-Aliasing Filter (fF = RC Filter pole)
f
F
f
f
t
fF = f0
2 f0 f
Sampled Signal Spectrum (fC = conversion Rate)
V
+CP1CP2+C
ACF
2 RFC
c
(Conversion Rate vs. Filter Pole)
F
(Anti-aliasing Filtering Condition)
(Nyquist)
C
f
0
A1
+()=
S
f
C
f
Calling f the anti-aliasing filter, f least 2f the conversion period (T t
, which is just a portion of it, even when fixed channel continuous conversion mode is
s
the bandwidth of the source signal (and as a consequence the cut-off frequency of
0
; it means that the constant time of the filter is greater than or at least equal to twice
0
), according to the Nyquist theorem the conversion rate fC must be at
F
). Again the conversion period tc is longer than the sampling time
C
selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R
is definitively much higher than the sampling time ts, so the
FCF
Doc ID 16100 Rev 5 71/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C above, it is simple to derive
Equation 11
between the ideal and real sampled voltage on CS:
; from the two charge balance equations
S
Equation 11
C
+C
V
A
----------- ­V
A2
P1CP2
------------------------------------------------------- -= C
+CFC
P1CP2
+
F
++
S
From this formula, in the worst case (when V
is maximum, that is for instance 5 V),
A
assuming to accept a maximum error of half a count, a constraint is evident on C
Equation 12
CF2048 C
>

3.14.2 ADC conversion characteristics

Table 30. ADC conversion characteristics
Symbol C Parameter Conditions
f
CK
f
s
t
s
t
c
ADC clock frequency (depends on
S
ADC configuration)
R
(The duty cycle depends on ADC
(2)
frequency)
clock
S
— Sampling frequency 1.53 MHz
R
f
= 20 MHz, INPSAMP = 3 125 ns
— D Sampling time
(4)
— P Conversion time
(5)
ADC
f
= 9 MHz, INPSAMP = 255 — 28.2 µs
ADC
f
= 20 MHz
ADC
value:
F
S
(1)
—3
(6)
, INPCMP = 1
Val ue
Min Typ Max
(3)
—60MHz
0.65 ——µs
0
Unit
ADC power-up delay (time needed
t
ADC_PU
C
C
C
R
SW1
R
S
for ADC to settle exiting from
R
software power down; PWDN bit = 0)
(7)
— D ADC input sampling capacitance 2.5 pF
S
(7)
— D ADC input pin capacitance 1 3 pF
P1
(7)
— D ADC input pin capacitance 2 1 pF
P2
V
(7)
— D Internal resistance of analog source
(7)
— D Internal resistance of analog source 2 kΩ
AD
DD_HV_ADC0
V
DD_HV_ADC0
72/103 Doc ID 16100 Rev 5
——1.5µs
= 5 V ± 10% 0.6 kΩ = 3.3 V ± 10% 3 kΩ
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Table 30. ADC conversion characteristics (continued)
Val ue
Symbol C Parameter Conditions
(1)
Min Typ Max
Current injection on one ADC
I
— T Input current injection
INJ
input, different from the converted one. Remains
-5 5 mA
within TUE specification
INL
DNL
TUE
TUE
1. VDD = 3.3 V to 3.6 V / 4.5 V to 5.5 V, TA = 40 °C to T
2. AD_clk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.
3. When configured to allow 60 MHz ADC, the minimum ADC clock speed is 9 MHz, below which the precision is lost.
4. During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal
5. This parameter includes the sampling time t
6. 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC.
7. See
C
P Integral non-linearity No overload −1.5 1.5 LSB
C
C
P Differential non-linearity No overload −1.0 1.0 LSB
C
C
E
O
E
G
V
SS_HV_ADC0
resistance of the analog source must allow the capacitance to reach its final voltage level within t sampling time ts, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock
depend on programming.
t
s
T Offset error ±1 LSB
C
C
T Gain error ±1 LSB
C
C
Total unadjusted error without
C
C C
Figure 16
P
current injection
Total unadjusted error with current
T
injection
to V
DD_HV_ADC0
.
.
.
s
, unless otherwise specified and analog input voltage from
A MAX
—-2.52.5LSB
3— 3LSB
. After the end of the
s
Unit

3.15 Flash memory electrical characteristics

3.15.1 Program/Erase characteristics

Table 31. Program and erase specifications
Symbol C Parameter
T
wprogram
T
dwprogram
T
BKPRG
P Word Program Time for data flash memory
(4)
P Double Word Program Time for code flash memory
P Bank Program (256 KB)
P Bank Program (64 KB)
4(5)
(4)(5)
Doc ID 16100 Rev 5 73/103
Min Typ
—3070500µs
(4)
—2250500µs
0.73 0.83 17.5 s
—0.491.24.1s
Val ue
(1)
Initial
Max
(2)
Max
(3)
Unit
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 31. Program and erase specifications (continued)
Val ue
Symbol C Parameter
Min Typ
(1)
Initial
Max
(2)
Max
(3)
Unit
16 KB Block Pre-program and Erase Time for code flash memory
T
16kpperase
P
16 KB Block Pre-program and Erase Time for data flash memory
T
32kpperase
T
128kpperase
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
5. Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see “Initial Max” column).
Table 32. Flash memory module life
P 32 KB Block Pre-program and Erase Time 400 600 5000 ms
P 128 KB Block Pre-program and Erase Time 800 1300 7500 ms
300 500 5000
700 800 5000
Val ue
Symbol C Parameter Conditions
Unit
Min Typ
Number of program/erase cycles per
P/E C
block for 16 KB blocks over the operating temperature range (T
100000 cycles
)
J
Number of program/erase cycles per
P/E C
block for 32 KB blocks over the operating temperature range (T
10000 100000 cycles
)
J
Number of program/erase cycles per
P/E C
block for 128 KB blocks over the operating temperature range (T
1000 100000 cycles
)
J
Blocks with 0–1000 P/E cycles 20 years
Retention C
Minimum data retention at 85 °C average ambient temperature
(1)
Blocks with 10000 P/E cycles 10 years
Blocks with 100000 P/E cycles 5 years
1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.
ms
Table 33. Flash memory read access timing
Symbol C Parameter Conditions
f
max
f
max
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C, unless otherwise specified.
Maximum working frequency for code flash memory at given
C
number of wait states in worst conditions
Maximum working frequency for data flash memory at given
C
number of wait states in worst conditions
2 wait states 66
0 wait states 18
8 wait states 66 MHz
74/103 Doc ID 16100 Rev 5
(1)
Max value Unit
MHz
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics

3.15.2 Flash memory power supply DC characteristics

Table 34.
Table 34. Flash memory power supply DC electrical characteristics
shows the power supply DC characteristics on external supply.
Symbol C Parameter Conditions
C
I
FLPW
I
FPWD
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Sum of the current consumption on V
D
C
and V
DD_LV_CORx
C
Sum of the current consumption on V
D
C
and V
DD_LV_CORx
during low-power mode
during power-down mode
DD_HV_IOx
DD_HV_IOx
Code flash memory 900 µA
Code flash memory 150
Data flash memory 150

3.15.3 Start-up/Switch-off timings

Table 35. Start-up time/Switch-off time
Symbol C Parameter Conditions
T
FLARSTEXIT
T
C
Delay for Flash module to exit reset mode
C
T Data flash memory 125
Code flash memory 125
(1)
Min Typ Max
(1)
Min Typ Max
Value
Unit
µA
Value
Unit
C
T
FLALPEXIT
T
FLAPDEXIT
T
FLALPENTRY
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Delay for Flash module to exit low-power
D
C
mode
T
C
Delay for Flash module to exit power-down
C
mode
T Data flash memory 30
C
Delay for Flash module to enter low-power
D
C
mode
Code flash memory 0.5
Code flash memory 30
Code flash memory 0.5
µs
Doc ID 16100 Rev 5 75/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

3.16 AC specifications

3.16.1 Pad AC specifications

Table 36. Output pin transition times
Symbol C Parameter Conditions
D
TC
DC
t
CC
tr
Output transition time output pin SLOW configuration
DC
(2)
TC
DC
D
TC
DC
t
CC
tr
Output transition time output pin MEDIUM configuration
DC
(2)
TC
DC
(2)
t
CC D
tr
t
SYM
CC T
(3)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 °C to T
includes device and package capacitances (C
2. C
L
3. Transition timing of both positive and negative slopes will differ maximum 50%.
Output transition time output pin FAST configuration
Symmetric transition time, same drive strength between N and P transistor
A MAX
PKG
= 25 pF
C
L
= 50 pF 100
L
= 100 pF 125
L
= 25 pF
L
= 50 pF 50
L
= 100 pF 75
L
= 25 pF
C
L
= 50 pF 20
L
= 100 pF 40
L
= 25 pF
L
= 50 pF 25
L
= 100 pF 40
L
= 25 pF
C
L
C
= 50 pF 6
L
C
= 100 pF 12
L
C
= 25 pF
L
C
= 50 pF 7
L
C
= 100 pF 12
L
V
= 5.0 V ± 10%, PAD3V5V = 0 4
DD
V
= 3.3 V ± 10%, PAD3V5V = 1 5
DD
, unless otherwise specified.
< 5 pF).
V
DD
PAD3V5V = 0
V
DD
PAD3V5V = 1
V
DD
PAD3V5V = 0 SIUL.PCRx.SRC = 1
V
DD
PAD3V5V = 1 SIUL.PCRx.SRC = 1
V
DD
PAD3V5V = 0 SIUL.PCRx.SRC = 1
V
DD
PAD3V5V = 1 SIUL.PCRx.SRC = 1
(1)
= 5.0 V ± 10%,
= 3.3 V ± 10%,
= 5.0 V ± 10%,
= 3.3 V ± 10%,
= 5.0 V ± 10%,
= 3.3 V ± 10%,
Val ue
Unit
Min Typ Max
——50
ns
——40
——10
ns
——12
—— 4
ns
—— 4
ns
76/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Figure 19. Pad output delay
Pad Data Input
Rising Edge Output Delay
Pad Output

3.17 AC timing characteristics

3.17.1 RESET pin characteristics

The SPC560P34/SPC560P40 implements a dedicated bidirectional RESET pin.
Figure 20. Start-up reset requirements
Falling Edge Output Delay
V
DD_HV_IOx
V
OH
V
OL
/2
V
DDMIN
V
RESET
V
V
DD
IH
V
IL
device reset forced by V
t
POR
RESET
device start-up phase
Doc ID 16100 Rev 5 77/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Figure 21. Noise filtering on reset signal
V
RESET
hw_rst
V
DD
V
IH
V
IL
filtered by hysteresis
filtered by lowpass filter
W
FRST
filtered by lowpass filter
W
FRST
unknown reset state
W
NFRST
device under hardware reset
‘1’
‘0’
Table 37. RESET electrical characteristics
Symbol C Parameter Conditions
Input high level
S
CMOS
P
R
(Schmitt Trigger)
Input low level CMOS
S
P
R
(Schmitt Trigger)
Input hysteresis
C
CMOS
C
C
(Schmitt Trigger)
Push Pull, I
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
= 2 mA,
OL
V
V
V
HYS
IH
IL
(recommended)
Push Pull, I
= 5.0 V ± 10%, PAD3V5V =
V
DD
(3)
1
OL
C
P Output low level
C
V
Push Pull, I
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
= 1 mA,
OL
= 1 mA,
OL
(recommended)
(2)
(1)
Value
Min Typ Max
—0.65V
DD
—VDD+0.4 V
0.4 0.35V
—0.1V
DD
——V
——0.1V
——0.1V
——0.5
DD
DD
DD
Unit
V
V
78/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Table 37. RESET electrical characteristics (continued)
(2)
Value
Unit
——10
——20
——40
ns
——12
——25
——40
Symbol C Parameter Conditions
= 25 pF,
C
L
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
CL = 50 pF,
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
= 100 pF,
Output transition time C C
output pin
D
MEDIUM
t
tr
(4)
configuration
C
L
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
= 25 pF,
C
L
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
CL = 50 pF,
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
= 100 pF,
C
L
V
= 3.3 V ± 10%, PAD3V5V = 1
DD
W
FRST
RESET
S
P
R
pulse
input filtered
——40ns
(1)
Min Typ Max
W
NFRS
T
RESET S
filtered
P
R
pulse
input not
500 ns
Maximum delay
before internal reset
t
POR
C
D
is released after all C
V
DD_HV
reach
Monotonic V
supply ramp 1 ms
DD_HV
nominal supply
V
= 3.3 V ± 10%, PAD3V5V = 1 10 150
DD
Weak pull-up current
|I
WPU
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of device
4. C
5. The configuration PAD3V5 = 1 when V
C
|
P
C
absolute value
reference manual).
includes device and package capacitance (C
L
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
= 5.0 V ± 10%, PAD3V5V = 0 10 150
V
DD
V
= 5.0 V ± 10%, PAD3V5V =
DD
(5)
1
<5pF).
PKG
= 5 V is only transient configuration during power-up. All pads but RESET and
DD
10 250
µA
Doc ID 16100 Rev 5 79/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

3.17.2 IEEE 1149.1 interface timing

Table 38. JTAG pin AC electrical characteristics
No. Symbol C Parameter Conditions
1t
JCYC
2t
3t
4
5
6t
7t
8t
9t
10 t
11 t
12 t
13 t
JDC
TCKRISE
t
TMSS,
t
TDIS
t
TMSH,
t
TDIH
TDOV
TDOI
TDOHZ
BSDV
BSDVZ
BSDHZ
BSDST
BSDHT
CC D TCK cycle time 100 ns
CC D TCK clock pulse width (measured at V
DD_HV_IOx
/2) 40 60 ns
CC D TCK rise and fall times (40 %–70 %) 3 ns
CC D TMS, TDI data setup time 5 ns
CC D TMS, TDI data hold time 25 ns
CC D TCK low to TDO data valid 40 ns
CC D TCK low to TDO data invalid 0 ns
CC D TCK low to TDO high impedance 40 ns
CC D TCK falling edge to output valid 50 ns
CC D
TCK falling edge to output valid out of high impedance
50 ns
CC D TCK falling edge to output high impedance 50 ns
CC D Boundary scan input valid to TCK rising edge 50 ns
CC D TCK rising edge to boundary scan input invalid 50 ns
Val ue
Unit
Min Max
Figure 22. JTAG test clock input timing
TCK
3
1
2
2
3
80/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Figure 23. JTAG test access port timing
TCK
4
5
TMS, TDI
6
TDO
7
8
Doc ID 16100 Rev 5 81/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Figure 24. JTAG boundary scan timing
TCK
Output Signals
Output Signals
Input Signals
11
12
13
14
15

3.17.3 Nexus timing

Table 39. Nexus debug port timing
No. Symbol C Parameter
1t
TCYC
t
NTDIS
2
t
NTMSS
t
NTDIH
3
t
NTMSH
4t
TDOV
5t
TDOI
1. All Nexus timing relative to MCKO is measured from 50 % of MCKO and 50 % of the respective signal.
2. Lower frequency is required to be fully compliant to standard.
CC D TCK cycle time 4
CC D TDI data setup time 5 ns
CC D TMS data setup time 5 ns
CC D TDI data hold time 25 ns
CC D TMS data hold time 25 ns
CC D TCK low to TDO data valid 10 20 ns
CC D TCK low to TDO data invalid ns
82/103 Doc ID 16100 Rev 5
(1)
Val ue
Min Typ Max
(2)
——t
Unit
CYC
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Figure 25. Nexus output timing
1
MCKO
2
3
4
MDO MSEO EVTO
Output Data Valid
Figure 26. Nexus event trigger and test clock timing
TCK
EVTI EVTO
5
Doc ID 16100 Rev 5 83/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Figure 27. Nexus TDI, TMS, TDO timing
TCK
6
7
TMS, TDI
9
8
TDO

3.17.4 External interrupt timing (IRQ pin)

Table 40. External interrupt timing
No. Symbol C Parameter Conditions
1t
IPWL
2t
IPWH
3t
ICYC
1. IRQ timing specified at f
2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
3. N = ISR time to clear the flag.
CC D IRQ pulse width low 4 t
CC D IRQ pulse width high 4 t
CC D IRQ edge to edge time
= 64 MHz and V
SYS
(1)
DD_HV_IOx
(2)
= 3.0 V to 5.5 V, TA=TL to TH, and CL= 200 pF with SRC = 0b00.
—4+N
Val ue
Min Max
(3)
—t
Unit
CYC
CYC
CYC
84/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Figure 28. External interrupt timing
IRQ
1
2
3

3.17.5 DSPI timing

Table 41. DSPI timing
(1)
No. Symbol C Parameter Conditions
Master (MTFE = 0)
1t
2t
3t
4t
5t
6t
7t
8t
CC D DSPI cycle time
SCK
CC D CS to SCK delay 16 ns
CSC
CC D After SCK delay 26 ns
ASC
CC D SCK duty cycle 0.4 * t
SDC
CC D Slave access time SS active to SOUT valid 30 ns
A
CC D
DIS
CC D PCSx to PCSS time 13 ns
PCSC
CC D PCSS to PCSx time 13 ns
PASC
Slave SOUT disable time
Slave (MTFE = 0) 60
inactive to SOUT high
SS impedance or invalid
Master (MTFE = 0)
9t
SUI
CC D
Data setup time for inputs
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1) 35
Value
Unit
Min Max
60
0.6 * t
SCK
SCK
16 ns
35
4—
35
ns
ns
ns
10 t
CC D Data hold time for inputs
HI
Master (MTFE = 0) 5 —
Slave 4
ns
Master (MTFE = 1, CPHA = 0) 11 — Master (MTFE = 1, CPHA = 1) −5—
Doc ID 16100 Rev 5 85/103
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 41. DSPI timing
(1)
(continued)
No. Symbol C Parameter Conditions
Master (MTFE = 0) 12
11 t
SUO
CC D
Data valid (after SCK edge)
Slave 36
Master (MTFE = 1, CPHA = 0) 12
Master (MTFE = 1, CPHA = 1) 12 Master (MTFE = 0) −2—
12 t
HO
CC D
Data hold time for outputs
Slave 6
Master (MTFE = 1, CPHA = 0) 6 — Master (MTFE = 1, CPHA = 1) −2—
1. All timing are provided with 50 pF capacitance on output, 1 ns transition time on input signal.
Figure 29. DSPI classic SPI timing – Master, CPHA = 0
2
PCSx
Value
Unit
Min Max
ns
ns
3
4
SCK Output (CPOL=0)
4
SCK Output (CPOL=1)
10
9
SIN
First Data
Data
12
SOUT
First Data Data Last Data
Note: Numbers shown reference Tab l e 4 1 .
1
Last Data
11
86/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Figure 30. DSPI classic SPI timing – Master, CPHA = 1
Note
: Numbers shown reference
Ta bl e 4 1
.
Figure 31. DSPI classic SPI timing – Slave, CPHA = 0
2
SS
10
4
4
12
Data
Data
Last Data
SCK Input (CPOL=0)
SCK Input (CPOL=1)
SOUT
SIN
5
9
First Data
11
3
1
6
Note
: Numbers shown reference
Doc ID 16100 Rev 5 87/103
Ta b l e 4 1
.
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Figure 32. DSPI classic SPI timing – Slave, CPHA = 1
SS
SCK Input (CPOL=0)
SCK Input (CPOL=1)
11
5
12
6
SOUT
SIN
Note: Numbers shown reference Ta b l e 4 1 .
First Data
9
First Data
10
Data
Data
Last Data
Last Data
Figure 33. DSPI modified transfer format timing – Master, CPHA = 0
3
PCSx
4
2
SCK Output (CPOL=0)
SCK Output (CPOL=1)
1
4
9
SIN
SOUT
Note: Numbers shown reference Tab l e 4 1 .
88/103 Doc ID 16100 Rev 5
First Data
12
First Data
Data
Data
10
Last Data
11
Last Data
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics
Figure 34. DSPI modified transfer format timing – Master, CPHA = 1
PCSx
SCK Output (CPOL=0)
SCK Output (CPOL=1)
9
10
SIN
SOUT
Note: Numbers shown reference Tab l e 4 1 .
First Data
First Data
Data
12
Data
Last Data
11
Last Data
Figure 35. DSPI modified transfer format timing – Slave, CPHA = 0
3
1
4
12
SS
SCK Input (CPOL=0)
SCK Input (CPOL=1)
2
4
5
11
6
SOUT
SIN
Note: Numbers shown reference Table 41.
First Data
9
First Data
Doc ID 16100 Rev 5 89/103
Data
Data
Last Data
10
Last Data
Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1
SS
SCK Input (CPOL=0)
SCK Input (CPOL=1)
11
5
12
6
SOUT
SIN
Note: Numbers shown reference Tab l e 4 1 .
First Data
9
First Data
Figure 37. DSPI PCS Strobe (PCSS
7
PCSS
PCSx
Note: Numbers shown reference Tab l e 4 1 .
10
) timing
Data
Data
Last Data
Last Data
8
90/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package characteristics

4 Package characteristics

4.1 ECOPACK
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
®
www.st.com
.
Doc ID 16100 Rev 5 91/103
Package characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

4.2 Package mechanical data

4.2.1 LQFP100 mechanical outline drawing

Figure 38. LQFP100 package mechanical drawing
0.25 mm
0.10 inch
GAGE PLANE
k
D
D1
D3
75
51
L
L1
C
76
b
100 26
Pin 1 identification
50
E3 E1 E
125
e
SEATING PLANE
C
Cccc
A1
A2
A
1L_ME
92/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package characteristics
Table 42. LQFP100 package mechanical data
Dimensions
Symbol
mm inches
(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
(2)
ccc
1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.
2. Tolerance.
0.08 0.0031
Doc ID 16100 Rev 5 93/103
Package characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

4.2.2 LQFP64 mechanical outline drawing

Figure 39. LQFP64 package mechanical drawing
D
C
ccc
A
A2
48
D1
D3
33
16
17
32
E3
E1 E
L1
A1 K
c
5W_ME
L
49
b
64
Pin 1 identification
Table 43. LQFP64 package mechanical data
1
Dimensions
Symbol
mm inches
(1)
Min Typ Max Min Typ Max
A——1.6——0.063
A1 0.05 0.15 0.002 0.0059
A2 1.35 1.4 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.2 0.0035 0.0079
D 11.8 12 12.2 0.4646 0.4724 0.4803
D1 9.8 10 10.2 0.3858 0.3937 0.4016
D3 7.5 0.2953
E 11.8 12 12.2 0.4646 0.4724 0.4803
E1 9.8 10 10.2 0.3858 0.3937 0.4016
E3 7.5 0.2953
e 0.5 0.0197
L 0.45 0.6 0.75 0.0177 0.0236 0.0295
L1 1 0.0394
94/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package characteristics
Table 43. LQFP64 package mechanical data (continued)
Dimensions
Symbol
mm inches
Min Typ Max Min Typ Max
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
(2)
ccc
1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.
2. Tolerance.
0.08 0.0031
(1)
Doc ID 16100 Rev 5 95/103
Ordering information SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

5 Ordering information

Figure 40. Commercial product code structure

Example code:
Product identifier
Memory Pac kingCore Family
TemperaturePackage Custom vers.
SPC56 40 Y0P CL3 E F A
Y = Tray R = Tape and Reel X = Tape and Reel 90°
A = 64 MHz, 5 V B = 64 MHz, 3.3 V C = 40 MHz, 5 V D = 40 MHz, 3.3 V
F = Full-featured A = Airbag
E = Data Flash 0 = No Data Flash
B = –40 to 105 °C C = –40 to 125 °C
L1 = LQFP64 L3 = LQFP100
34 = 192 KB 40 = 256 KB
P = SPC560Px family
0 = e200z0
SPC56 = Power Architecture in 90 nm
96/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Abbreviations

Appendix A Abbreviations

Ta bl e 4 4

Table 44. Abbreviations

lists abbreviations used in this document.
Abbreviation Meaning
CMOS Complementary metal–oxide–semiconductor
CPHA Clock phase
CPOL Clock polarity
CS Peripheral chip select
DUT Device under test
ECC Error code correction
EVTO Event out
GPIO General purpose input / output
MC Modulus counter
MCKO Message clock out
MCU Microcontroller unit
MDO Message data out
MSEO Message start/end out
MTFE Modified timing format enable
NPN Negative-positive-negative
NVUSRO Non-volatile user options register
PTF Post trimming frequency
PWM Pulse width modulation
RISC Reduced instruction set computer
SCK Serial communications clock
SOUT Serial data out
TBC To be confirmed
TBD To be defined
TCK Test clock input
TDI Test data input
TDO Test data output
TMS Test mode select
Doc ID 16100 Rev 5 97/103
Revision history SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3

Revision history

Table 45. Document revision history
Date Revision Changes
01-Sep-2009 1 Initial release.
Editorial updates Updated the following items in the “SPC560P34/SPC560P40 device comparison”
table: – The heading – The “SRAM” row – The “FlexCAN” row – The “CTU” row – The “FlexPWM” row – The “LINFlex” row – The “DSPI” row – The “Nexus” row Updated the “SPC560P34/SPC560P40 device configuration difference” table: – Editorial updates – Added the “CTU” row – Deleted the “temperature” row – Swapped the content of Airbag and Full Featured cells Added the “Wakeup unit” block in the SPC560P34/SPC560P40 block diagram Updated the “Absolute Maximum Ratings“ table Updated the “Recommended operating conditions (5.0 V)“ table
21-May-2010 2
Updated the “Recommended operating conditions (3.3 V)“ table Updated the “Thermal characteristics for 100-pin LQFP“ table: – Ψ
: changed the typical value
JT
Updated the “EMI testing specifications“ table: replaced all values in “Level (Max)“ column with TBD
Updated the “Electrical characteristics“ section: – Added the “Introduction” section – Added the “Parameter classification“ section – Added the “NVUSRO register“ section – Added the “Power supplies constraints (–0.3 V ≤ V – Added the “Independent ADC supply (–0.3 V ≤ V – Added the “Power supplies constraints (3.0 V ≤ V – Added the “Independent ADC supply (3.0 V ≤ V Updated the “Power management electrical characteristics” section Updated the “Power Up/Down sequencing” section Updated the “DC electrical characteristics“ section – Deleted the “NVUSRO register” section – Updated the “DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)“ section:
– Deleted all rows concerning RESET – Deleted “I – Added the max value for C
VPP
“ row
IN
DD_HV_IOx
DD_HV_REG
DD_HV_IOx
DD_HV_REG
6.0 V)” figure
6.0 V)“ figure
5.5 V)“ figure
5.5 V)“ figure
98/103 Doc ID 16100 Rev 5
SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Revision history
Table 45. Document revision history (continued)
Date Revision Changes
– Updated the “DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 0)“ section:
– Deleted all rows concerning RESET
21-May-2010
(continued)
23-Dec-2010 3
2
– Deleted “I
– Added the max value for C Added the “I/O pad current specification“ section Updated the Order codes table. Added “Appendix A”
“Introduction” section: – Changed title (was “Overview“) – Updated contents “SPC560P34/SPC560P40 device comparison” table: – Added sentence above table – Removed “FlexRay” row – “FlexCAN” row: removed link to footnote 2 for SPC560P34 – Updated “Safety port” row for SPC560P34 – Updated “DSPI” row for SPC560P34 “SPC560P34/SPC560P40 block diagram”: added the following blocks: MC_CGM,
MC_ME, MC_PCU, MC_RGM, CRC, and SSCM Added “SPC560P34/SPC560P40 series block summary” table “Pin muxing” section: removed information on “Symmetric pads” “Electrical characteristics” section:
– Updated “Caution” note – Demoted “NVUSRO register” section to subsection of “DC electrical characteristics”
section
– “NVUSRO register” section: deleted “NVUSRO[WATCHDOG_EN] field description“
section
Updated “EMI testing specifications” table “Low voltage monitor electrical characteristics” table: updated V “DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)” table: removed
and V
OH_SYM
“Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)” table: –I
DD_LV_CORE
–I
DD_LV_CORE
–I
DD_LV_CORE
–I
DD_FLASH
–I –I
, Maximum mode: updated typ/max values
DD_ADC
DD_OSC
: updated max value
Updated “DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)” table “Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)” table:
–I
DD_LV_CORE
–I
DD_LV_CORE
–I
DD_FLASH
–I –I
, Maximum mode: updated typ/max values
DD_ADC
DD_OSC
: updated max value
Added “I/O consumption” table Removed “I/O weight” table
“ row
VPP
IN
MLVDDOK_H
rows
, RUN—Maximum mode, 40/64 MHz: updated typ/max values , RUN—Airbag mode, 40/64 MHz: updated typ/max values , RUN—Maximum mode, “P” parameter classification: removed
: removed rows
, RUN—Maximum mode, 40/64 MHz: updated typ/max values , RUN—Airbag mode, 40/64 MHz: updated typ/max values
: removed rows
max value
VOL_SYM
,
Doc ID 16100 Rev 5 99/103
Revision history SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3
Table 45. Document revision history (continued)
Date Revision Changes
Updated “Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)”
table Updated “Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)”
table
max value
CLK
= 1.08 V to 1.32 V, VSS = V
in the table title
MCYC
”, “t
MDOV
”, “t
SSPLL
MSEOV
= 0 V,
”, and
23-Dec-2010
3
(continued)
“Input clock characteristics” table: updated f “PLLMRFM electrical specifications (V
A=TL
to TH)” table:
T – Updated supply voltage range for V – Updated f – Updated C – Updated f
max value
SCM
JITTER
max value
MOD
row
DDPLL
DDPLL
Updated “16 MHz RC oscillator electrical characteristics” table Updated “ADC conversion characteristics” table “Program and erase specifications” table:
–T –T
wprogram
BKPRG
: updated initial max and max values
, 64 KB: updated initial max and max values – added information about “erase time” for Data Flash “Flash module life” table: – P/E, 32 KB: added typ value – P/E, 128 KB: added typ value Replaced “Pad AC specifications (5.0 V, NVUSRO[PAD3V5V] = 0)” and “Pad AC
specifications (3.3 V, INVUSRO[PAD3V5V] = 1)” tables with “Output pin transition times” table
“JTAG pin AC electrical characteristics” table: –t
: updated max value
TDOV
–t
: added min value and removed max value
TDOHZ
“Nexus debug port timing” table: removed the rows “t
“t
EVTOV
Updated “External interrupt timing (IRQ pin)” table Updated “FlexCAN timing” table Updated “DSPI timing” table Updated “Ordering information” section
100/103 Doc ID 16100 Rev 5
Loading...