ST SPC560D30L3, SPC560D40L3, SPC560D30L1, SPC560D40L1 User Manual

Features
SPC560D30x SPC560D40x
32-bit MCU family built on the Power Architecture
Preliminary data
®
High-performance up to 48 MHz e200z0h CPU
– 32-bit Power Architecture
®
technology CPU
– Variable length encoding (VLE)
Memory
– Up to 256 KB Code Flash with ECC – Up to 64 (4x16) KB Data Flash with ECC – Up to 16 KB SRAM with ECC
Interrupts
– 16 priority levels – Non-maskable interrupt (NMI) – Up to 38 external interrupts incl. 18 wakeup
lines
16-channel eDMA
GPIOs: 45 (LQFP64), 79 (LQFP100)
Timer units
– 4-channel 32-bit periodic interrupt timers – 4-channel 32-bit system timer module – System watchdog timer – 32 bit real-time clock timer
16-bit counter time-triggered I/Os
– Up to 28 channels with PWM/MC/IC/OC – 5 independent counters – 27 ch. with ADC trigger capability
12-bit analog-to-digital converter (ADC) with up
to 33 channels – Up to 61 channels via external multiplexing – Individual conversion registers – Cross triggering unit (CTU)
Dedicated diagnostic module for lighting
– Advanced PWM generation – Time-triggered diagnostics – PWM-synchronized ADC measurements
LQFP100 (14 x 14 x 1.4 mm)
Communications interfaces
LQFP64 (10 x 10 x 1.4 mm)
– 1 FlexCAN interface (2.0B active) with
32 message buffers – 3 LINFlex/UART, 1 with DMA capability –2 DSPI
Clock generation
– 4 to 16 MHz fast external crystal oscillator – 16 MHz fast internal RC oscillator – 128 kHz slow internal RC oscillator – Software-controlled FMPLL – Clock monitoring unit
Exhaustive debugging capability
– Nexus1 on all packages – Nexus2+ available on emulation device
(SPC560B64B2-ENG)
On-chip CAN/UART bootstrap loader
Low power capabilities
– Several low power mode configurations – Ultra-low power standby with RTC,SRAM
and CAN monitoring – Fast wakeup schemes
Single 5 V or 3.3 V supply
Operates in ambient temperature range of
-40 to 125 °C
Table 1. Device summary
Part number
Package
LQFP100 SPC560D30L3 SPC560D40L3
LQFP64 SPC560D30L1 SPC560D40L1
128 Kbyte code
Flash
256 Kbyte code
Flash
December 2011 Doc ID 16315 Rev 5 1/82
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
1
Contents SPC560D30x, SPC560D40x
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Pad configuration during reset phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description . . . . . . . . . . . . . . . 27
4.3.3 NVUSRO[WATCHDOG_EN] field description . . . . . . . . . . . . . . . . . . . . 27
4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6.2 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7.2 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7.3 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7.4 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.8 RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Contents
4.9 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 42
4.9.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 42
4.9.2 Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . . 45
4.10 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.11 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11.2 Flash power supply DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.11.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.12 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 50
4.12.1 Designing hardened software to avoid noise problems . . . . . . . . . . . . . 50
4.12.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.12.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 51
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . 52
4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 56
4.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 57
4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.17.2 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.17.3 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.18.2 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.18.3 JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 ECOPACK
5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Appendix A Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Doc ID 16315 Rev 5 3/82
List of tables SPC560D30x, SPC560D40x
List of tables
Table 2. SPC560D30, SPC560D40 device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. SPC560D30, SPC560D40 series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Voltage supply pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 5. System pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Functional port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 7. Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 8. PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. OSCILLATOR_MARGIN field description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 10. WATCHDOG_EN field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 11. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 12. Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 13. Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 14. LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 15. I/O input DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 16. I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 17. SLOW configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 18. MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 35
Table 19. Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 20. I/O supply segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 21. I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 22. I/O weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 23. Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 24. Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 25. Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. Power consumption on VDD_BV and VDD_HV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 27. Program and erase specifications (code flash). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 28. Program and erase specifications (data flash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 29. Flash module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 30. Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 31. Flash power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 32. Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 33. EMI radiated emission measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 34. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 35. Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 36. Crystal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics. . . . . . . . . . . . . . . . 54
Table 38. FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 56
Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 57
Table 41. ADC input leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 42. ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 43. On-chip peripherals current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 44. DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 45. JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 46. LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 47. LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 48. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 49. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x List of figures
List of figures
Figure 1. SPC560D30, SPC560D40 series block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. LQFP100 pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3. LQFP64 pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4. Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 5. Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 6. Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 7. Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 8. Low voltage detector vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 9. Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 11. ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 12. Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 13. Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 14. Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 15. Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 16. DSPI classic SPI timing – master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 17. DSPI classic SPI timing – master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 18. DSPI classic SPI timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 19. DSPI classic SPI timing – slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 20. DSPI modified transfer format timing – master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 21. DSPI modified transfer format timing – master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 22. DSPI modified transfer format timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 23. DSPI modified transfer format timing – slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 24. Timing diagram – JTAG boundary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 25. LQFP100 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 26. LQFP64 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 27. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Doc ID 16315 Rev 5 5/82
Introduction SPC560D30x, SPC560D40x

1 Introduction

1.1 Document overview

This document describes the device features and highlights the important electrical and physical characteristics.

1.2 Description

These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices designed to be central to the development of the next wave of central vehicle body controller, smart junction box, front module, peripheral body, door control and seat control applications.
This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology and designed specifically for embedded applications.
The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (auxiliary processing unit), providing improved code density. It operates at speeds of up to 48 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with the user’s implementations.
The device platform has a single level of memory hierarchy and can support a wide range of on-chip static random access memory (SRAM) and internal flash memory.
Feature
(2)
(3)
(4)
Device
SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3
(1)
14 ch, 16-bit 28 ch, 16-bit 14 ch, 16-bit 28 ch, 16-bit
2ch 5ch 2ch 5ch
—9ch—9ch
7ch 7ch 7ch 7ch
Table 2. SPC560D30, SPC560D40 device comparison
CPU e200z0h
Execution speed Static – up to 48 MHz
Code flash memory 128 KB 256 KB
Data flash memory 64 KB (4 × 16 KB)
SRAM 12 KB 16 KB
eDMA 16 ch
ADC (12-bit) 16 ch 33 ch 16 ch 33 ch
CTU 16 ch
Total timer I/O eMIOS
– Type X
– Type Y
– Type G
6/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Introduction
Table 2. SPC560D30, SPC560D40 device comparison (continued)
Device
Feature
SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3
(6)
(5)
4ch 7ch 4ch 7ch
45 79 45 79
– Type H
SCI (LINFlex) 3
SPI (DSPI) 2
CAN (FlexCAN) 1
GPIO
Debug JTAG
Package LQFP64 LQFP100 LQFP64 LQFP100
1. Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions.
2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC.
3. Type Y = OPWMT + OPWMB + SAIC + SAOC.
4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC.
5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC.
6. I/O count based on multiplexing with peripherals.
Doc ID 16315 Rev 5 7/82
Block diagram SPC560D30x, SPC560D40x

2 Block diagram

Figure 1 shows a top-level block diagram of the SPC560D30, SPC560D40 device series.
Figure 1. SPC560D30, SPC560D40 series block diagram
JTAG Port
NMI
Clocks
Interrupt Request
Request
Nexus 1
Voltage
Regulator
FMPLL
RTC
SIUL
Reset Control
External Interrupt Request
IMUX
GPIO &
Pad Control
JTAG
NMI
SIUL
Interrupt requests
from peripheral
CMU
STM
33 ch.
blocks
SWT
ADC
ECSM
e200z0h
PIT
CTU
INTC
Peripheral Bridge
1 x
eMIOS
Instructions
(Master)
Data
(Master)
eDMA
(Master)
LINFlex
3 x
SRAM 16 KB
SRAM
Controller
64-bit 3 x 3 Crossbar Switch
2 x
DSPI
(Slave)
MC_PCUMC_MEMC_CGMMC_RGM
Code Flash
256 KB
Controller
(Slave)
BAM
1 x
FlexCAN
Data Flash
64 KB
Flash
(Slave)
SSCM
WKPU
Interrupt Request
I/O
Legend:
ADC Analog-to-Digital Converter BAM Boot Assist Module CMU Clock Monitor Unit CTU Cross Triggering Unit DSPI Deserial Serial Peripheral Interface ECSM Error Correction Status Module eDMA Enhanced Direct Memory Access eMIOS Enhanced Modular Input Output System Flash Flash memory FlexCAN Controller Area Network (FlexCAN) FMPLL Frequency-Modulated Phase-Locked Loop IMUX Internal Multiplexer INTC Interrupt Controller JTAG JTAG controller LINFlex Serial Communication Interface (LIN support)
. . .
. . .
MC_CGM Clock Generation Module MC_ME Mode Entry Module MC_PCU Power Control Unit MC_RGM Reset Generation Module NMI Non-Maskable Interrupt PIT Periodic Interrupt Timer RTC Real-Time Clock SIUL System Integration Unit Lite SRAM Static Random-Access Memory SSCM System Status Configuration Module STM System Timer Module SWT Software Watchdog Timer WKPU Wakeup Unit XBAR Crossbar switch
8/82 Doc ID 16315 Rev 5
. . .
. . .
SPC560D30x, SPC560D40x Block diagram
Ta bl e 3 summarizes the functions of all blocks present in the SPC560D30, SPC560D40
series of microcontrollers. Please note that the presence and number of blocks varies by device and package.
Table 3. SPC560D30, SPC560D40 series block summary
Analog-to-digital converter (ADC) Multi-channel, 12-bit analog-to digital-converter
Block Function
Boot assist module (BAM)
Clock generation module (MC_CGM)
A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Provides logic and control required for the generation of system and peripheral clocks
Clock monitor unit (CMU) Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)
Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Supports simultaneous connections between two master ports and three slave
Crossbar switch (XBAR)
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.
Deserial serial peripheral interface (DSPI)
Enhanced direct memory access (eDMA)
Enhanced modular input output system (eMIOS)
Provides a synchronous serial interface for communication with external devices
Performs complex data transfers with minimal intervention from a host processor via “n” programmable channels.
Provides the functionality to generate or measure events
Provides a myriad of miscellaneous control functions for the device including Error correction status module (ECSM)
program-visible information about configuration and revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
Flash memory Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)
Supports the standard CAN communications protocol
Frequency-modulated phase­locked loop (FMPLL)
Internal multiplexer (IMUX) SIU subblock
Generates high-speed system clocks and supports programmable frequency
modulation
Allows flexible mapping of peripheral interface on the different pins of the device
Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC)
LINFlex controller
Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
Manages a high number of LIN (Local Interconnect Network protocol)
messages efficiently with a minimum of CPU load
Provides a mechanism for controlling the device operational mode and mode
Mode entry module (MC_ME)
transition sequences in all functional states; also manages the power control
unit, reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Non-maskable interrupt (NMI)
Handles external events that must produce an immediate response, such as
power down detection
Doc ID 16315 Rev 5 9/82
Block diagram SPC560D30x, SPC560D40x
Table 3. SPC560D30, SPC560D40 series block summary (continued)
Block Function
Periodic interrupt timer (PIT) Produces periodic interrupts and triggers
Reduces the overall power consumption by disconnecting parts of the device Power control unit (MC_PCU)
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Real-time counter (RTC)
Reset generation module (MC_RGM)
Static random-access memory (SRAM)
Provides a free-running counter and interrupt generation capability that can be
used for timekeeping applications
Centralizes reset sources and manages the device reset sequence of the
device
Provides storage for program code, constants, and variables
Provides control over all the electrical pad controls and up 32 ports with 16 bits System integration unit lite (SIUL)
of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
System status and configuration module (SSCM)
System timer module (STM)
Provides system configuration and status data (such as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
Provides a set of output compare events to support AUTOSAR (Automotive
Open System Architecture) and operating system tasks
Software watchdog timer (SWT) Provides protection from runaway code
Supports up to 18 external sources that can generate interrupts or wakeup Wakeup unit (WKPU)
events, of which 1 can cause non-maskable interrupt requests or wakeup
events.
10/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package pinouts and signal descriptions

3 Package pinouts and signal descriptions

3.1 Package pinouts

The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please refer to Tab l e 6 .
Figure 2 shows the SPC560D30, SPC560D40 in the LQFP100 package.
Figure 2. LQFP100 pin configuration (top view)
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [ 6]
PA [ 5]
PC[2]
PC[3]
PE[12]
PB[3]
PC[9] PC[14] PC[15]
PA [2 ]
PE[0]
PA [1 ] PE[1] PE[8] PE[9]
PE[10]
PA [0 ]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11] PC[10]
PB[0] PB[1] PC[6]
9998979695949392919089888786858483828180797877
100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26272829303132333435363738394041424344454647484950
PA [4 ]
PC[7]
PA[15]
PA[14]
PA[13]
PA[12]
VDD_LV
LQFP100
XTAL
VSS_LV
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PD[0]
PD[1]
PD[2]
PD[3]
PB[10]
PD[4]
76
75
PA[11]
74
PA[10]
73
PA [ 9]
72
PA [ 8]
71
PA [ 7]
70
VDD_HV
69
VSS_HV
68
PA [ 3]
67
PB[15]
66
PD[15]
65
PB[14]
64
PD[14]
63
PB[13]
62
PD[13]
61
PB[12]
60
PD[12]
59
PB[11]
58
PD[11]
57
PD[10]
56
PD[9]
55
PB[7]
54
PB[6]
53
PB[5]
52
VDD_HV_ADC
51
VSS_HV_ADC
PD[5]
PB[4]
PD[6]
PD[7]
PD[8]
Figure 3 shows the SPC560D30, SPC560D40 in the LQFP64 package.
Doc ID 16315 Rev 5 11/82
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
Figure 3. LQFP64 pin configuration (top view)
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [6 ]
PA [5 ]
PC[2]
PC[3]
PB[3] PC[9]
PA [2 ] PA [1 ] PA [0 ]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0] PB[1] PC[6]
646362616059585756555453525150
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
171819202122232425
PC[7]
PA[15]
PA[14]
PA [4 ]
LQFP64
PA[13]
PA[12]
VSS_LV
VDD_LV
26272829303132
XTAL
VSS_HV
EXTAL
VDD_HV
49
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
PB[9]
PB[8]
PB[4]
PB[10]

3.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.
PA [1 1 ] PA [1 0 ] PA [9 ] PA [8 ] PA [7 ] PA [3 ] PB[15] PB[14] PB[13] PB[12] PB[11] PB[7] PB[6] PB[5] VDD_HV_ADC VSS_HV_ADC
During the power-up phase, all pads are forced to tristate.
After power-up phase, all pads are forced to tristate with the following exceptions:
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from
flash.
PA[8] (ABS[0]) is pull-up.
RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.
Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
Main oscillator pads (EXTAL, XTAL) are tristate.

3.3 Voltage supply pins

Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization.
12/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
Table 4. Voltage supply pin descriptions
Pin number
Port pin Function
LQFP64 LQFP100
VDD_HV Digital supply voltage 7, 28, 34, 56 15, 37, 52, 70, 84
VSS_HV Digital ground 6, 8, 26, 33, 55 14, 16, 35, 51, 69, 83
VDD_LV
VSS_LV
1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V
(1)
pin.
SS_LV
1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V
(1)
pin.
DD_LV
11, 23, 57 19, 32, 85
10, 24, 58 18, 33, 86
VDD_BV Internal regulator supply voltage 12 20
1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details).

3.4 Pad types

In the device the following types of pads are available for system pins and functional port pins:
S = Slow
M = Medium
F = Fast
I = Input only with analog feature
J = Input/Output (‘S’ pad) with analog feature
X = Oscillator
(a)
(a) (b)
(a) (b)
(a)

3.5 System pins

The system pins are listed in Ta bl e 5 .
a. See the I/O pad electrical characteristics in the device datasheet for details.
b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium
(see the PCR[SRC] description in the device reference manual).
Doc ID 16315 Rev 5 13/82
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
Table 5. System pin descriptions
Port
pin
RESET
Function
Bidirectional reset with Schmitt-Trigger characteristics and noise filter.
Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass
EXTAL
mode. Analog input for the clock generator when the
oscillator is in bypass mode.
(1)
Analog input of the oscillator amplifier circuit.
XTAL
1. Refer to the relevant section of the device datasheet.
Needs to be grounded if oscillator is used in bypass mode.
(1)

3.6 Functional ports

The functional port pins are listed in Ta bl e 6 .
Table 6. Functional port pin descriptions
I/O
direction
Pad
type
RESET
configuration
Pin number
LQFP64 LQFP100
Input, weak
I/O M
pull-up only
917
after PHASE2
I/O X Tristate 27 36
I X Tristate 25 34
Port pin PCR
PA[0] PCR[0]
PA[1] PCR[1]
PA[2] PCR[2]
Alternate
function
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
Function Peripheral
(1)
GPIO[0] E0UC[0]
CLKOUT
E0UC[13]
WKPU[19]
(3)
GPIO[1] E0UC[1]
— —
(4)
NMI
WKPU[2]
(3)
GPIO[2] E0UC[2]
MA[2]
WKPU[3]
(3)
Por t A
SIUL
eMIOS_0
CGL
eMIOS_0
WKPU
SIUL
eMIOS_0
— WKPU WKPU
SIUL
eMIOS_0
ADC
WKPU
I/O
direction
(2)
I/O I/O
O
I/O
I
I/O I/O
— —
I I
I/O I/O
O
I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
M Tristate 5 12
S Tristate 4 7
S Tristate 3 5
14/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PA[3] PCR[3]
PA[4] PCR[4]
PA[5] PCR[5]
PA[6] PCR[6]
Alternate
function
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
Function Peripheral
(1)
GPIO[3] E0UC[3]
CS4_0
EIRQ[0]
ADC1_S[0]
GPIO[4] E0UC[4]
CS0_1
WKPU[9]
(3)
GPIO[5] E0UC[5]
— —
GPIO[6] E0UC[6]
CS1_1
EIRQ[1]
SIUL
eMIOS_0
DSPI_0
SIUL
ADC
SIUL
eMIOS_0
DSPI_1
WKPU
SIUL
eMIOS_0
SIUL
eMIOS_0
DSPI_1
SIUL
I/O
direction
(2)
I/O I/O
I/O
I I
I/O I/O
I/O
I
I/O I/O
— —
I/O I/O
I/O
I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
S Tristate 43 68
S Tristate 20 29
M Tristate 51 79
S Tristate 52 80
PA[7] PCR[7]
PA[8] PCR[8]
PA[9] PCR[9]
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
N/A
AF0 AF1 AF2 AF3
N/A
— —
(5)
(5)
GPIO[7] E0UC[7]
— —
EIRQ[2]
ADC1_S[1]
GPIO[8] E0UC[8]
E0UC[14]
EIRQ[3]
ABS[0]
GPIO[9] E0UC[9]
CS2_1
FAB
SIUL
eMIOS_0
SIUL
ADC
SIUL eMIOS_0 eMIOS_0
— SIUL BAM
SIUL
eMIOS_0
DSPI_1
BAM
I/O I/O
— —
I/O I/O
— —
I/O I/O
I/O
S Tristate 44 71
I I
Input,
S
weak pull-
45 72
up
I I
S Pull-down 46 73
I
Doc ID 16315 Rev 5 15/82
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PA[10] PCR[10]
PA[11] PCR[11]
PA[12] PCR[12]
Alternate
function
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
— — —
AF0 AF1 AF2 AF3
— —
Function Peripheral
(1)
GPIO[10] E0UC[10]
LIN2TX
ADC1_S[2]
GPIO[11] E0UC[11]
— —
EIRQ[16]
ADC1_S[3]
LIN2RX
GPIO[12]
— — —
EIRQ[17]
SIN_0
SIUL
eMIOS_0
LINFlex_2
ADC
SIUL
eMIOS_0
— SIUL
ADC
LINFlex_2
SIUL
— SIUL
DSPI_0
I/O
direction
(2)
I/O I/O
O
I
I/O I/O
— —
I I I
I/O
— — —
I I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
S Tristate 47 74
S Tristate 48 75
S Tristate 22 31
PA[13] PCR[13]
PA[14] PCR[14]
PA[15] PCR[15]
PB[0] PCR[16]
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
GPIO[13]
SOUT_0
CS3_1
GPIO[14]
SCK_0
CS0_0 E0UC[0] EIRQ[4]
GPIO[15]
CS0_0
SCK_0 E0UC[1]
WKPU[10]
GPIO[16]
CAN0TX
LIN2TX
(3)
FlexCAN_0
SIUL
DSPI_0
DSPI_1
SIUL DSPI_0 DSPI_0
eMIOS_0
SIUL
SIUL DSPI_0 DSPI_0
eMIOS_0
WKPU
Por t B
SIUL
LINFlex_2
I/O
O
I/O
I/O I/O I/O I/O
I/O I/O I/O I/O
I/O
O
O
M Tristate 21 30
M Tristate 19 28
I
M Tristate 18 27
I
M Tristate 14 23
16/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PB[1] PCR[17]
PB[2] PCR[18]
PB[3] PCR[19]
PB[4] PCR[20]
PB[5] PCR[21]
PB[6] PCR[22]
PB[7] PCR[23]
Alternate
function
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
Function Peripheral
(1)
GPIO[17]
— —
LIN0RX
WKPU[4]
(3)
CAN0RX
GPIO[18]
LIN0TX
— —
GPIO[19]
— — —
WKPU[11]
(3)
LIN0RX
GPIO[20]
— — —
ADC1_P[0]
GPIO[21]
— — —
ADC1_P[1]
GPIO[22]
— — —
ADC1_P[2]
GPIO[23]
— — —
ADC1_P[3]
SIUL
— —
LINFlex_0
WKPU
FlexCAN_0
SIUL
LINFlex_0
— —
SIUL
— — —
WKPU
LINFlex_0
SIUL
— — —
ADC
SIUL
— — —
ADC
SIUL
— — —
ADC
SIUL
— — —
ADC
I/O
direction
(2)
I/O
— —
I I I
I/O
O — —
I/O
— — —
I I
I — — —
I
I — — —
I
I — — —
I
I — — —
I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
S Tristate 15 24
M Tristate 64 100
S Tristate 1 1
I Tristate 32 50
I Tristate 35 53
I Tristate 36 54
I Tristate 37 55
Doc ID 16315 Rev 5 17/82
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PB[8] PCR[24]
PB[9] PCR[25]
PB[10] PCR[26]
Alternate
function
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
— —
Function Peripheral
(1)
GPIO[24]
— — —
ADC1_S[4]
WKPU[25]
(3)
GPIO[25]
— — —
ADC1_S[5]
WKPU[26]
(3)
GPIO[26]
— —
— ADC1_S[6] WKPU[8]
(3)
SIUL
— — —
ADC
WKPU
SIUL
— — —
ADC
WKPU
SIUL
— — —
ADC
WKPU
I/O
direction
(2)
I — — —
I
I
I — — —
I
I
I/O
— — —
I
I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
I Tristate 30 39
I Tristate 29 38
J Tristate 31 40
PB[11] PCR[27]
PB[12] PCR[28]
PB[13] PCR[29]
PB[14] PCR[30]
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
GPIO[27]
E0UC[3]
CS0_0
ADC1_S[12]
GPIO[28]
E0UC[4]
CS1_0
ADC1_X[0]
GPIO[29]
E0UC[5]
CS2_0
ADC1_X[1]
GPIO[30]
E0UC[6]
CS3_0
ADC1_X[2]
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
eMIOS_0
DSPI_0
ADC
I/O I/O
I/O
I/O I/O
O
I/O I/O
O
I/O I/O
O
J Tristate 38 59
I
J Tristate 39 61
I
J Tristate 40 63
I
J Tristate 41 65
I
18/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PB[15] PCR[31]
(6)
(6)
PCR[32]
PCR[33]
PC[0]
PC[1]
PC[2] PCR[34]
Alternate
function
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
Function Peripheral
(1)
GPIO[31]
E0UC[7]
CS4_0
ADC1_X[3]
GPIO[32]
TDI
GPIO[33]
TDO
GPIO[34]
SCK_1
— —
EIRQ[5]
SIUL
eMIOS_0
DSPI_0
ADC
Por t C
SIUL
JTAGC
SIUL
JTAGC
SIUL
DSPI_1
— —
SIUL
I/O
direction
(2)
I/O I/O
O
I
I/O
I —
I/O
O
I/O I/O
— —
I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
J Tristate 42 67
Input,
M
weak pull-
59 87
up
F Tristate 54 82
M Tristate 50 78
PC[3] PCR[35]
PC[4] PCR[36]
PC[5] PCR[37]
PC[6] PCR[38]
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
GPIO[35]
CS0_1
MA[0]
EIRQ[6]
GPIO[36]
— — —
SIN_1
EIRQ[18]
GPIO[37]
SOUT_1
— —
EIRQ[7]
GPIO[38]
LIN1TX
— —
SIUL
DSPI_1
ADC
SIUL
SIUL
— — —
DSPI_1
SIUL
SIUL
DSPI_1
— —
SIUL
SIUL
LINFlex_1
— —
I/O I/O
O
I/O
— — —
I/O
O — —
I/O
O — —
S Tristate 49 77
I
M Tristate 62 92
I I
M Tristate 61 91
I
S Tristate 16 25
Doc ID 16315 Rev 5 19/82
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PC[7] PCR[39]
PC[8] PCR[40]
PC[9] PCR[41]
PC[10] PCR[42]
Alternate
function
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
Function Peripheral
(1)
GPIO[39]
— — —
LIN1RX
WKPU[12]
(3)
GPIO[40]
LIN2TX
E0UC[3]
GPIO[41]
E0UC[7]
LIN2RX
WKPU[13]
(3)
GPIO[42]
— —
MA[1]
SIUL
— — —
LINFlex_1
WKPU
SIUL
LINFlex_2
eMIOS_0
SIUL
eMIOS_0
LINFlex_2
WKPU
SIUL
— —
ADC
I/O
direction
(2)
I/O
— — —
I I
I/O
O
I/O
I/O
I/O
I I
I/O
— —
O
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
S Tristate 17 26
S Tristate 63 99
S Tristate 2 2
M Tristate 13 22
PC[11] PCR[43]
PC[12] PCR[44]
PC[13] PCR[45]
PC[14] PCR[46]
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
GPIO[43]
— —
MA[2]
WKPU[5]
GPIO[44] E0UC[12]
— —
EIRQ[19]
GPIO[45] E0UC[13]
— —
GPIO[46] E0UC[14]
— —
EIRQ[8]
(3)
SIUL
— —
ADC
WKPU
SIUL
eMIOS_0
— —
SIUL
SIUL
eMIOS_0
— —
SIUL
eMIOS_0
— —
SIUL
I/O
— —
O
I/O I/O
— —
I/O I/O
— —
I/O I/O
— —
S Tristate 21
I
M Tristate 97
I
S Tristate 98
S Tristate 3
I
20/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PC[15] PCR[47]
PD[0] PCR[48]
PD[1] PCR[49]
PD[2] PCR[50]
PD[3] PCR[51]
PD[4] PCR[52]
PD[5] PCR[53]
Alternate
function
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
Function Peripheral
(1)
GPIO[47] E0UC[15]
— —
EIRQ[20]
GPIO[48]
— — —
WKPU[27]
(3)
ADC1_P[4]
GPIO[49]
— — —
WKPU[28]
(3)
ADC1_P[5]
GPIO[50]
— — —
ADC1_P[6]
GPIO[51]
— — —
ADC1_P[7]
GPIO[52]
— — —
ADC1_P[8]
GPIO[53]
— — —
ADC1_P[9]
SIUL
eMIOS_0
— —
SIUL
Por t D
SIUL
— — —
WKPU
ADC
SIUL
— — —
WKPU
ADC
SIUL
— — —
ADC
SIUL
— — —
ADC
SIUL
— — —
ADC
SIUL
— — —
ADC
I/O
direction
(2)
I/O I/O
— —
I
I — — —
I
I
I — — —
I
I
I — — —
I
I — — —
I
I — — —
I
I — — —
I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
M Tristate 4
I Tristate 41
I Tristate 42
I Tristate 43
I Tristate 44
I Tristate 45
I Tristate 46
Doc ID 16315 Rev 5 21/82
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PD[6] PCR[54]
PD[7] PCR[55]
PD[8] PCR[56]
PD[9] PCR[57]
Alternate
function
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
Function Peripheral
(1)
GPIO[54]
— — —
ADC1_P[10]
GPIO[55]
— — —
ADC1_P[11]
GPIO[56]
— — —
ADC1_P[12]
GPIO[57]
— — —
ADC1_P[13]
SIUL
— — —
ADC
SIUL
— — —
ADC
SIUL
— — —
ADC
SIUL
— — —
ADC
I/O
direction
(2)
I — — —
I
I — — —
I
I — — —
I
I — — —
I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
I Tristate 47
I Tristate 48
I Tristate 49
I Tristate 56
PD[10] PCR[58]
PD[11] PCR[59]
PD[12] PCR[60]
PD[13] PCR[61]
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
GPIO[58]
— — —
ADC1_P[14]
GPIO[59]
— — —
ADC1_P[15]
GPIO[60]
CS5_0
E0UC[24]
ADC1_S[8]
GPIO[61]
CS0_1
E0UC[25]
ADC1_S[9]
SIUL
— — —
ADC
SIUL
— — —
ADC
SIUL
DSPI_0
eMIOS_0
ADC
SIUL
DSPI_1
eMIOS_0
ADC
— — —
— — —
I/O
O
I/O
I/O I/O I/O
I
I Tristate 57
I
I
I Tristate 58
I
J Tristate 60
I
J Tristate 62
I
22/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PD[14] PCR[62]
PD[15] PCR[63]
PE[0] PCR[64]
PE[1] PCR[65]
PE[2] PCR[66]
PE[3] PCR[67]
PE[4] PCR[68]
PE[5] PCR[69]
Alternate
function
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
— —
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
Function Peripheral
(1)
GPIO[62]
CS1_1
E0UC[26]
ADC1_S[10]
GPIO[63]
CS2_1
E0UC[27]
ADC1_S[11]
GPIO[64] E0UC[16]
— —
WKPU[6]
(3)
GPIO[65] E0UC[17]
— —
GPIO[66] E0UC[18]
— —
EIRQ[21]
SIN_1
GPIO[67] E0UC[19]
SOUT_1
GPIO[68] E0UC[20]
SCK_1
EIRQ[9]
GPIO[69] E0UC[21]
CS0_1
MA[2]
SIUL
DSPI_1
eMIOS_0
ADC
SIUL
DSPI_1
eMIOS_0
ADC
Por t E
SIUL
eMIOS_0
— —
WKPU
SIUL
eMIOS_0
— —
SIUL
eMIOS_0
— —
SIUL
DSPI_1
SIUL
eMIOS_0
DSPI_1
SIUL
eMIOS_0
DSPI_1
SIUL
SIUL
eMIOS_0
DSPI_1
ADC
I/O
direction
(2)
I/O
O
I/O
I
I/O
O
I/O
I
I/O I/O
— —
I
I/O I/O
— —
I/O I/O
— —
I
I
I/O I/O
O
I/O I/O I/O
I
I/O I/O I/O
O
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
J Tristate 64
J Tristate 66
S Tristate 6
M Tristate 8
M Tristate 89
M Tristate 90
M Tristate 93
M Tristate 94
Doc ID 16315 Rev 5 23/82
Package pinouts and signal descriptions SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin PCR
PE[6] PCR[70]
PE[7] PCR[71]
PE[8] PCR[72]
PE[9] PCR[73]
PE[10] PCR[74]
PE[11] PCR[75]
PE[12] PCR[76]
Alternate
function
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
AF0 AF1 AF2 AF3
— —
Function Peripheral
(1)
GPIO[70] E0UC[22]
CS3_0
MA[1]
EIRQ[22]
GPIO[71] E0UC[23]
CS2_0
MA[0]
EIRQ[23]
GPIO[72]
E0UC[22]
GPIO[73]
E0UC[23]
WKPU[7]
(3)
GPIO[74]
CS3_1
EIRQ[10]
GPIO[75] E0UC[24]
CS4_1
WKPU[14]
(3)
GPIO[76]
— — —
ADC1_S[7]
EIRQ[11]
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
SIUL
eMIOS_0
SIUL
eMIOS_0
WKPU
SIUL
DSPI_1
SIUL
SIUL
eMIOS_0
DSPI_1
WKPU
SIUL
— — —
ADC
SIUL
I/O
direction
(2)
I/O I/O
O O
I
I/O I/O
O O
I
I/O
I/O
I/O
I/O
I
I/O
O
I
I/O I/O
O
I
I/O
— — —
I
I
Pin number
Pad
type
RESET
LQFP64 LQFP100
configuration
M Tristate 95
M Tristate 96
M Tristate 9
S Tristate 10
S Tristate 11
S Tristate 13
S Tristate 76
Por t H
24/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Pin number
LQFP64 LQFP100
Port pin PCR
Alternate
function
Function Peripheral
(1)
I/O
direction
(2)
Pad
type
RESET
configuration
AF0
PH[9]
(6)
PCR[121]
AF1 AF2 AF3
AF0
PH[10]
(6)
PCR[122]
AF1 AF2 AF3
1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”.
2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
3. All WKPU pins also support external interrupt capability. See “wakeup unit” chapter of the device reference manual for further details.
4. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
5. “Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of the device reference manual for details.
6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively). If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001.
GPIO[121]
TCK
GPIO[122]
TMS
SIUL
JTAGC
SIUL
JTAGC
I/O
I/O
Input,
S
I
weak pull-
up
60 88
Input,
S
I
weak pull-
up
53 81
Doc ID 16315 Rev 5 25/82
Electrical characteristics SPC560D30x, SPC560D40x

4 Electrical characteristics

4.1 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V
). This can be done by the internal pull-up or pull-down, which is provided by the
SS
product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column.
Caution: All of the following parameter values can vary depending on the application and must be
confirmed during silicon validation, silicon characterization or silicon reliability trial.

4.2 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Ta bl e 7 are used and the parameters are tagged accordingly in the tables where appropriate.
Table 7. Parameter classifications
DD
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
C
T
D Those parameters are derived mainly from simulations.
Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
Note: The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
26/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics

4.3 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).
For a detailed description of the NVUSRO register, please refer to the device reference manual.

4.3.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. Ta bl e 8 shows how NVUSRO[PAD3V5V] controls the device configuration.
Table 8. PAD3V5V field description
(1)
Value
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description

4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Ta bl e 9 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.
Table 9. OSCILLATOR_MARGIN field description
(1)
Value
0 Low consumption configuration (4 MHz/8 MHz)
1 High margin configuration (4 MHz/16 MHz)
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description

4.3.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Tab le 9 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.
Table 10. WATCHDOG_EN field description
(1)
Value
0 Disable after reset)
1 Enable after reset
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
Doc ID 16315 Rev 5 27/82
Electrical characteristics SPC560D30x, SPC560D40x

4.4 Absolute maximum ratings

Table 11. Absolute maximum ratings
Symbol Parameter Conditions
V
V
SR Digital ground on VSS_HV pins 0 0 V
SS
Voltage on VDD_HV pins with respect
SR
DD
to ground (V
SS
)
Voltage on VSS_LV (low voltage digital
SR
V
SS_LV
V
DD_BV
supply) pins with respect to ground
)
(V
SS
Voltage on VDD_BV (regulator supply)
SR
pin with respect to ground (V
SS
)
Relative to V
DD
Voltage on VSS_HV_ADC (ADC
V
SS_ADC
SR
reference) pin with respect to ground
)
(V
SS
Voltage on VDD_HV_ADC (ADC
V
DD_ADC
I
INJPAD
I
INJSUM
I
AVGSEG
I
CORELV
T
STORAGE
1. Supply segments are described in Section 4.7.5: I/O pad current specification.
SR
reference) pin with respect to ground
)
(V
SS
V
IN
Voltage on any GPIO pin with respect to
SR
ground (V
Injected input current on any pin during
SR
overload condition
Absolute sum of all injected input
SR
currents during overload condition
Sum of all the static I/O current within a
SR
supply segment
Low voltage static current sink through
SR
VDD_BV
SS
)
(1)
Relative to V
Relative to V
V
= 5.0 V ± 10%, PAD3V5V = 0 70
DD
= 3.3 V ± 10%, PAD3V5V = 1 64
V
DD
DD
DD
SR Storage temperature −55 150 °C
Value
Unit
Min Max
0.3 6.0 V
—V
0.1 VSS+0.1 V
SS
0.3 6.0
V
VDD− 0.3 VDD+0.3
—V
0.1 VSS+0.1 V
SS
0.3 6.0
V
VDD− 0.3 VDD+0.3
0.3 6.0
V
VDD− 0.3 VDD+0.3
10 10 mA
50 50 mA
mA
150 mA
Note: Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (V the voltage on pins with respect to ground (V
28/82 Doc ID 16315 Rev 5
SS
) must not exceed the recommended values.
IN>VDD
or VIN<VSS),
SPC560D30x, SPC560D40x Electrical characteristics

4.5 Recommended operating conditions

Table 12. Recommended operating conditions (3.3 V)
Val ue
Symbol C Parameter Conditions
Min Max
V
V
DD
V
SS_LV
V
DD_BV
V
SS_ADC
V
DD_ADC
V
I
INJPAD
I
INJSUM
TV
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. 330 nF capacitance needs to be provided between each V
3. 470 nF capacitance needs to be provided between V depending on external regulator characteristics).
4. 100 nF capacitance needs to be provided between V
5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V reset.
6. Guaranteed by device validation.
SR — Digital ground on VSS_HV pins 0 0 V
SS
(1)
SR —
(2)
SR —
(3)
SR —
SR —
SR —
(4)
SR —
IN
SR —
SR —
SR — VDD slope to ensure correct power up
DD
SR — Ambient temperature under bias f
T
A
SR — Junction temperature under bias −40 150
T
J
Voltage on VDD_HV pins with respect to ground
)
(V
SS
Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V
SS
)
Voltage on VDD_BV pin (regulator supply) with respect to ground (V
SS
)
Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V
SS
)
Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (V
SS
)
Voltage on any GPIO pin with respect to ground
)
(V
SS
Injected input current on any pin during overload condition
Absolute sum of all injected input currents during overload condition
(6)
DD_LV/VSS_LV
and the nearest V
DD_BV
DD_ADC/VSS_ADC
pair.
Relative to V
Relative to V
Relative to V
48 MHz 40 125
CPU
supply pair.
SS_LV
—3.03.6V
—V
0.1 VSS+0.1 V
SS
—3.03.6
DDVDD
—V
—3.0
DDVDD
—V
DD
0.1 VDD+0.1
0.1 VSS+0.1 V
SS
(5)
0.1 VDD+0.1
0.1
SS
—VDD+0.1
55mA
50 50 mA
0.25 V/µs
(higher value may be needed
LVDHVL,
Unit
V
3.6 V
V
°C
device is
Doc ID 16315 Rev 5 29/82
Electrical characteristics SPC560D30x, SPC560D40x
Table 13. Recommended operating conditions (5.0 V)
Val ue
Symbol C Parameter Conditions
Min Max
Unit
SS
(1)
(3)
S
— Digital ground on VSS_HV pins 0 0 V
R
S
Voltage on VDD_HV pins with respect to
R
ground (VSS)
S
Voltage on VSS_LV (low voltage digital
R
supply) pins with respect to ground (VSS)
—4.55.5
Voltage drop
(2)
—V
3.0 5.5
0.1 VSS+0.1 V
SS
V
V
SS_LV
V
DD
—4.55.5
V
DD_BV
V
SS_ADC
(4)
Voltage on VDD_BV pin (regulator supply)
R
with respect to ground (VSS)
S
Voltage on VSS_HV_ADC (ADC reference)
R
pin with respect to ground (V
Relative to V
SS
(2)
DD
—V
3.0 5.5
VDD− 0.1 VDD+0.1
0.1 VSS+0.1 V
SS
S
—4.55.5
V
DD_ADC
(5)
V
I
INJPAD
I
INJSUM
TV
T
T
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.6 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.
3. 330 nF capacitance needs to be provided between each V
4. 470 nF capacitance needs to be provided between V depending on external regulator characteristics).
5. 100 nF capacitance needs to be provided between V
6. Guaranteed by device validation
IN
DD
A
J
S
Voltage on VDD_HV_ADC pin (ADC
R
reference) with respect to ground (VSS)
Relative to V
S
Voltage on any GPIO pin with respect to
R
ground (V
S
Injected input current on any pin during
R
overload condition
S
Absolute sum of all injected input currents
R
during overload condition
S R
S R
S R
slope to ensure correct power up
—V
DD
— Ambient temperature under bias f
— Junction temperature under bias −40 150
SS
)
(6)
DD_LV/VSS_LV
and the nearest V
DD_BV
DD_ADC/VSS_ADC
Relative to V
48 MHz 40 125
CPU
supply pair.
pair.
(2)
DD
—V
DD
3.0 5.5
VDD− 0.1 VDD+0.1
0.1
SS
—VDD+0.1
55
50 50
0.25 V/µs
(higher value may be needed
SS_LV
V
VVoltage drop
VVoltage drop
V
mA
°C
Note: SRAM data retention is guaranteed with V
DD_LV
30/82 Doc ID 16315 Rev 5
not below 1.08 V.
SPC560D30x, SPC560D40x Electrical characteristics

4.6 Thermal characteristics

4.6.1 Package thermal characteristics

Table 14. LQFP thermal characteristics
Symbol C Parameter Conditions
(1)
(2)
Value
(3)
Unit
LQFP64 72.1
Single-layer board —1s
C
R
θJA
C
Thermal resistance, junction-to-ambient
D
natural convection
(4)
LQFP100 65.2
°C/W
LQFP64 57.3
Four-layer board — 2s2p
LQFP100 51.8
C
R
θJB
D Thermal resistance, junction-to-board
C
(5)
Four-layer board — 2s2p
LQFP64 44.1
°C/W
LQFP100 41.3
LQFP64 26.5
Single-layer board — 1s
C
R
θJC
D Thermal resistance, junction-to-case
C
(6)
LQFP100 23.9
°C/W
LQFP64 26.2
Four-layer board — 2s2p
LQFP100 23.7
LQFP64 41
C
Ψ
JB
C
Junction-to-board thermal
D
characterization parameter, natural convection
Single-layer board — 1s
LQFP100 41.6
°C/W
LQFP64 43
Four-layer board — 2s2p
LQFP100 43.4
LQFP64 11.5
Single-layer board — 1s
C
Ψ
JC
C
Junction-to-case thermal characterization
D
parameter, natural convection
LQFP100 10.4
°C/W
LQFP64 11.1
Four-layer board — 2s2p
LQFP100 10.2
1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.
= 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C
2. V
DD
3. All values need to be confirmed during device validation.
4. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R
5. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R
6. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R
thJC
.
thJB
.
thJA
.
Doc ID 16315 Rev 5 31/82
Electrical characteristics SPC560D30x, SPC560D40x

4.6.2 Power considerations

The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using
Equation 1:
Equation 1: T
= TA + (PD x R
J
θJA
)
Where:
T
is the ambient temperature in °C.
A
R
is the package junction-to-ambient thermal resistance, in °C/W.
θJA
P
is the sum of P
D
P
is the product of I
INT
INT
and P
and VDD, expressed in watts. This is the chip internal
DD
I/O (PD
= P
INT
+ P
I/O
).
power.
P
represents the power dissipation on input and output pins; user determined.
I/O
Most of the time for the applications, P P
may be significant, if the device is configured to continuously drive external modules
I/O
I/O< PINT
and may be neglected. On the other hand,
and/or memories.
An approximate relationship between P
Equation 2: P
= K / (TJ + 273 °C)
D
and TJ (if P
D
is neglected) is given by:
I/O
Therefore, solving equations Equation 1 and Equation 2:
Equation 3: K = P
x (TA + 273 °C) + R
D
θJA
x P
2
D
Where:
K is a constant for the particular part, which may be determined from Equation 3 by measuring P of P
and TJ may be obtained by solving equations Equation 1 and Equation 2
D
iteratively for any value of T
(at equilibrium) for a known TA. Using this value of K, the values
D
.
A

4.7 I/O pad electrical characteristics

4.7.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:
Slow pads—These pads are the most common pads, providing a good compromise
between transition time and low electromagnetic emission.
Medium pads—These pads provide transition fast enough for the serial communication
channels with controlled current to reduce electromagnetic emission.
Input only pads—These pads are associated to ADC channels (ADC_P[X]) providing
low input leakage.
Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost of reducing AC performance.

4.7.2 I/O input DC characteristics

Ta bl e 1 5 provides input DC electrical characteristics as described in Figure 4.
32/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Figure 4. Input DC electrical characteristics definition
V
IN
V
DD
V
IH
V
HYS
V
IL
(GPDI register of SIUL)
Table 15. I/O input DC electrical characteristics
Symbol C Parameter Conditions
PDIx = ‘1’
PDIx = ‘0’
(1)
Value
(2)
Min Typ Max
Input high level CMOS (Schmitt
SR P
V
V
I
IH
HYS
LKG
Trigger)
Input hysteresis CMOS (Schmitt
CC C
Trigger)
DT
CCDDigital input leakage
DT
DT
No injection on adjacent pin
PT
(3)
W
W
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.
SR P Digital input filtered pulse 40 ns
FI
(3)
SR P Digital input not filtered pulse 1000 ns
NFI
0.65V
—0.1V
= 40 °C 2 200
T
A
= 25 °C 2 200
A
= 85 °C 5 300
A
= 105 °C 12 500
A
= 125 °C 70 1000
A
—VDD+0.4
DD
——
DD
DD
Unit
VVILSR P Input low level CMOS (Schmitt Trigger) −0.4 0.35V
nA
Doc ID 16315 Rev 5 33/82
Electrical characteristics SPC560D30x, SPC560D40x

4.7.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:
Ta bl e 1 6 provides weak pull figures. Both pull-up and pull-down resistances are
supported.
Ta bl e 1 7 provides output driver characteristics for I/O pads when in SLOW
configuration.
Ta bl e 1 8 provides output driver characteristics for I/O pads when in MEDIUM
configuration.
Table 16. I/O pull-up/pull-down DC electrical characteristics
Symbol C Parameter Conditions
P
= VIL, VDD = 5.0 V ± 10%
V
|I
WPU
|CC
Weak pull-up current absolute value
PV
IN
= VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
IN
P
V
= VIH, VDD = 5.0 V ± 10%
|I
WPD
|CC
Weak pull-down current absolute value
PV
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when V configured in input or in high impedance state.
Table 17. SLOW configuration output buffer electrical characteristics
DD
Symbol C Parameter Conditions
P
IN
= VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
IN
= 5 V is only a transient configuration during power-up. All pads but RESET are
(1)
I
= 2mA,
OH
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
(1)
PAD3V5V = 0 10 150
PAD3V5V = 0 10 150
(recommended)
V
OH
Output high level
CC
SLOW configuration
Push Pull
C
= 2mA,
I
OH
V
= 5.0 V ± 10%, PAD3V5V = 1
DD
I
= 1mA,
OH
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
(2)
(recommended)
I
= 2 mA,
P
OL
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
(recommended)
Output low level
CC
V
OL
SLOW configuration
Push Pull
C
I
= 2 mA,
OL
V
= 5.0 V ± 10%, PAD3V5V = 1
DD
I
= 1 mA,
OL
V
= 3.3 V ± 10%, PAD3V5V = 1
DD
(2)
(recommended)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when V configured in input or in high impedance state.
= 5 V is only a transient configuration during power-up. All pads but RESET are
DD
Value
Min Typ Max
(2)
10 250
(2)
10 250
Val ue
Min Typ Max
0.8V
0.8V
DD
DD
——
——
VDD− 0.8 —
— 0.1V
— 0.1V
——0.5
DD
DD
Unit
µAC PAD3V5V = 1
µAC PAD3V5V = 1
Unit
VC
VC
34/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Table 18. MEDIUM configuration output buffer electrical characteristics
Symbol C Parameter Conditions
(1)
I
= 3.8 mA,
C
P
OH
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
= 2mA,
I
OH
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
(recommended)
Output high level
CC
V
OH
C
MEDIUM configuration
Push Pull
C
I
= 1mA,
OH
= 5.0 V ± 10%, PAD3V5V = 1
V
DD
= 1mA,
I
OH
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
(2)
(recommended)
I
= 100 µA,
C
C
P
OH
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
I
= 3.8 mA,
OL
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
= 2 mA,
I
OL
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
(recommended)
VOLCC
Output low level
C
MEDIUM configuration
C
Push Pull
I
= 1 mA,
OL
= 5.0 V ± 10%, PAD3V5V = 1
V
DD
= 1 mA,
I
OL
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
(2)
(recommended)
= 100 µA,
I
C
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when V configured in input or in high impedance state.
DD
OL
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
= 5 V is only a transient configuration during power-up. All pads but RESET are
Value
Min Typ Max
0.8V
0.8V
0.8V
V
0.8V
DD
——
DD
——
DD
——
DD
0.8 —
——
DD
——0.2V
——0.1V
——0.1V
——0.5
——0.1V
DD
DD
DD
DD
Unit
V
V
Doc ID 16315 Rev 5 35/82
Electrical characteristics SPC560D30x, SPC560D40x

4.7.4 Output pin transition times

Table 19. Output pin transition times
Symbol C Parameter Conditions
D
TC
Output transition time output
DC
ttrCC
(3)
pin
DC
SLOW configuration
TC
DC
D
TC
Output transition time output
DC
t
CC
tr
(3)
pin
DC
MEDIUM configuration
TC
DC
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
includes device and package capacitances (C
3. C
L
CL = 25 pF
= 50 pF — 100
L
= 100 pF — 125
L
= 25 pF
L
= 50 pF — 100
L
= 100 pF — 125
L
C
= 25 pF
L
= 50 pF 20
L
= 100 pF 40
L
= 25 pF
L
= 50 pF 25
L
= 100 pF 40
L
< 5 pF).
PKG
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
SIUL.PCRx.SRC = 1
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
SIUL.PCRx.SRC = 1
(1)
(2)
Value
Min Typ Max
——50
——50
——10
——12
Unit
ns
ns

4.7.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V
DD/VSS
Ta bl e 2 1 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I
Table 20. I/O supply segment
Package
LQFP100 pin 16 – pin 35 pin 37 – pin 69 pin 70 – pin 83 pin 84 – pin 15
LQFP64 pin 8 – pin 26 pin 28 – pin 55 pin 56 – pin 7
supply pair as described in Ta bl e 2 0 .
AVGSEG
maximum value.
1234
Supply segment
36/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Table 21. I/O consumption
Symbol C Parameter Conditions
Dynamic I/O current
CC D
for SLOW
CL = 25 pF
I
SWTSLW
(3)
configuration
Dynamic I/O current
CC D
for MEDIUM
CL = 25 pF
I
SWTMED
(3)
configuration
C
= 25 pF, 2 MHz
L
= 25 pF, 4 MHz 3.2
C
L
I
RMSSLW
I
RMSMED
I
AVGSEG
Root mean square
CC D
I/O current for SLOW configuration
Root mean square I/O current for
CC D
MEDIUM configuration
Sum of all the static
SR D
I/O current within a supply segment
= 100 pF, 2 MHz 6.6
C
L
C
= 25 pF, 2 MHz
L
= 25 pF, 4 MHz 2.3
C
L
= 100 pF, 2 MHz 4.7
C
L
= 25 pF, 13 MHz
C
L
= 25 pF, 40 MHz 13.4
C
L
= 100 pF, 13 MHz 18.3
C
L
C
= 25 pF, 13 MHz
L
= 25 pF, 40 MHz 8.5
C
L
= 100 pF, 13 MHz 11
C
L
V
= 5.0 V ± 10%, PAD3V5V = 0 70
DD
= 3.3 V ± 10%, PAD3V5V = 1 65
V
DD
(1)
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
= 3.3 V ± 10%,
V
DD
PAD3V5V = 1
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
(2)
Val ue
Min Typ Max
——20
——16
——29
——17
——2.3
——1.6
——6.6
—— 5
Unit
mA
mA
mA
mA
mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Ta bl e 2 2 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%.
Doc ID 16315 Rev 5 37/82
Electrical characteristics SPC560D30x, SPC560D40x
Table 22. I/O weight
(1)
LQFP100/LQFP64
Pad
SRC
Weight 5 V Weight 3.3 V
(2)
= 0 SRC = 1 SRC = 0 SRC = 1
PB[3] 9% 9% 10% 10%
PC[9] 8% 8% 10% 10%
PC[14] 8% 8% 10% 10%
PC[15] 8% 11% 9% 10%
PA[2]8%8%9%9%
PE[0] 7% 7% 9% 9%
PA[1]7%7%8%8%
PE[1] 7% 10% 8% 8%
PE[8] 6% 9% 8% 8%
PE[9] 6% 6% 7% 7%
PE[10] 6% 6% 7% 7%
PA[0]5%7%6%7%
PE[11] 5% 5% 6% 6%
PC[11] 7% 7% 9% 9%
PC[10] 8% 11% 9% 10%
PB[0] 8% 11% 9% 10%
PB[1] 8% 8% 10% 10%
PC[6] 8% 8% 10% 10%
PC[7] 8% 8% 10% 10%
PA[15] 8% 11% 9% 10%
PA[14] 7% 11% 9% 9%
PA[4]7%7%8%8%
PA[13] 7% 10% 8% 9%
PA[12] 7% 7% 8% 8%
PB[9] 1% 1% 1% 1%
PB[8] 1% 1% 1% 1%
PB[10] 5% 5% 6% 6%
PD[0]1%1%1%1%
PD[1]1%1%1%1%
PD[2]1%1%1%1%
PD[3]1%1%1%1%
PD[4]1%1%1%1%
38/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Table 22. I/O weight
(1)
(continued)
LQFP100/LQFP64
Pad
SRC
Weight 5 V Weight 3.3 V
(2)
= 0 SRC = 1 SRC = 0 SRC = 1
PD[5]1%1%1%1%
PD[6]1%1%1%1%
PD[7]1%1%1%1%
PD[8]1%1%1%1%
PB[4] 1% 1% 1% 1%
PB[5] 1% 1% 1% 1%
PB[6] 1% 1% 1% 1%
PB[7] 1% 1% 1% 1%
PD[9]1%1%1%1%
PD[10] 1% 1% 1% 1%
PD[11] 1% 1% 1% 1%
PB[11] 9% 9% 11% 11%
PD[12] 8% 8% 10% 10%
PB[12] 8% 8% 10% 10%
PD[13] 8% 8% 9% 9%
PB[13] 8% 8% 9% 9%
PD[14] 7% 7% 9% 9%
PB[14] 7% 7% 8% 8%
PD[15] 7% 7% 8% 8%
PB[15] 6% 6% 7% 7%
PA[3]6%6%7%7%
PA[7]4%4%5%5%
PA[8]4%4%5%5%
PA[9]4%4%5%5%
PA[10] 5% 5% 6% 6%
PA[11] 5% 5% 6% 6%
PE[12] 5% 5% 6% 6%
PC[3]5%5%6%6%
PC[2]5%7%6%6%
PA[5]5%6%5%6%
PA[6]4%4%5%5%
PC[1] 5% 17% 4% 12%
Doc ID 16315 Rev 5 39/82
Electrical characteristics SPC560D30x, SPC560D40x
Table 22. I/O weight
(1)
(continued)
LQFP100/LQFP64
Pad
SRC
Weight 5 V Weight 3.3 V
(2)
= 0 SRC = 1 SRC = 0 SRC = 1
PC[0]6%9%7%8%
PE[2] 7% 10% 8% 9%
PE[3] 7% 10% 9% 9%
PC[5] 8% 11% 9% 10%
PC[4] 8% 11% 9% 10%
PE[4] 8% 12% 10% 10%
PE[5] 8% 12% 10% 11%
PE[6] 9% 12% 10% 11%
PE[7] 9% 12% 10% 11%
PC[12] 9% 13% 11% 11%
PC[13] 9% 9% 11% 11%
PC[8] 9% 9% 11% 11%
PB[2] 9% 13% 11% 12%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. SRC: “Slew Rate Control” bit in SIU_PCR.

4.8 RESET electrical characteristics

The device implements a dedicated bidirectional RESET pin.
Figure 5. Start-up reset requirements
V
DD
V
DDMIN
RESET
V
IH
V
IL
device reset forced by RESET
device start-up phase
40/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Figure 6. Noise filtering on reset signal
V
RESET
hw_rst
V
DD
V
IH
V
IL
filtered by hysteresis
filtered by lowpass filter
W
FRST
filtered by lowpass filter
W
FRST
unknown reset state
W
NFRST
device under hardware reset
‘1’
‘0’
Table 23. Reset electrical characteristics
Symbol C Parameter Conditions
Input High Level CMOS
SR P
V
V
V
HYS
IH
IL
(Schmitt Trigger)
Input low Level CMOS
SR P
(Schmitt Trigger)
Input hysteresis CMOS
CC C
(Schmitt Trigger)
Push Pull, I
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
OL
= 2 mA,
(recommended)
CC P Output low level
V
OL
Push Pull, I
= 5.0 V ± 10%, PAD3V5V = 1
V
DD
Push Pull, I V
= 3.3 V ± 10%, PAD3V5V = 1
DD
OL
OL
= 1 mA,
= 1 mA,
(recommended)
(2)
(1)
Value
Min Typ Max
0.65V
—VDD+0.4 V
DD
0.4 0.35V
—0.1V
DD
——V
0.1V
0.1V
(3)
——0.5
DD
DD
DD
Unit
V
V
Doc ID 16315 Rev 5 41/82
Electrical characteristics SPC560D30x, SPC560D40x
Table 23. Reset electrical characteristics (continued)
(2)
Symbol C Parameter Conditions
(1)
Min Typ Max
= 25 pF,
C
L
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
= 50 pF,
C
L
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
C
= 100 pF,
Output transition time
t
CC D
tr
output pin
(4)
MEDIUM configuration
RESET
W
W
|I
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the
4. C
5. The configuration PAD3V5 = 1 when V
SR P
FRST
SR P
NFRST
|CCP
WPU
device reference manual).
includes device and package capacitance (C
L
configured in input or in high impedance state.
input filtered
pulse
input not filtered
RESET pulse
Weak pull-up current absolute value
L
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
= 25 pF,
C
L
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
= 50 pF,
C
L
V
= 3.3 V ± 10%, PAD3V5V = 1
DD
C
= 100 pF,
L
V
= 3.3 V ± 10%, PAD3V5V = 1
DD
——40ns
1000 ns
V
= 3.3 V ± 10%, PAD3V5V = 1 10 150
DD
= 5.0 V ± 10%, PAD3V5V = 0 10 150
DD
V
= 5.0 V ± 10%, PAD3V5V = 1
DD
<5pF).
PKG
= 5 V is only transient configuration during power-up. All pads but RESET are
DD
(5)
Value
Unit
——10
——20
——40
ns
——12
——25
——40
µAV
10 250

4.9 Power management electrical characteristics

4.9.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V common I/O supply V
HV: High voltage external power supply for voltage regulator module. This must be
BV: High voltage external power supply for internal ballast module. This must be
LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is
42/82 Doc ID 16315 Rev 5
from the high voltage ballast supply V
DD_LV
. The following supplies are involved:
DD
provided externally through V
provided externally through V V
.
DD
power pin.
DD
power pin. Voltage values should be aligned with
DD_BV
. The regulator itself is supplied by the
DD_BV
generated by the internal voltage regulator but provided outside to connect stability
SPC560D30x, SPC560D40x Electrical characteristics
capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
LV_COR: Low voltage supply for the core. It is also used to provide supply for
FMPLL through double bonding.
LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double
bonding.
Figure 7. Voltage regulator capacitance connection
C
(LV_COR/LV_CFLA)
REG2
V
DD
V
DD_BV
V
DD_LVn
V
SS_LVn
V
SS_LV
V
REF
Voltage Regulator
I
(Ballast decoupling)
DEC1
C
(LV_COR/LV_DFLA)
REG1
C
DEVICE
V
DD_BV
V
DD_LV
V
SS_LV
V
SS_LV
C
V
REG3
The internal voltage regulator requires external capacitance (C
DD_LV
REGn
V
DD_LV
DEVICE
C
DEC2
V
DD
V
SS
(supply/IO decoupling)(LV_COR/LV_PLL)
) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.
Each decoupling capacitor must be placed between each of the three V
DD_LV/VSS_LV
pairs to ensure stable voltage (see Section 4.5: Recommended operating conditions).
Doc ID 16315 Rev 5 43/82
supply
Electrical characteristics SPC560D30x, SPC560D40x
Table 24. Voltage regulator electrical characteristics
Symbol C Parameter Conditions
(1)
Val ue
Min Typ Max
C
REGn
R
REG
C
DEC1
C
DEC2
V
MREG
I
MREG
I
MREGINT
V
LPREG
I
LPREG
I
LPREGINT
V
ULPREG
I
ULPREG
I
ULPREGINT
I
DD_BV
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This capacitance value is driven by the constraints of the external voltage regulator supplying the V value is in the range of 470 nF.
3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V.
4. External regulator and capacitance circuitry must be capable of providing I operating range.
5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on external capacitances to be loaded).
6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I
Internal voltage regulator external
SR —
capacitance
Stability capacitor equivalent serial
SR —
resistance
SR — Decoupling capacitance
Decoupling capacitance regulator
SR —
supply
CCTMain regulator output voltage
P After trimming 1.16 1.28
Main regulator current provided to
SR —
CC D
domain
V
DD_LV
Main regulator module current consumption
(2)
ballast
Range: 10 kHz to 20 MHz
V
DD_BV/VSS_LV
V
DD_BV
V
DD_BV/VSS_LV
V
DD_BV
VDD/VSS pair 10 100 nF
Before exiting from reset 1.32
I
MREG
I
MREG
200 500 nF
——0.2W
pair:
= 4.5 V to 5.5 V
pair:
= 3V to 3.6V
(3)
100
(4)
470
400
——150 mA
= 200 mA 2
= 0 mA 1
CC P Low-power regulator output voltage After trimming 1.16 1.28 V
Low power regulator current provided
SR —
to V
D
Low-power regulator module current
CC
consumption
Ultra low power regulator output
CC P
voltage
Ultra low power regulator current
SR —
provided to V
Ultra low power regulator module
CC D
current consumption
In-rush average current on V
CC D
during power-up
domain
DD_LV
domain
DD_LV
(5)
value for minimum amount of current to be provided in cc.
MREG
DD_BV
I
LPREG
TA = 55 °C
I
LPREG
= 55 °C
T
A
After trimming 1.16 1.28 V
I
ULPREG
= 55 °C
T
A
I
ULPREG
T
= 55 °C
A
——15 mA
= 15 mA;
= 0 mA;
——
5
600
——5 mA
= 5 mA;
= 0 mA;
——
2
100
—— 300
voltage. A typical
DD_BV
while maintaining supply V
DD_BV
DD_BV
(6)
in
Unit
nF
V
mA
µA
µA
mA
44/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics

4.9.2 Low voltage detector electrical characteristics

The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the V voltage while device is supplied:
POR monitors V
during the power-up phase to ensure device is maintained in a safe
DD
reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
LVDHV3 monitors V
to ensure device reset below minimum functional supply (refer
DD
to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
LVDHV3B monitors V
to ensure device reset below minimum functional supply
DD_BV
(refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)
LVDHV5 monitors V
when application uses device in the 5.0 V ± 10% range (refer to
DD
RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
and the V
DD
DD_LV
Figure 8. Low voltage detector vs reset
V
DD
V
LVDHVxH
V
LVDHVxL
RESET
Doc ID 16315 Rev 5 45/82
Electrical characteristics SPC560D30x, SPC560D40x
Table 25. Low voltage detector electrical characteristics
Symbol C Parameter Conditions
V
PORUP
V
PORH
V
LV DH V 3H
V
LV DH V 3L
V
LVDHV3BH
V
LVDHV3BL
V
LV DH V 5H
V
LV DH V 5L
V
LV DLV C OR L
V
LVDLVBKPL
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
SR P Supply for functional POR module
CC P Power-on reset threshold 1.5 2.6
CC T LVDHV3 low voltage detector high threshold 2.95
CC P LVDHV3 low voltage detector low threshold 2.7 2.9
CC P LVDHV3B low voltage detector high threshold 2.95
CC P LVDHV3B low voltage detector low threshold 2.7 2.9
= 25 °C,
T
A
after trimming
CC T LVDHV5 low voltage detector high threshold 4.5
CC P LVDHV5 low voltage detector low threshold 3.8 4.4
CC P LVDLVCOR low voltage detector low threshold 1.08 1.16
CC P LVDLVBKP low voltage detector low threshold 1.08 1.16

4.10 Power consumption

(1)
Min Typ Max
1.0 5.5
Val ue
Unit
V
Ta bl e 2 6 provides DC electrical characteristics for significant application modes. These
values are indicative values; actual consumption depends on the application.
Table 26. Power consumption on VDD_BV and VDD_HV
Symbol C Parameter Conditions
I
DDMAX
I
DDRUN
I
DDHALT
I
DDSTOP
(2)
RUN mode maximum
CC D
average current
T
Tf
(4)
RUN mode typical
CC
average current
Tf
Pf
CCCHALT mode current
PT
DT
CCPSTOP mode current
DT
PT
(5)
f
= 8 MHz 7
CPU
= 16 MHz 18
CPU
= 32 MHz 29
CPU
= 48 MHz 40 100
CPU
Slow internal RC oscillator
(6)
(128 kHz) running
Slow internal RC oscillator
(7)
(128 kHz) running
(1)
Value
Min Typ Max
90 130
=25°C 8 15
T
A
= 125 °C 14 25
A
T
= 25 °C 180 700
A
= 55 °C 500
A
=85°C 1 6
A
= 105 °C 2 9
A
= 125 °C 4.5 12
A
Unit
(3)
mA
mA
mA
(8)
µA
(8)
(8)
mADT
(8)
46/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Table 26. Power consumption on VDD_BV and VDD_HV (continued)
Value
Symbol C Parameter Conditions
(1)
Min Typ Max
= 25 °C 30 100
T
A
DT
Slow internal RC oscillator
I
DDSTDBY
CCPSTANDBY mode current
DT
(9)
(128 kHz) running
DT
PT
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.
3. Higher current may be sinked by device during power-up and standby exit. Please refer to in-rush average current on
Table 24.
4. RUN current measured with typical application with accesses on both flash memory and SRAM.
5. Only for the “P” classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG timer reset enabled.
6. Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0 ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs.
7. Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
9. Only for the “P” classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption, all possible modules switched off.
=55°C 75
A
= 85 °C 180 700
A
= 105 °C 315 1000
A
= 125 °C 560 1700
A
Unit
µA

4.11 Flash memory electrical characteristics

The data flash operation depends strongly on the code flash operation. If code flash is switched-off, the data flash is disabled.

4.11.1 Program/Erase characteristics

Ta bl e 2 7 shows the program and erase characteristics.
Doc ID 16315 Rev 5 47/82
Electrical characteristics SPC560D30x, SPC560D40x
Table 27. Program and erase specifications (code flash)
Value
Symbol C Parameter
Min Typ
t
dwprogram
t
16Kpperase
t
32Kpperase
t
128Kpperase
t
esus
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
Table 28. Program and erase specifications (data flash)
Double word (64 bits) program time
16 KB block preprogram and erase time 300 500 5000 ms
CC C
32 KB block preprogram and erase time 400 600 5000 ms
128 KB block preprogram and erase time 800 1300 7500 ms
Erase suspend latency 30 30 µs
(4)
—2250500µs
(1)
Initial
max
(2)
Max
(3)
Val ue
Symbol C Parameter
Min Typ
t
swprogram
t
16Kpperase
t
Bank_D
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
Single word (32 bits) program time
C
C
16 KB block preprogram and erase time 700 800 1500 ms
C
64 KB block preprogram and erase time 1900 2300 4800 ms
(4)
30 70 300 µs
(1)
Initial
max
(2)
Max
(3)
Unit
Unit
Table 29. Flash module life
Symbol C Parameter Conditions
16 KB blocks 100
128 KB blocks 1 100
P/E CC C
Number of program/erase cycles per block over the operating temperature range (T
)
J
48/82 Doc ID 16315 Rev 5
Value
Min Typ Max
(1)
(1)
Unit
kcycles32 KB blocks 10 100
SPC560D30x, SPC560D40x Electrical characteristics
Table 29. Flash module life (continued)
Value
Symbol C Parameter Conditions
Min Typ Max
Unit
Retention CC C
Minimum data retention at 85 °C average ambient temperature
(2)
Blocks with 0–1000 P/E cycles
Blocks with 1001–10000 P/E cycles
20
10
Blocks with 10001–100000 P/E
5——
cycles
1. To be confirmed.
2. Ambient temperature averaged over application duration. It is recommended not to exceed the product operating temperature range.
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.
Table 30. Flash memory read access timing
Symbol C Parameter
f
CFREAD
f
DFREAD
Conditions
(1)
P
Maximum working frequency for reading code flash memory at given
CC
number of wait states in worst conditions
C 0 wait states 20
Maximum working frequency for reading data flash memory at given
CC P
number of wait states in worst conditions
2 wait states 48
6 wait states 48 MHz
years
Max Unit
MHz
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.

4.11.2 Flash power supply DC characteristics

Ta bl e 3 1 shows the power supply DC characteristics on external supply.
Note: Power supply for data flash is actually provided by code flash; this means that data flash
cannot work if code flash is not powered.
Table 31. Flash power supply DC electrical characteristics
Symbol C Parameter Conditions
I
CFREAD
I
DFREAD
I
CFMOD
I
DFMOD
Sum of the current consumption on
CC D
V
DDHV
and V
on read access
DDBV
Sum of the current consumption on
CC D
V
DDHV
and V
DDBV
on matrix
modification (program/erase)
(2)
(1)
Value
Min Typ Max
Flash module read
= 48 MHz
f
CPU
Program/Erase on-going
Code flash 33
Data flash 4
Code flash 33 while reading flash registers, f
CPU
= 48 MHz
Data flash 6
Doc ID 16315 Rev 5 49/82
Unit
mA
mA
Electrical characteristics SPC560D30x, SPC560D40x
Table 31. Flash power supply DC electrical characteristics (continued)
(2)
Value
Unit
Symbol C Parameter Conditions
(1)
Min Typ Max
Sum of the current consumption on
I
FLPW
CC D
V
DDHV
and V
DDBV
during
Code flash — 910 µA
flash low-power mode
I
CFPWD
I
DFPWD
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
Sum of the current consumption on
CC D
V
DDHV
and V
DDBV
during
flash power-down mode
Code flash — 125
µA
Data flash 25

4.11.3 Start-up/Switch-off timings

Table 32. Start-up time/Switch-off time
Symbol C Parameter Conditions
(1)
Value
Min Typ Max
t
FLARSTEXIT
t
FLALPEXIT
t
FLAPDEXIT
t
FLALPENTRY
t
FLAPDENTRY
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Data flash does not support low-power mode.
3. If code flash is already switched-on.
C
T Delay for flash module to exit reset mode
C
C C
C C
C C
C C
Delay for flash module to exit low-power
T
T
T
T
(2)
mode
Delay for flash module to exit power-down mode
Delay for flash module to enter low-power mode
Delay for flash module to enter power-down mode
Code flash 125
Data flash 150
Code flash 0.5
Code flash 30
Data flash 30
Code flash 0.5
Code flash 1.5
Data flash 4

4.12 Electromagnetic compatibility (EMC) characteristics

(3)
(3)
Unit
µs
Susceptibility tests are performed on a sample basis during product characterization.

4.12.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
50/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations The software flowchart must include the management of
runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials Most of the common failures (unexpected reset and program
counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see the application note Software Techniques For Improving Microcontroller EMC Performance (AN1015)).

4.12.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.
Table 33. EMI radiated emission measurement
(1)(2)
Value
Symbol C Parameter Conditions
Min Typ Max
SR — Scan range 0.150 — 1000 MHz
SR — Operating frequency 48 MHz
f
CPU
V
1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.
2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local
3. All values need to be confirmed during device validation.
SR — LV operating voltages 1.28 V
DD_LV
No PLL frequency modulation
± 2% PLL frequency modulation
18 dBµV
——14
S
CC T Peak level
EMI
marketing representative.
= 5V, TA=25°C,
V
DD
LQFP100 package Test conforming to IEC 61967-2, f
OSC
= 8 MHz/f
= 48 MHz
CPU
(3)

4.12.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts * (n + 1) supply pin). This test
Unit
dBµV
Doc ID 16315 Rev 5 51/82
Electrical characteristics SPC560D30x, SPC560D40x
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the application note Electrostatic Discharge Sensitivity Measurement (AN1181).
Table 34. ESD absolute maximum ratings
(1) (2)
Symbol C Ratings Conditions Class Max value
V
ESD(HBM)
V
ESD(MM)
V
ESD(CDM)
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
CC T
CC T
CC T
Electrostatic discharge voltage (Human Body Model)
Electrostatic discharge voltage (Machine Model)
Electrostatic discharge voltage (Charged Device Model)
T
= 25 °C
A
conforming to AEC-Q100-002
= 25 °C
T
A
conforming to AEC-Q100-003
= 25 °C
T
A
conforming to AEC-Q100-011
H1C 2000
M2 200
500
C3A
750 (corners)
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 35. Latch-up results
Unit
V
Symbol C Parameter Conditions Class
= 125 °C
T
LU CC T Static latch-up class
A
conforming to JESD 78
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 9 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.
Ta bl e 3 6 provides the parameter description of 4 MHz to 16 MHz crystals used for the
design simulations.
II level A
52/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Figure 9. Crystal oscillator and resonator connection scheme
EXTAL
C1
EXTAL
Crystal
XTAL
V
DD
I
R
DEVICE
C2
XTAL
EXTAL
DEVICE
Resonator
XTAL
DEVICE
Notes:
1. XTAL/EXTAL must not be directly used to drive external circuits
2. A series resistor may be required, according to crystal oscillator supplier recommendations.
Table 36. Crystal description
Nominal
frequency
(MHz)
NDK
crystal
reference
Crystal
equivalent
series
resistance
(ESR) Ω
Crystal
motional
capacitance
(C
) fF
m
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C
1=C2
(pF)
(1)
4 NX8045GB 300 2.68 591.0 21 2.93
8
300 2.46 160.7 17 3.01
10 150 2.93 86.6 15 2.91
Shunt
capacitance
between
xtalout and
xtalin
(2)
(pF)
C0
12 120 3.11 56.5 15 2.93
NX5032GA
16 120 3.90 25.3 10 3.00
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).
Doc ID 16315 Rev 5 53/82
Electrical characteristics SPC560D30x, SPC560D40x
Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram
S_MTRANS bit (ME_GS register)
‘1’
‘0’
V
V
FXOSC
V
FXOSCOP
XTAL
T
FXOSCSU
90%
10%
valid internal clock
1/f
FXOSC
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol C Parameter Conditions
(1)
Value
Min Typ Max
Fast external crystal
f
FXOSC
SR —
oscillator frequency
CC C
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
—4.016.0MHz
2.2 8.2
OSCILLATOR_MARGIN = 0
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0 OSCILLATOR_MARGIN = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
2.0 7.4
2.7 9.7
g
mFXOSC
CC P
Fast external crystal oscillator transconductance
CC C
OSCILLATOR_MARGIN = 1
V
= 5.0 V ± 10%,
CC C
DD
PAD3V5V = 0
2.5 9.2
OSCILLATOR_MARGIN = 1
f
= 4 MHz,
V
FXOSC
Oscillation amplitude at
CC T
EXTAL
OSC
OSCILLATOR_MARGIN = 0
= 16 MHz,
f
OSC
OSCILLATOR_MARGIN = 1
1.3
1.3
Unit
mA/V
V
V
FXOSCOP
I
FXOSC
t
FXOSCSU
CC P Oscillation operating point 0.95 V
(2)
Fast external crystal
CC T
oscillator consumption
Fast external crystal
CC T
oscillator start-up time
——23mA
= 4 MHz,
f
OSC
OSCILLATOR_MARGIN = 0
= 16 MHz,
f
OSC
OSCILLATOR_MARGIN
54/82 Doc ID 16315 Rev 5
= 1
—— 6
ms
——1.8
SPC560D30x, SPC560D40x Electrical characteristics
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)
Value
Symbol C Parameter Conditions
(1)
Min Typ Max
V
IH
V
IL
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).
Input high level CMOS
SR P
(Schmitt Trigger)
Input low level CMOS
SR P
(Schmitt Trigger)
Oscillator bypass mode 0.65V
DD
—VDD+0.4 V
Oscillator bypass mode −0.4 0.35V
DD

4.14 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.
Table 38. FMPLL electrical characteristics
Symbol C Parameter Conditions
f
PLLIN
Δ
PLLIN
SR — FMPLL reference clock
FMPLL reference clock duty
SR —
cycle
(3)
(3)
(2)
(1)
Val ue
Min Typ Max
—448MHz
—4060%
Unit
V
Unit
f
PLLOUT
f
VCO
f
t
Δt
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional
4. Frequency modulation is considered ±4%.
CC D FMPLL output clock frequency 16 48 MHz
VCO frequency without
(4)
frequency modulation
CC P
VCO frequency with frequency modulation
f
SR — System clock frequency 48 MHz
CPU
CC P Free-running frequency 20 150 MHz
FREE
CC P FMPLL lock time Stable oscillator (f
LOCK
= 16 MHz (resonator),
f
CC — FMPLL long term jitter
LT JI T
CC C FMPLL consumption TA = 25 °C 4 mA
I
PLL
mode. When bypass mode is used, oscillator input clock should verify f
PLLIN
f
at 48 MHz, 4000 cycles
PLLCLK
—256512
—245533
= 16 MHz) 40 100 µs
PLLIN
10 ns
PLLIN
and Δ
PLLIN
.
MHz
Doc ID 16315 Rev 5 55/82
Electrical characteristics SPC560D30x, SPC560D40x

4.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device.
Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions
(2)
(1)
Val ue
Unit
Min Typ Max
f
FIRC
I
FIRCRUN
I
FIRCPWD
I
FIRCSTOP
t
FIRCSU
Δ
FIRCPRE
Δ
FIRCTRIM
CC P
Fast internal RC oscillator high frequency
SR — 12 20
(3)
Fast internal RC oscillator high
CC T
frequency current in running
TA = 25 °C, trimmed 16
TA = 25 °C, trimmed 200 µA
mode
Fast internal RC oscillator high
CC D
frequency current in power
TA = 25 °C 10 µA
down mode
sysclk = off 500
Fast internal RC oscillator high
CC T
frequency and system clock current in stop mode
TA = 25 °C
sysclk = 2 MHz 600
sysclk = 4 MHz 700
sysclk = 8 MHz 900
sysclk = 16 MHz 1250
Fast internal RC oscillator start-
CC C
up time
= 5.0 V ± 10% 1.1 2.0 µs
V
DD
Fast internal RC oscillator
CC C
precision after software trimming of f
Fast internal RC oscillator
CC C
trimming step
FIRC
TA = 25 °C −1— 1%
TA = 25 °C 1.6 %
MHz
µA
Fast internal RC oscillator variation in temperature and
Δ
FIRCVAR
CC C
supply with respect to f
= 55 °C in high-frequency
T
A
FIRC
at
5— 5%
configuration
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
56/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
4.16 Slow internal RC oscillator (128 kHz) electrical
characteristics
The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module.

Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics

Symbol C Parameter Conditions
(2)
(1)
Value
Unit
Min Typ Max
f
SIRC
I
SIRC
t
SIRCSU
Δ
SIRCPRE
Δ
SIRCTRIM
CC P
Slow internal RC oscillator low frequency
SR — 100 150
(3)
Slow internal RC oscillator low
CC C
frequency current
Slow internal RC oscillator start-up
CC P
time
Slow internal RC oscillator precision
CC C
after software trimming of f
Slow internal RC oscillator trimming
CC C
step
SIRC
TA = 25 °C, trimmed 128
TA = 25 °C, trimmed 5 µA
TA = 25 °C, VDD = 5.0 V ± 10% — 8 12 µs
TA = 25 °C −2— 2
——2.7
Slow internal RC oscillator variation
Δ
SIRCVAR
CC P
respect to f
at TA= 55 °C in high
SIRC
High frequency configuration −10 10 %
in temperature and supply with
frequency configuration
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
kHz
%
Doc ID 16315 Rev 5 57/82
Electrical characteristics SPC560D30x, SPC560D40x

4.17 ADC electrical characteristics

4.17.1 Introduction

The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital converter.
Figure 11. ADC characteristics and error definitions
code out
1023
1022
1021
1020
1019
1018
Offset Error (EO)
1 LSB ideal = V
(2)
7
(1)
6
5
(5)
4
3
2
(4)
(3)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
Gain Error (E
/ 1024
DD_ADC
)
G
1
0
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
Offset Error (E
O
)
1 LSB (ideal)
V
(LSB
in(A)

4.17.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.
58/82 Doc ID 16315 Rev 5
ideal
)
SPC560D30x, SPC560D40x Electrical characteristics
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C
being substantially a switched capacitance, with a frequency
S
equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C 330 kΩ is obtained (R
= 1 / (fc*CS), where fc represents the conversion rate at the
EQ
equal to 3 pF, a resistance of
S
considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C
) and the sum of RS + RF + RL + RSW + RAD, the external
S
circuit must be designed to respect the Equation 4:
Equation 4:
RSRFRLR
+++ +
---------------------------------------------------------------------------
V
A
R
EQ
SWRAD
<
1
-- -LSB 2
Equation 4 generates a constraint for external network design, in particular on a resistive
path. Internal switch resistances (R
and RAD) can be neglected with respect to external
SW
resistances.
Doc ID 16315 Rev 5 59/82
Electrical characteristics SPC560D30x, SPC560D40x
Figure 12. Input equivalent circuit (precise channels)
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
V
DD
Source Filter Current Limiter
Channel
Selection
Sampling
R
S
V
A
R
F
C
F
R
L
C
P1
RS: Source impedance
R
: Filter resistance
F
C
: Filter capacitance
F
R
: Current limiter resistance
L
R
: Channel selection switch impedance
SW1
R
: Sampling switch impedance
AD
C
: Pin capacitance (two contributions, C
P
C
: Sampling capacitance
S
and CP2)
P1
Figure 13. Input equivalent circuit (extended channels)
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
Source Filter Current Limiter
R
SW1
C
P2
V
DD
Channel
Extended
Selection
Switch
R
AD
Sampling
C
S
R
S
V
A
R
F
C
F
R
L
C
P1
RS: Source impedance
R
: Filter resistance
F
C
: Filter capacitance
F
R
: Current limiter resistance
L
R
: Channel selection switch impedance (two contributions, R
SW1
R
: Sampling switch impedance
AD
C
: Pin capacitance (two contributions, CP1, CP2 and CP3)
P
C
: Sampling capacitance
S
SW1
and R
60/82 Doc ID 16315 Rev 5
SW2
R
SW1
C
P3
R
SW2
C
P2
R
AD
C
S
)
SPC560D30x, SPC560D40x Electrical characteristics
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C
, CP1 and C
F
are initially charged at the source voltage VA (refer to the
P2
equivalent circuit in Figure 13): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).
Figure 14. Transient behavior during sampling phase
V
CS
V
A
V
A2
V
A1
Voltage transient on C
1
2
S
t
s
ΔV < 0.5 LSB
τ1 < (RSW + RAD) CS << t
τ2 = RL (CS + CP1 + CP2)
t
s
In particular two different transient periods can be distinguished:
1. A first and quick charge transfer from the internal capacitance C sampling capacitance C
occurs (CS is supposed initially completely discharged):
S
and CP2 to the
P1
considering a worst case (since the time constant in reality would be faster) in which C
is reported in parallel to C
P2
C
are in series, and the time constant is
S
(call CP = CP1 + CP2), the two capacitances CP and
P1
Equation 5:
CPC
τ
R
1
+()=
SWRAD
--------------------- -
CPCS+
S
Equation 5 can again be simplified considering only CS as an additional worst
condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t
is always much
s
longer than the internal time constant:
Equation 6:
The charge of C voltage V
on the capacitance according to Equation 7:
A1
τ1R
and CP2 is redistributed also on CS, determining a new value of the
P1
+()< C
SWRAD
Equation 7:
V
A1CSCP1CP2
++() V
2. A second charge transfer involves also C capacitance) through the resistance R and C
were in parallel to CP1 (since the time constant in reality would be faster), the
S
: again considering the worst case in which CP2
L
time constant is:
Doc ID 16315 Rev 5 61/82
t
«
s
S
C
A
(that is typically bigger than the on-chip
F
+()=
P1CP2
Electrical characteristics SPC560D30x, SPC560D40x
Equation 8:
< C
τ2R
L
++()
SCP1CP2
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t R
sizing is obtained:
L
, a constraints on
s
Equation 9:
10 τ
10 R
Of course, R combination with R
shall be sized also according to the current limitation constraints, in
L
(source impedance) and RF (filter resistance). Being CF
S
definitively bigger than C
2
, CP2 and CS, then the final voltage V
P1
LCSCP1CP2
charge transfer transient) will be much higher than V (charge balance assuming now C
already charged at VA1):
S
++()= t
<
. Equation 10 must be respected
A1
s
(at the end of the
A2
Equation 10:
V
A2CSCP1CP2CF
+++() VAC
V
+CP1CP2+C
F
A1
+()=
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C
with respect to the ideal source VA; the time constant RFCF of the filter is very high with
S
respect to the sampling time (t
filter, is not able to provide the extra charge to compensate the voltage drop on
FCF
). The filter is typically designed to act as anti-aliasing.
s
Figure 15. Spectral representation of input signal
Analog source bandwidth (V
f
0
Anti-aliasing filter (f
= RC filter pole)
F
Noise
)
A
f
tc< 2 RFCF (conversion rate vs. filter pole)
= f0 (anti-aliasing filtering condition)
f
F
2 f0< fC (Nyquist)
Sampled signal spectrum (f
= conversion rate)
C
f
F
Calling f
the bandwidth of the source signal (and as a consequence the cut-off frequency of
0
the anti-aliasing filter, f least 2f
; it means that the constant time of the filter is greater than or at least equal to twice
0
the conversion period (t
f
), according to the Nyquist theorem the conversion rate fC must be at
F
). Again the conversion period tc is longer than the sampling time ts,
c
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R
62/82 Doc ID 16315 Rev 5
is definitively much higher than the sampling time ts, so the
FCF
f
0
f
C
f
SPC560D30x, SPC560D40x Electrical characteristics
charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C
; from the two charge balance equations
S
S
Equation 11:
V
A2
----------- ­V
A
C
+C
P1CP2
------------------------------------------------------- -= C
+CFC
P1CP2
+
F
++
S
:
From this formula, in the worst case (when V assuming to accept a maximum error of half a count, a constraint is evident on C
Equation 12:
CF2048 C

4.17.3 ADC electrical characteristics

Table 41. ADC input leakage current
Symbol C Parameter Conditions
I
LKG
Table 42. ADC conversion characteristics
Symbol C Parameter Conditions
C
CT
CC
Input leakage
CT
current
PT
TA= 40 °C
=25 °C 1
A
= 105 °C 8 200
A
= 125 °C 45 400
A
No current injection on adjacent pin
is maximum, that is for instance 5 V),
A
>
S
Value
Min Typ Max
—1—
(1)
Value
Min Typ Max
value:
F
Unit
nA
Unit
V
SS_ADC
V
DD_ADC
V
AINx
f
ADC
Voltage on VSS_HV_ADC (ADC
SR —
reference) pin with respect to ground
(2)
)
(V
SS
Voltage on VDD_HV_ADC pin
SR —
(ADC reference) with respect to ground
)
(V
SS
SR — Analog input voltage
(3)
SR — ADC analog frequency
0.1 0.1 V
—V
—V
0.1 VDD+0.1 V
DD
SS_ADC
0.1 — V
DD_ADC
VDD=5.0V 3.33 32 + 4%
VDD=3.3V 3.33 20 + 4%
Doc ID 16315 Rev 5 63/82
+0.1 V
MHz
Electrical characteristics SPC560D30x, SPC560D40x
Table 42. ADC conversion characteristics (continued)
Symbol C Parameter Conditions
Δ
ADC_SYS
t
ADC_PU
SR —
SR — ADC power up delay ——1.5 µs
CC
ADC clock duty cycle (ipg_clk)
Sampling time
T
VDD= 3.3 V
(5)
ADCLKSEL = 1
= 20 MHz,
f
ADC
INPSAMP = 12
= 3.33 MHz,
f
ADC
INPSAMP = 255
t
s
Sampling time
T
VDD = 5.0 V
(5)
f
= 24 MHz,
ADC
INPSAMP = 13
= 3.33 MHz,
f
ADC
INPSAMP = 255
= 20 MHz,
f
ADC
INPCMP = 0
= 13.33 MHz,
f
ADC
Conversion time
P
VDD= 3.3 V
(6)
INPCMP = 0
CC
t
c
Conversion time
P
VDD = 5.0 V
(6)
f
= 32 MHz,
ADC
INPCMP = 0
= 13.33 MHz,
f
ADC
INPCMP = 0
C
CC D
S
ADC input sampling capacitance
(4)
(1)
Value
Unit
Min Typ Max
45 —55%
600 ns
76.2 µs
500 ns
76.2 µs
2.4
µs
——3.6
1.5
µs
——3.6
5 pF
C
C
C
R
R
R
I
CC D
P1
CC D
P2
CC D
P3
CC D
SW1
CC D
SW2
CC D
AD
SR — Input current Injection
INJ
INLP CC T
ADC input pin capacitance 1
ADC input pin capacitance 2
ADC input pin capacitance 3
Internal resistance of analog source
Internal resistance of analog source
Internal resistance of analog source
Absolute Integral non­linearity-precise channels
3 pF
1 pF
——
1.5 pF
1 kΩ
——2 kΩ
Current injection on one ADC input, different from the converted one
——
VDD =
3.3 V ± 10%
VDD =
5.0 V ± 10%
5— 5
5 5
0.3 kΩ
mA
No overload —1 3LSB
64/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Table 42. ADC conversion characteristics (continued)
Value
Symbol C Parameter Conditions
(1)
Min Typ Max
Absolute Integral non-
INLX CC T
linearity-extended
No overload —1.5 5LSB
channels
DNL CC T
Absolute Differential non-linearity
No overload —0.5 1LSB
EO CC T Absolute Offset error —2 — LSB
E
CC T Absolute Gain error —2— LSB
G
(7)
TUEP
(7)
TUEX
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Analog and digital V
3. V
4. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal
5. During the sampling time the input capacitance C
6. This parameter does not include the sampling time t
7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
may exceed V
AINx
will be clamped respectively to 0x000 or 0xFFF.
divider by 2.
resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sampling time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t
depend on programming.
S
the result’s register with the conversion result.
combination of Offset, Gain and Integral Linearity errors.
P Total unadjusted error
CC
CC
for precise channels,
T With current injection –8 8
input only pins
T
Total unadjusted error for extended channel
T With current injection –12 12
must be common (to be tied together externally).
SS
and V
SS_ADC
DD_ADC
Without current injection –6 6
Without current injection –10 10
limits, remaining on absolute maximum ratings, but the results of the conversion
can be charged/discharged by the external source. The internal
S
, but only the time for determining the digital result and the time to load
S
Unit
LSB
LSB

4.18 On-chip peripherals

4.18.1 Current consumption

Table 43. On-chip peripherals current consumption
Symbol C Parameter Conditions Typical value
500 Kbyte/s Total (static + dynamic)
I
DD_BV(CAN)
CAN (FlexCAN) supply
CC T
current on V
DD_BV
125 Kbyte/s 8 * f
Doc ID 16315 Rev 5 65/82
(1)
8 * f
consumption: – FlexCAN in loop-back
mode
– XTAL at 8 MHz used as
CAN engine clock source
– Message sending period
is 580 µs
periph
periph
(2)
Unit
+ 85 µA
+ 27 µA
Electrical characteristics SPC560D30x, SPC560D40x
Table 43. On-chip peripherals current consumption
(1)
(continued)
Symbol C Parameter Conditions Typical value
Static consumption:
I
DD_BV(eMIOS)
eMIOS supply current
CC T
on V
DD_BV
– eMIOS channel OFF – Global prescaler enabled
Dynamic consumption: – It does not change varying the
29 * f
periph
A
frequency (0.003 mA)
Total (static + dynamic) consumption: – LIN mode – Baudrate: 20 Kbyte/s
5 * f
periph
+ 31 µA
I
DD_BV(SCI)
SCI (LINFlex) supply
CC T
current on V
DD_BV
Ballast static consumption (only clocked) 1 µA
Ballast dynamic consumption (continuous
I
DD_BV(SPI)
SPI (DSPI) supply
CC T
current on V
DD_BV
communication): – Baudrate: 2 Mbit/s
16 * f
periph
– Transmission every 8 µs – Frame: 16 bits
I
DD_BV(ADC)
I
DD_HV_ADC(ADC)
ADC supply current on
CC T
V
DD_BV
ADC supply current on
CC T
V
DD_HV_ADC
VDD = 5.5 V
VDD = 5.5 V
Ballast static consumption (no conversion)
Ballast dynamic consumption (continuous conversion)
(3)
Analog static consumption (no conversion)
Analog dynamic consumption (continuous
41 * f
5 * f
2 * f
75 * f
periph
periph
periph
periph
+ 32 µA
conversion)
I
DD_HV(FLASH)
I
DD_HV(PLL)
1. Operating conditions: TA = 25 °C, f
2. f
3. During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e.,
is an absolute value.
periph
(41 + 5) * f
periph
.
CFlash + DFlash supply
CC T
current on V
PLL supply current on
CC T
V
DD_HV
DD_HV
= 8 MHz to 48 MHz.
periph
VDD = 5.5 V 8.21 mA
VDD = 5.5 V 30 * f
periph
(2)
Unit
µA
µA
µA
µA
µA
µA
66/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics

4.18.2 DSPI characteristics

Table 44. DSPI characteristics
(1)
DSPI0/DSPI1
No. Symbol C Parameter
Min Typ Max
Master mode (MTFE = 0)
Slave mode (MTFE = 0)
Master mode (MTFE = 1)
Slave mode (MTFE = 1)
125
125
83
83
1t
—f
SCK
DSPI
D
D
SR
SCK cycle time
D
D
SR D DSPI digital controller frequency f
Internal delay between pad
Δt
CSC
CC D
associated to SCK and pad associated to CSn in master
Master mode 130
mode
Internal delay between pad
Δt
ASC
CC D
associated to SCK and pad associated to CSn in master
Master mode 130
mode for CSn1→1
2t
3t
4t
5t
6t
9t
10 t
11 t
12 t
1. Operating conditions: C
2. Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad.
3. The t DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt
4. The t DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt
5. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR.
6. SCK and SOUT configured as MEDIUM pad.
(3)
CSCext
ASCext
SDC
SUI
SUO
HO
CSC
ASC
SR D CS to SCK delay Slave mode 32 ns
(4)
SR D After SCK delay Slave mode 1/f
CC D
SR D Slave mode t
SR D Slave access time 1/f
A
SR D Slave SOUT disable time 7 ns
DI
SCK duty cycle
SR D Data setup time for inputs
SR D Data hold time for inputs
HI
(6)
CC D Data valid after SCK edge
(6)
CC D Data hold time for outputs
= 10 to 50 pF, SlewIN = 3.5 to 15 ns.
OUT
delay value is configurable through a register. When configuring t
delay value is configurable through a register. When configuring t
Master mode t
Master mode 43
Slave mode 5
Master mode 0
Slave mode 2
Master mode 32
Slave mode 52
Master mode 0
Slave mode 8
+ 5 ns
DSPI
/2
SCK
/2
SCK
+70 ns
DSPI
(5)
(using PCSSCK and CSSCK fields in
CSC
(using PASC and ASC fields in
ASC
CSC
ASC
——
to ensure positive t
to ensure positive t
CPU
(2)
(2)
CSCext
ASCext
Unit
ns
MHz
ns
ns
ns
ns
ns
ns
ns
.
.
Doc ID 16315 Rev 5 67/82
Electrical characteristics SPC560D30x, SPC560D40x
Figure 16. DSPI classic SPI timing – master, CPHA = 0
2
PCSx
4
SCK Output (CPOL = 0)
SCK Output (CPOL = 1)
SIN
SOUT
First Data
4
10
9
Data
12
First Data Data Last Data
Note: Numbers shown reference Ta bl e 4 4.
Last Data
Figure 17. DSPI classic SPI timing – master, CPHA = 1
3
1
11
PCSx
SCK Output (CPOL = 0)
SCK Output (CPOL = 1)
SIN
SOUT
9
First Data
First Data
10
Data
12
Data
Note: Numbers shown reference Tab le 4 4.
Last Data
11
Last Data
68/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Electrical characteristics
Figure 18. DSPI classic SPI timing – slave, CPHA = 0
2
SS
4
10
4
12
Data
Data
Note: Numbers shown reference Tab l e 4 4 .
Last Data
Last Data
SCK Input (CPOL = 0)
SCK Input (CPOL = 1)
SOUT
SIN
5
First Data
9
First Data
Figure 19. DSPI classic SPI timing – slave, CPHA = 1
11
3
1
6
SS
SCK Input (CPOL = 0)
SCK Input (CPOL = 1)
SOUT
SIN
11
5
First Data
9
First Data
10
Note: Numbers shown reference Tab l e 4 4 .
Data
Data
12
Last Data
Last Data
6
Doc ID 16315 Rev 5 69/82
Electrical characteristics SPC560D30x, SPC560D40x
Figure 20. DSPI modified transfer format timing – master, CPHA = 0
3
PCSx
SCK Output (CPOL = 0)
SCK Output (CPOL = 1)
SIN
SOUT
2
9
First Data
12
First Data
4
Data
11
Data
Note: Numbers shown reference Tab le 4 4.
1
4
10
Last Data
Last Data
Figure 21. DSPI modified transfer format timing – master, CPHA = 1
PCSx
SCK Output (CPOL = 0)
SCK Output (CPOL = 1)
9
SIN
SOUT
70/82 Doc ID 16315 Rev 5
First Data
First Data
Note: Numbers shown reference Ta bl e 4 4 .
12
Data
Data
10
Last Data
11
Last Data
SPC560D30x, SPC560D40x Electrical characteristics
Figure 22. DSPI modified transfer format timing – slave, CPHA = 0
3
1
4
12
SS
SCK Input (CPOL = 0)
SCK Input (CPOL = 1)
SOUT
SIN
5
2
First Data
9
First Data
4
11
Data
Data
Note: Numbers shown reference Ta bl e 4 4 .
Last Data
10
Last Data
Figure 23. DSPI modified transfer format timing – slave, CPHA = 1
6
SS
SCK Input (CPOL = 0)
SCK Input (CPOL = 1)
SOUT
SIN
11
5
First Data
9
First Data
10
Data
Data
Note: Numbers shown reference Tab l e 4 4 .
12
Last Data
Last Data
6
Doc ID 16315 Rev 5 71/82
Electrical characteristics SPC560D30x, SPC560D40x

4.18.3 JTAG characteristics

Table 45. JTAG characteristics
No. Symbol C Parameter
1t
JCYC
2t
3t
4t
5t
6t
7t
TDIS
TDIH
TMSS
TMSH
TDOV
TDOI
CC D TCK cycle time 83.33 ns
CC D TDI setup time 15 ns
CC D TDI hold time 5 ns
CC D TMS setup time 15 ns
CC D TMS hold time 5 ns
CC D TCK low to TDO valid 49 ns
CC D TCK low to TDO invalid 6 ns
Figure 24. Timing diagram – JTAG boundary scan
TCK
Value
Min Typ Max
2/4
3/5
Unit
DATA IN PUTS
DATA OUTPUTS
DATA OUTPUTS
INPUT DATA VALID
6
OUTPUT DATA VALID
7
Note: Numbers shown reference Tab l e 4 5 .
72/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package characteristics

5 Package characteristics

5.1 ECOPACK
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.

5.2 Package mechanical data

5.2.1 LQFP100

Figure 25. LQFP100 mechanical drawing
Doc ID 16315 Rev 5 73/82
Package characteristics SPC560D30x, SPC560D40x
Table 46. LQFP100 mechanical data
mm inches
Symbol
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
(1)
k 0.0 ° 3.5 ° 7.0 ° 0.0 ° 3.5 ° 7.0 °
Tolerance mm inches
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
74/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Package characteristics

5.2.2 LQFP64

Figure 26. LQFP64 mechanical drawing
D
C
ccc
A2
A
48
D1
D3
33
49
b
64
Pin 1 identification
32
E3
E1 E
A1 K
17
1
Table 47. LQFP64 mechanical data
16
c
5W_ME
mm inches
(1)
Symbol
Min Typ Max Min Typ Max
A 1.6 0.0630
A1 0.05 0.15 0.0020 0.0059
A2 1.35 1.4 1.45 0.0531 0.0551 0.0571
L1
L
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.2 0.0035 0.0079
D 11.8 12 12.2 0.4646 0.4724 0.4803
D1 9.8 10 10.2 0.3858 0.3937 0.4016
D3 7.5 0.2953
E 11.8 12 12.2 0.4646 0.4724 0.4803
E1 9.8 10 10.2 0.3858 0.3937 0.4016
E3 7.5 0.2953
e 0.5 0.0197
L 0.45 0.6 0.75 0.0177 0.0236 0.0295
L1 1 0.0394
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc 0.08 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 16315 Rev 5 75/82
Ordering information SPC560D30x, SPC560D40x

6 Ordering information

Figure 27. Ordering information scheme
Example code:
SPC56 40 Y0D CL3 4E0
Product identifier
Memory PackingCore Family
TemperaturePackage Custom ver sion
Y = Tray X = Tape and Reel 90°
3E0 = 32 MHz EEPROM 5V/3V 4E0 = 48 MHz EEPROM 5V/3V
B = –40 to 105 °C C = –40 to 125 °C
L1 = LQFP64 L3 = LQFP100
40 = 256 KB 30 = 128 KB
D = Access family
0 = e200z0h
SPC56 = Power Architecture in 90 nm
76/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Abbreviations

Appendix A Abbreviations

Ta bl e 4 8 lists abbreviations used in this document.
Table 48. Abbreviations
Abbreviation Meaning
APU Auxilliary processing unit
CMOS Complementary metal–oxide–semiconductor
CPHA Clock phase
CPOL Clock polarity
CS Peripheral chip select
DAOC Double action output compare
ECC Error code correction
EVTO Event out
GPIO General purpose input/output
IPM Input period measurement
IPWM Input pulse width measurement
MB Message buffer
MC Modulus counter
MCB Modulus counter buffered (up / down)
MCKO Message clock out
MDO Message data out
MSEO Message start/end out
MTFE Modified timing format enable
NVUSRO Non-volatile user options register
OPWFMB Output pulse width and frequency modulation buffered
OPWMB Output pulse width modulation buffered
OPWMCB Center aligned output pulse width modulation buffered with dead time
OPWMT Output pulse width modulation trigger
PWM Pulse width modulation
SAIC Single action input capture
SAOC Single action output compare
SCK Serial communications clock
SOUT Serial data out
TBD To be defined
TCK Test clock input
TDI Test data input
Doc ID 16315 Rev 5 77/82
Abbreviations SPC560D30x, SPC560D40x
Table 48. Abbreviations (continued)
Abbreviation Meaning
TDO Test data output
TMS Test mode select
78/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Revision history

Revision history

Ta bl e 4 9 summarizes revisions to this document.
Table 49. Document revision history
Date Revision Changes
09-Jul-2009 1 Initial release.
Updated the following tables:
- Absolute maximum ratings
- Low voltage power domain electrical characteristics;
18-Feb-2010 2
10-Aug-2010 3
- On-chip peripherals current consumption
- DSPI characteristics;
- JTAG characteristics;
- ADC conversion characteristics; Inserted a note on “Flash power supply DC characteristics” section.
“Features” section: Updated information concerning eMIOS, ADC, LINFlex, Nexus and low power capabilities
“SPC560D30, SPC560D40 device comparison” table: updated the “Execution speed” row
“SPC560D30, SPC560D40 series block diagram” figure: – updated max number of Crossbar Switches – updated Legend “SPC560D30, SPC560D40 series block summary” table: added
contents concernig the eDMA block “LQFP100 pin configuration (top view)” figure: – removed alternate functions – updated supply pins “LQFP64 pin configuration (top view)” figure: removed alternate
functions Added “Pin muxing” section “NVUSRO register” section: Deleted “NVUSRO[WATCHDOG_EN]
field description“ section “Recommended operating conditions (3.3 V)” table: –TV – In footnote No. 3, changed capacitance value between V
: deleted min value
DD
V
SS_LV
DD_BV
and
“Recommended operating conditions (5.0 V)” table: deleted TVDD min value
“LQFP thermal characteristics” table: changed R
θJC
values
“I/O input DC electrical characteristics” table:
: updated max value
–W
FI
: updated min value
–W
NFI
“I/O consumption” table: removed I
DYNSEG
row Added “I/O weight” table “Program and erase specifications (Code Flash)” table: deleted
Bank_C
row
T
Doc ID 16315 Rev 5 79/82
Revision history SPC560D30x, SPC560D40x
Table 49. Document revision history (continued)
Date Revision Changes
Updated the following tables: – “Voltage regulator electrical characteristics” – “Low voltage monitor electrical characteristics” – “Low voltage power domain electrical characteristics” – “Start-up time/Switch-off time” – “Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics” – “FMPLL electrical characteristics” – “Fast internal RC oscillator (16 MHz) electrical characteristics” – “ADC conversion characteristics” – “On-chip peripherals current consumption” – “DSPI characteristics” “DSPI characteristics” section: removed “DSPI PCS strobe (PCSS)
timing” figure Updated “Order codes” table Added “Order codes for engineering samples” table Updated “Commercial product code structure” table
Formatting and editorial changes throughout Device comparison table: for the “Total timer I/O eMIOS”, changed
“13 ch” to “14 ch”
10-Aug-2010
3
(cont.)
16-Sep-2011 4
SPC560D30/SPC560D40 series block summary: – added definition for “AUTOSAR” acronym – changed “System watchdog timer” to “Software watchdog timer” LQFP64 pin configuration (top view): changed pin 6 from VPP_TEST
to VSS_HV Added section “Pad configuration during reset phases” Added section “Voltage supply pins” Added section “Pad types” Added section “System pins” Renamed and updated section “Functional ports” (was previously
section “Pin muxing”); update includes replacing all instances of WKUP with WKPU (WKPU is the correct abbreviation for Wakeup Unit)
Section “NVUSRO register”: edited content to separate configuration into electrical parameters and digital functionality
Added section “NVUSRO[WATCHDOG_EN] field description” Absolute maximum ratings: Removed “C” column from table Replaced “TBD” with “—” in T
min value cell of 3.3 V and 5 V
VDD
recommended operating conditions tables LQFP thermal characteristics: removed R
single layer board
θJB
conditions; updated footnote 4 I/O input DC electrical characteristics: removed footnote “All values
need to be confirmed during device validation”; updated I
LKG
characteristics
80/82 Doc ID 16315 Rev 5
SPC560D30x, SPC560D40x Revision history
Table 49. Document revision history (continued)
Date Revision Changes
MEDIUM configuration output buffer electrical characteristics:
= 100 µA” to “IOL= 100 µA” in VOL conditions
OH
values
esus
EMI
values
16-Sep-2011
4
(cont.)
changed “I I/O consumption: replaced instances of “Root medium square” with
“Root mean square” Updated section “Voltage regulator electrical characteristics” Section “Low voltage detector electrical characteristics”: changed
title (was “Voltage monitor electrical characteristics”); added a fifth LVD (LVDHV3B); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of “Low voltage monitor” with “Low voltage detector”; deleted note referencing power domain No. 2 (this domain is not present on the device); updated electrical characteristics table
Updated and renamed section “Power consumption” (was previously section “Low voltage domain power consumption”)
Program and erase specifications (code flash): updated symbols; updated t
Updated Flash memory read access timing EMI radiated emission measurement: updated S Updated FMPLL electrical characteristics
01-Dec-2011 5
Crystal oscillator and resonator connection scheme: inserted footnote about possibly requiring a series resistor
Fast internal RC oscillator (16 MHz) electrical characteristics: updated t
Section “Input impedance and ADC accuracy”: changed “V
FIRCSU
values
A/VA2
“VA2/VA” in Equation 13 ADC conversion characteristics: – updated conditions for sampling time V
= 5.0 V
DD
– updated conditions for conversion time VDD =5.0 V
Updated Abbreviations
Removed Order codes tables.
Replaced “TBD” with “8.21 mA” in I
DD_HV(FLASH)
cell of On-chip
peripherals current consumption table
” to
Doc ID 16315 Rev 5 81/82
SPC560D30x, SPC560D40x
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
82/82 Doc ID 16315 Rev 5
Loading...