Datasheet RHF484 Datasheet (ST)

RHF484
Rad-hard precision quad operational amplifier
Features
High radiation immunity: 300 kRad TID at high
dose rate
ELDRS-free up to 100 krad
SEL immune at LET = 120 MeV.cm²/mg at
125°C
SET characterized
Hermetic package
Rail-to-rail input/output
8 MHz gain bandwidth product
Low input offset voltage: 60 µV typ
Supply current: 2.2 mA typ per amplifier
Operating from 4 to 14 V
Input bias current: 6 nA typ
QLM-V qualified under smd 5962-08222
Applications
Space probes and satellites
Harsh environment
Description
The RHF484 is a rail-to-rail precision bipolar quad operational amplifier featuring a low input offset voltage and a wide supply voltage.
Ceramic Flat-14W
Pin connections (top view)
The upper metallic lid is not electrically connected to
any pins, nor to the IC die inside the package
Designed to increase tolerance to radiation, the RHF484 is housed in a hermetic 14-pin flat package, making it an ideal product for space applications and harsh environments.

Table 1. Device summary

Reference SMD pin Quality level Temp range Package
RHF484K1
RHF484K-01V 5962F08222 Flight model -
Engineering
model
-55°C to +125°C Flat-14 W Gold 0.70 g
Lead
finish
Mass EPPL
-
Note: Contact your ST sales office for information on specific conditions for products in die form.
April 2011 Doc ID 17351 Rev 1 1/18
www.st.com
18
Absolute maximum ratings and operating conditions RHF484

1 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
V
I
T
T
R
R
ESD HBM: human body model
T
Lead
Supply voltage (+VCC)-(-VCC)18V
CC
Differential input voltage
id
Input voltage
in
Input current 45 mA
in
Storage temperature range -65 to +150 °C
stg
Maximum junction temperature 150 °C
j
Thermal resistance junction to ambient
thja
Flat package, 14 pins
Thermal resistance junction to case
thjc
Flat package, 14 pins
(2)(3)
(1)
(5)
(4)
(4)
±1.2 V
-V
-0.3V to
CC
+VCC +0.3V
V
TBD °C/W
TBD °C/W
2kV
Lead temperature (soldering, 10 sec) 260 °C
Radiation informations
Dose
Low dose rate of 0.01 rad.sec
High dose rate of 50-300 rad.sec
Heavy
ions
1. The differential voltage is the voltage difference between the pins +IN and -IN of a channel.
2. All voltage values, except differential voltage are with respect to network ground terminal.
3. The voltage on either input must never exceed +V
4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

Table 3. Operating conditions

SEL immunity (at 125°C) 120 MeV.cm
SET characterized
-1
-1
CC
100 kRad
300 kRad
+0.3 V nor 16 V.
2
/mg
Symbol Parameter Value Unit
)-(-VCC) Supply voltage 4 to 14
(+V
CC
V
icm
T
oper
1. SEL-free, up to 120 MeV.cm²/mg.
Common-mode input voltage range -VCC to +V
Operating free-air temperature range -55 to +125 °C
2/18 Doc ID 17351 Rev 1
(1)
CC
V
V
RHF484 Electrical characteristics

2 Electrical characteristics

Table 4. +VCC = 7 V, -VCC = 7 V, V
= 0 V, T
icm
= 25°C, loads (RL,CL) connected to GND
amb
(unless otherwise specified)
Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit
DC performance
-55°C 700
V
DV
DI
Vicm = +7 V
io
Offset voltage
Vicm = +0 V
Vicm = -7 V
Input offset voltage drift No load 1 µV/°C
io
I
Input bias current No load
ib
Input offset current temp. drift No load 100 pA/°C
ib
Input offset current
I
io
No load
=0 V
V
out
+25°C 500
+125°C 700
-55°C 500
+25°C 60 300
+125°C 500
-55°C 700
+25°C 500
+125°C 700
-55°C 100
+125°C 100
-55°C 35
+125°C 35
µV
nA+25°C 6 60
nA+25°C 2 15
Differential input capacitance between +IN and -IN
C
in
Input capacitance between +IN (or -IN) and GND
I
Supply current per amplifier No load
CC
CMR Common mode rejection ratio
SVR Supply rejection ratio
+25°C 8
+25°C 2
-55°C 2.9
+125°C 2.9
-55°C 72
No load
< Vicm < +V
-V
CC
CC
+125°C 72
No load From +V
-V
= -2 V to +V
CC
V and -V
= 2 V and
CC
= -7 V
CC
CC
-55°C 80
= 7
+125°C 80
Doc ID 17351 Rev 1 3/18
pF
mA+25°C 2.2 2.9
dB+25°C 72 105
dB+25°C 90 120
Electrical characteristics RHF484
A
Table 4. +VCC = 7 V, -VCC = 7 V, V
= 0 V, T
icm
= 25°C, loads (RL,CL) connected to GND
amb
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit
AC performance
GBP Gain bandwidth product
F
Unity gain frequency RL = 1 kΩ, CL = 100 pF +25°C 5 MHz
u
φm Phase margin
A
Large signal voltage gain
VD
SR Slew rate
e
Equivalent input noise voltage No load, f = 1kHz +25°C 7
n
Vout = 200 mVpp f = 100 kHz
R
=1 kΩ,
L
= 100 pF
C
L
= 1 kΩ, CL = 100 pF
R
L
G = +5
R
= 10 kΩ
L
V
= -6.5 V to 6 V
out
= 1 kΩ
R
L
Vout = -4.8 V to 4.8 V Vout = 4.8 V to -4.8 V
-55°C 3.5
+25°C 6 8
+125°C 3.5
+25°C 50 Degrees
-55°C 60
+125°C 60
-55°C 1.7
+125°C 1.7
MHz
dB+25°C 74 85
V/µs+25°C 2 3.5
nV
-----------­Hz
Equivalent input noise current No load, f = 1 kHz +25°C 0.8
i
n
THD+e
Total harmonic distortion +
n
noise
Output characteristics
V
V
High level output voltage
OH
Low level output voltage
OL
= 13 Vpp,
V
out
RL = 1 kΩ, CL = 100 pF G = -5.1
=14 V, -VCC = 0 V
+V
CC
=1 kΩ
R
L
=14 V, -VCC = 0 V
+V
CC
= 10 kΩ
R
L
=14 V, -VCC = 0 V
+V
CC
=1 kΩ
R
L
=14 V, -VCC = 0 V
+V
CC
RL= 10 kΩ
+25°C 0.01 %
-55°C 13.5
+125°C 13.5
-55°C 13.6
+125°C 13.6
-55°C 0.3
+125°C 0.3
-55°C 0.2
+125°C 0.2
p
-----------­Hz
V+25°C 13.6 13.8
V+25°C 13.8 13.9
V+25°C 0.12 0.2
V+25°C 0.04 0.08
4/18 Doc ID 17351 Rev 1
RHF484 Electrical characteristics
Table 4. +VCC = 7 V, -VCC = 7 V, V
= 0 V, T
icm
= 25°C, loads (RL,CL) connected to GND
amb
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit
-55°C 15
= +V
V
Output sink current
(1)
I
out
Output source current
1. These tests are performed during a very short period of time. Excessive heating can damage the device. In the application,
the junction temperature must never exceed 150°C as specified in Table 2.
out
No load, Vid = -1 V
V
out
No load, Vid = +1 V
= -V
CC
CC
mA+25°C 20 35
+125°C 15
-55°C 10
mA+25°C 15 30
+125°C 10
Doc ID 17351 Rev 1 5/18
Electrical characteristics RHF484
Table 5. +VCC = +2 V, -VCC = -2 V, V
= 0 V, T
icm
= 25°C, loads (RL,CL) connected to GND
amb
(unless otherwise specified)
Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit
DC performance
-55°C 700
+25°C 500
+125°C 700
-55°C 500
+25°C 60 300
+125°C 500
-55°C 700
+25°C 500
+125°C 700
-55°C 100
+125°C 100
-55°C 35
+125°C 35
+25°C 8
+25°C 2
-55°C 2.6
DV
DI
Vicm = +2 V
V
io
Offset voltage
Vicm = +0 V
Vicm = -2 V
Input offset voltage drift No load 1 µV/°C
io
I
Input bias current No load
ib
Input offset current temp. drift No load 100 pA/°C
ib
Input offset current
I
io
No load V
=0 V
out
Differential input capacitance between +IN and -IN
C
in
Input capacitance between +IN (or -IN) and GND
µV
nA+25°C 11 60
nA+25°C 2 15
pF
I
CMR Common mode rejection ratio
Supply current per amplifier No load
CC
No load
< Vicm < +V
-V
CC
CC
6/18 Doc ID 17351 Rev 1
mA+25°C 2 2.6
+125°C 2.6
-55°C 72
dB+25°C 72 95
+125°C 72
RHF484 Electrical characteristics
A
Table 5. +VCC = +2 V, -VCC = -2 V, V
= 0 V, T
icm
= 25°C, loads (RL,CL) connected to GND
amb
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit
AC performance
V
GBP Gain bandwidth product
F
Unity gain frequency RL=1 kΩ, CL= 100 pF +25°C 5 MHz
u
φm Phase margin
A
Large signal voltage gain
VD
SR Slew rate
e
Equivalent input noise voltage No load, f = 1 kHz +25°C 7.5
n
= 200 mVpp
out
f = 100 kHz
=1 kΩ,
R
L
= 100 pF
C
L
=1 kΩ, CL= 100 pF
R
L
G = +5
R
= 10 kΩ
L
V
= -1.5 V to 0.5 V
out
= 1 kΩ
R
L
V
= -1.28 V to 1.28 V
out
= 1.28 V to -1.28 V
V
out
-55°C 3.5
+25°C 6 8
+125°C 3.5
+25°C 50 Degrees
-55°C 60
+125°C 60
-55°C 1.7
+125°C 1.7
MHz
dB+25°C 70 80
V/µs+25°C 2 3.1
nV
-----------­Hz
Equivalent input noise current No load, f = 1 kHz +25°C 0.8
i
n
THD+e
Total harmonic distortion +
n
noise
Output characteristics
V
V
High level output voltage
OH
Low level output voltage
OL
= 3 Vpp,
V
out
RL = 1 kΩ, CL = 100 pF G = -5.1
= 4 V, -VCC = 0 V
+V
CC
=1 kΩ
R
L
= 4 V, -VCC = 0 V
+V
CC
= 10 kΩ
R
L
= 4 V, -VCC = 0 V
+V
CC
=1 kΩ
R
L
= 4 V, -VCC = 0 V
+V
CC
RL= 10 kΩ
+25°C 0.01 %
-55°C 3.75
+125°C 3.75
-55°C 3.75
+125°C 3.75
-55°C 0.2
+125°C 0.2
-55°C 0.1
+125°C 0.1
p
-----------­Hz
V+25°C 3.8 3.9
V+25°C 3.85 3.95
V+25°C 0.05 0.1
V+25°C 0.03 0.07
Doc ID 17351 Rev 1 7/18
Electrical characteristics RHF484
Table 5. +VCC = +2 V, -VCC = -2 V, V
= 0 V, T
icm
= 25°C, loads (RL,CL) connected to GND
amb
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit
= +V
V
Output sink current
out
No load
CC
Vid = -1 V
(1)
I
out
= -V
V
out
Output source current
No load
CC
Vid = +1 V
1. These tests are performed during a very short period of time. Excessive heating can damage the device. In the application,
the junction temperature must never exceed 150°C as specified in Table 2.
-55°C 15
mA+25°C 20 35
+125°C 15
-55°C 10
mA+25°C 15 30
+125°C 10
8/18 Doc ID 17351 Rev 1
RHF484 Electrical characteristics
Figure 1. Input offset voltage distribution Figure 2. Input bias current vs. supply voltage
30
25
20
15
10
Population %
5
0
-300 -200 -100 0 100 200 300
Input offset voltage (uV)
Figure 3. Input bias current vs. Vicm at
V
=4V
CC
1.0
0.5
T= +125°C
0.0
Vio distribution T=25°C Vcc=14V, Vicm=7V
40
20
0
-20
Input bias current (nA)
-40
4456678891010 11 1212 13 1414
T=-55°C
T=25°C
Follower configuration
Supply voltage (V)
V
icm=Vcc
Figure 4. Input bias current vs. Vicm at
VCC=14V
1.0
0.5
A)
T= +125°C
μ
0.0
T=125°C
/2
-0.5
-1.0
Input bias current (μA)
-1.5
-2.0
T= +25°C
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Input Common Mode Voltage (V)
T= -55°C
-Vcc = -2V +Vcc = +2V
Figure 5. Supply current vs. Vicm in follower
configuration at V
4.04.0
3.53.5
3.03.0
2.52.5
2.02.0
1.51.5
1.01.0
0.50.5
Supply current per channel (mA)
0.00.0
-2-2 -1-1 001122
Input Common Mode Voltage (V)
T=125°C
Follower configuration
-Vcc=-2V +Vcc=+2V
T=25°C
CC
T=-55°C
=4V
-0.5
-1.0
Input bias current (
-1.5
-2.0
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
T= +25°C
T= -55°C
Input Common Mode Voltage (V)
-Vcc = -7V +Vcc = 7V
Figure 6. Supply current vs. Vicm in follower
configuration at VCC=14V
4.54.5
4.04.0
3.53.5
3.03.0
2.52.5
2.02.0
1.51.5
1.01.0
0.50.5
Supply current per channel (mA)
0.00.0
Follower configuration
-Vcc=-7V +Vcc=+7V
T=25°C
T=-55°C
-7 -6-6 -5 -4-4 -3 -2-2 -1 001 223445667
Input Common Mode Voltage (V)
T=125°C
Doc ID 17351 Rev 1 9/18
Electrical characteristics RHF484
Figure 7. Supply current vs. supply voltage at
V
icm=VCC
2.52.5
2.02.0
1.51.5
1.01.0
0.50.5
Supply current per channel (mA)
0.00.0 00224466881010 1212 1414
/2
T=25°C
T=125°C
Vicm=Vcc/2
Supply voltage (V)
T=-55°C
Figure 9. Output current vs. output voltage at
V
= 4 V
CC
5050
4040
3030
2020
1010
T=-55°C
00
-10-10
-20-20
Output Current (mA)
-30-30
-40-40
T=-55°C
-50-50
-2.0-2.0 -1.5 -1.0-1.0 -0.5 0.00.0 0.5 1.01.0 1.5 2.02.0
T=25°C
Output Voltage (V)
+Vcc=2V
-Vcc=-2V
Source
Sink
T=125°C
T=25°C
Figure 8. Output current vs. supply voltage at
V
= VCC/2
icm
50 45 4040 35 30 25 2020 15
T=125°C
10
5 00
-5
-10 T=125°C
-15
-20-20
Output Current (mA)
-25
-30
-35
-40-40
-45
-50
4.04.0 6.06.0 8.08.0 10.010.0 12.012.0 14.014.0
Sink Vid = -1V
Vicm=Vcc/2
T=25°C
Supply voltage (V)
T=25°C
T=-55°C
Source Vid = 1V
T=-55°C
Figure 10. Output current vs. output voltage at
VCC= 14 V
50
4040
30
2020
T=-55°C
10
00
-10
-20-20
Output Current (mA)
-30
-40-40
-50
T=125°C
Source
-7 -6-6 -5 -4-4 -3 -2-2 -1 001223445667
T=25°C
Output Voltage (V)
-Vcc=-7V +Vcc=+7V
T=25°C
T=125°C
Sink
T=-55°C
Figure 11. Differential input voltage vs. output
voltage at V
0.5
0.0
T=25°C
-0.5
Differential input voltage (mV)
-1.0
T=-55°C
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
=4V
CC
-Vcc=-2V +Vcc=+2V
Output voltage (V)
T=125°C
Figure 12. Differential input voltage vs. output
10/18 Doc ID 17351 Rev 1
voltage at VCC= 14 V
1
T=125°C
0
-1 T=25°C
-2
-Vcc=-7V
-3
Differential input voltage (mV)
T=-55°C
-4
-6-5-4-3-2-10123456 Output voltage (V)
+Vcc=+7V
RHF484 Electrical characteristics
Figure 13. Noise vs. frequency at VCC= 4 V and
V
= 14 V
CC
10
Input equivalent noise density (nV/VHz)
Vcc=14V, Vicm=7V, Tamb=25°C
Vcc=4V, Vicm=2V, Tamb= 25°C
100 1000 10000
Frequency (Hz)
Figure 15. Voltage gain and phase vs.
frequency at V
50
4040
30
2020
10
00
Gain (dB)
-10
-20-20
-30
-40-40
-50
4
10
Phase
Vcc=4V, Vicm=3.5V, G= -100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C
5
10
Frequency (Hz)
= 4 V, Vicm = 3.5 V
CC
Gain
6
10
180
150150
120120
9090
6060
3030
0
-30-30
Phase (°)
-60-60
-90-90
-120-120
-150-150
-180
7
10
Figure 14. Voltage gain and phase vs.
frequency at VCC = 4 V, Vicm = 2 V
50
4040
30
2020
10
00
Gain (dB)
-10
-20-20 Vcc=4V, Vicm=2V, G= -100
-30 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
-40-40
-50
4
10
10
Phase
5
Gain
6
10
7
10
Frequency (Hz)
Figure 16. Voltage gain and phase vs.
frequency at VCC = 4 V, Vicm = 0.5 V
50
4040
30
2020
10
00
Gain (dB)
-10
-20-20 Vcc=4V, Vicm=0.5V, G= -100
-30 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
-40-40
-50
4
10
10
Gain
Phase
5
Frequency (Hz)
6
10
7
10
180
150150
120120
9090
6060
3030
0
-30-30
-60-60
-90-90
-120-120
-150-150
-180
180
150150
120120
9090
6060
3030
0
-30-30
-60-60
-90-90
-120-120
-150-150
-180
Phase (°)
Phase (°)
Figure 17. Voltage gain and phase vs.
frequency at V
50
4040
30
2020
10
00
Gain (dB)
-10
-20-20 Vcc=14V, Vicm=7V, G= -100
-30 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
-40-40
-50
4
10
Phase
5
10
Frequency (Hz)
Gain
= 14 V, Vicm = 7 V
CC
6
10
7
10
Figure 18. Voltage gain and phase vs.
frequency at VCC = 14 V, Vicm = 13.5 V
180
150150
120120
9090
6060
3030
0
-30-30
Phase (°)
-60-60
-90-90
-120-120
-150-150
-180
Doc ID 17351 Rev 1 11/18
50
4040
30
2020
10
00
Gain (dB)
-10
-20-20 Vcc=14V, Vicm=13.5V, G= -100
-30 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
-40-40
-50
4
10
Phase
10
Gain
5
6
10
180
150150
120120
9090
6060
3030
0
-30-30
Phase (°)
-60-60
-90-90
-120-120
-150-150
-180
7
10
Frequency (Hz)
Electrical characteristics RHF484
Figure 19. Voltage gain and phase vs.
frequency at V
= 14 V,
CC
Vicm = 0.5 V
50
4040
30
2020
10
00
Gain (dB)
-10
-20-20 Vcc=14V, Vicm=0.5V, G= -100
-30 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
-40-40
-50
4
10
10
Figure 21. Negative slew rate at V
5
44
3
22
1
00
Vcc=4V, Vin=2Vpp,
-1
Output Voltage (V))
G= -5.1
-2-2
-3
-4-4
-5
0.0 1.01.0 2.0 3.03.0 4.0
Gain
Phase
5
Frequency (Hz)
Time (µs)
6
10
7
10
= 4 V Figure 22. Positive slew rate at V
CC
180
150150
120120
9090
6060
3030
0
-30-30
-60-60
-90-90
-120-120
-150-150
-180
Figure 20. Positive slew rate at V
5
44
3
22
1
Phase (°)
00
-1
Output Voltage (V))
-2-2
-3
-4-4
-5
0.0 1.01.0 2.0 3.03.0 4.0
1010
88
66
44
Vcc=14V, Vin=4Vpp,
22
G= -5.1
00
-2-2
Output Voltage (V))
-4-4
-6-6
-8-8
-10-10
0.0 1.01.0 2.0 3.03.0 4.0 5.05.0 6.0 7.07.0
Time (µs)
Time (µs)
CC
Vcc=4V, Vin=2Vpp, G= -5.1
CC
= 4 V
= 14 V
Figure 23. Negative slew rate at V
1010
88
66
44
22
00
-2-2
Output Voltage (V))
-4-4
-6-6
-8-8
-10-10
0.0 1.01.0 2.0 3.03.0 4.0 5.05.0 6.0 7.07.0
Vcc=14V, Vin=4Vpp, G= -5.1
Time (µs)
CC
= 14 V
12/18 Doc ID 17351 Rev 1
RHF484 Achieving good stability at low gain
,OGFREQUENCY
'AIN D"
D"DEC
D"DEC
'2FB2G2
'2FB2G
D"
"ANDWIDTH OFTHE OPAMPAT'
'AINBANDWIDTH
PRODUCT
'
 '22FB#
5&
$
9'
&REQUENCIES WHERETHE OPAMPCAN BEUSED
!-

3 Achieving good stability at low gain

At low frequencies, the RHF484 can be used in a low gain configuration as shown in
Figure 24. At lower frequencies, the stability is not affected by the value of the gain, which
can be set close to 1 V/V (0 dB), and is reduced to its simplest expression G1=1+Rfb/Rg. Therefore, an R-C cell is added in the gain network so that the gain is increased (up to 5) at higher frequencies (where the stability of the amplifier could be affected). At higher frequencies, the gain becomes G2=1+Rfb/(Rg//R).
6IN
6
##
6OUT

Figure 24. Low gain configuration Figure 25. Closed-loop gain

6$$
#
2
2G
2FBK
#,P&
,
2 K
!-
Rg becomes a complex impedance. The closed-loop gain features a variation in frequency and can be expressed as:
G1R Rfb+
⎛⎞
---------------------------- -
×+
⎝⎠
G1
1 jCRω+
Gain G1
=
1jCω
------------------------------------------------------------ -
where a pole appears at 1/2πRC and a zero at G1/2π(G1R+Rfb)C. The frequency can be plotted as shown in Figure 25.

Table 6. External components versus low-frequency gain

G1 (V/V) R (Ω)C (nF)Rg (Ω)Rfb (Ω)
1.1 510 1 20k 2k
251012k2k
351011k2k
4 510 1 750 2.4k
5 Not connected Not connected 820 3.3k
Doc ID 17351 Rev 1 13/18
Package information RHF484

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
14/18 Doc ID 17351 Rev 1
RHF484 Package information

Figure 26. Wide ceramic Flat-14 package mechanical drawing.

Note: The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package. Connecting unused pins or metal lid to ground or Vcc will not affect the electrical characteristics.

Table 7. Wide ceramic Flat-14 W package mechanical data

Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A 1.932.112.29.076.083.090
b 0.380.430.48.015.017.019
c 0.100.130.18.004.005.007
D 9.71 9.91 10.11 .382 0.390 .398
E 7.277.427.57.286.292.298
E2 5.4 .213
E3 0.76 .030
e1.27 .050
L 6.3 6.6 .248 .260
Q 0.20 0.28 .008 .011
Millimeters inches
S1 0.13 .005
Doc ID 17351 Rev 1 15/18
Ordering information RHF484

5 Ordering information

Table 8. Order codes

Order code Description Temperature range Package Marking
RHF484K1 Engineering Samples
RHF484K-01V Flight Models 5962F0822201VXC
Note: Contact your ST sales office for information on specific conditions for products in die form.
RHF484K1
-55°C to +125°C Flat-14 W
16/18 Doc ID 17351 Rev 1
RHF484 Revision history

6 Revision history

Table 9. Document revision history

Date Revision Changes
26-Apr-2011 1 Initial release.
Doc ID 17351 Rev 1 17/18
RHF484
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
18/18 Doc ID 17351 Rev 1
Loading...