ST RHF330 User Manual

RHF330
Rad-hard 1 GHz low noise operational amplifier
Preliminary data
Bandwidth: 1 GHz (gain = +2)
Slew rate: 1800 V/μs
Input noise: 1.3 nV/Hz
Distortion: SFDR = -78 dBc (10 MHz, 2 V
100 Ω load optimized output stage
5 V power supply
300 krad MIL-STD-883 1019.7 ELDRS free
pp
compliant
SEL immune at 125° C, LET up to
110 MEV.cm
SET characterized, LET up to
110 MEV.cm
QMLV qualified under SMD 5962-0723101
Mass: 0.45 g
2
2
/mg
/mg
Applications
Communication satellites
Space data acquisition systems
Aerospace instrumentation
Nuclear and high energy physics
Harsh radiation environments
ADC drivers

Table 1. Device summary

Pin connections
(top view)
1
NC
)
IN -
IN +
-VCC
4
8
NC
+VCC
OUT
NC
5
Description
The RHF330 is a current feedback operational amplifier that uses very high-speed complementary technology to provide a large bandwidth of 1 GHz in gains of 2 while drawing only 16.6 mA of quiescent current. The RHF330 also offers 0.1 dB gain flatness up to 160 MHz with a gain of 2. With a slew rate of 1800 V/µs and an output stage optimized for standard 100 Ω loads, this device is highly suitable for applications where speed and low distortion are the main requirements. The device is a single operator available in a Flat-8 hermetic ceramic package, saving board space as well as providing excellent thermal and dynamic performance.
Order code SMD pin Quality level Package Lead finish Marking EPPL Packing
- Engineering model Flat-8 Gold RHF310K1 - Strip pack
RHF330K1
RHF330K-01V
5962F0723101VXC QMLV-Flight Flat-8 Gold 5962F0723101VXC Target Strip pack
Note: Contact your ST sales office for information on the specific conditions for products in die form and
QML-Q versions.
May 2010 Doc ID 15576 Rev 3 1/22
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
22
Contents RHF330
Contents
1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Demonstration board schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Power supply considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Single power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Measurement of the input voltage noise eN . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Measurement of the negative input current noise iNn . . . . . . . . . . . . . . . 15
5.3 Measurement of the positive input current noise iNp . . . . . . . . . . . . . . . . 15
6 Intermodulation distortion product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7 Bias of an inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Active filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/22 Doc ID 15576 Rev 3
RHF330 Absolute maximum ratings and operating conditions

1 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
V
CC
V
id
V
in
T
stg
T
R
thja
R
thjc
P
max
ESD
Supply voltage
Differential input voltage
Input voltage range
Storage temperature -65 to +150 °C
Maximum junction temperature 150 °C
j
Flat-8 thermal resistance junction to ambient 50 °C/W
Flat-8 thermal resistance junction to case 30 °C/W
Flat-8 maximum power dissipation (T
= + 25° C) for Tj=150°C
amb
HBM: human body model
pins 1, 4, 5, 6, 7 and 8 pins 2 and 3
MM: machine model
pins 1, 4, 5, 6, 7 and 8 pins 2 and 3
CDM: charged device model
pins 1, 4, 5, 6, 7 and 8 pins 2 and 3
Latch-up immunity 200 mA
(1)
(3)
(6)
6V
(2)
± 0.5 V
± 2.5 V
(4)
(5)
830 mW
2
kV
0.6
200
V
80
(7)
1.5
kV
1
1. All voltage values are measured with respect to the ground pin.
2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltage must never exceed VCC +0.3 V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from short-circuits on all amplifiers.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. This is a minimum value. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground through only one pin.

Table 3. Operating conditions

Symbol Parameter Value Unit
V
V
T
amb
1. Tj must never exceed +150°C. P = (Tj - Tamb)/Rthja = (Tj - Tcase)/Rthjc with P being the power that the RHF330 must dissipate in the application.
Supply voltage 4.5 to 5.5 V
CC
Common-mode input voltage -V
icm
Operating free-air temperature range
(1)
+1.5 to +VCC-1.5 V
CC
-55 to +125 °C
Doc ID 15576 Rev 3 3/22
Electrical characteristics RHF330

2 Electrical characteristics

Table 4. Electrical characteristics for VCC= ±2.5 V, T
amb
=+25°C
(unless otherwise specified)
Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit
DC performance
+125°C -3.1 +3.1
V
io
I
ib+
I
ib-
CMR
SVR
Input offset voltage
Non-inverting input bias current
Inverting input bias current
Common mode rejection ratio 20 log (ΔV
/ΔVio)
ic
Supply voltage rejection ratio
/ΔV
20 log (ΔV
CC
out
)
ΔVic = ±1 V
ΔVCC= 3.5 V to 5 V
-55°C -3.1 +3.1
+125°C 55
-55°C 55
+125°C 34
-55°C 34
+125°C 48
-55°C 48
+125°C 45
-55°C 45
mV+25°C -3.1 0.18 +3.1
μA+25°C 26 55
μA+25°C 7 22
dB+25°C 48 54
dB+25°C 60 74
PSRR
I
CC
Power supply rejection ratio 20 log (ΔVCC/ΔV
out
)
Supply current No load
=200mVpp at
ΔV
CC
1kHz
Dynamic performance and output characteristics
R
Transimpedance ΔV
OL
= ±1 V, RL = 100 Ω
out
V
=20mVpp
out
RL = 100 Ω, AV = +2
-3 dB bandwidth
Bw
Gain flatness at 0.1 dB
=20mV
V
out
AV = +2, RL = 100 Ω
4/22 Doc ID 15576 Rev 3
+25°C 56 dB
+125°C 20.2
mA+25°C 16.6 20.2
-55°C 20.2
+125°C 85
kΩ+25°C 104 153
-55°C 85
+25°C 1000
+125°C 400
+25°C 400 630
MHzRL = 100 Ω, AV = -4
-55°C 400
pp
+25°C 160
RHF330 Electrical characteristics
Table 4. Electrical characteristics for VCC= ±2.5 V, T
amb
=+25°C
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit
= 2 Vpp,
V
SR Slew rate
V
V
High level output voltage RL = 100 Ω
OH
Low level output voltage RL = 100 Ω
OL
(1)
I
sink
I
out
(2)
I
source
Output to GND
Noise and distortion
out
= +2, RL = 100 Ω
A
V
Output to GND
+25°C 1800 V/μs
+125°C 1.35
+25°C 1.5 1.64
-55°C 1.35
+125°C -1.35
+25°C -1.55 -1.5
-55°C -1.35
+125°C 360
+25°C 360 453
-55°C 360
+125°C -320
+25°C -320 -400
-55°C -320
V
V
mA
eN
Equivalent input noise
(3)
voltage
Equivalent positive input noise
(3)
current
F = 100 kHz +25°C 1.3 nV/√ Hz
F = 100 kHz +25°C 22 pA/√ Hz
iN
Equivalent negative input noise current
(3)
F = 100 kHz +25°C 16 pA/√ Hz
AV = +2, V
= 100 Ω
R
L
F = 10 MHz +25°C -78
SFDR Spurious free dynamic range
F = 20 MHz +25°C -73
F = 100 MHz +25°C -48
F = 150 MHz +25°C -37
1. See Figure 11 for more details.
2. See Figure 10 for more details.
3. See Chapter 5 on page 14.

Table 5. Closed-loop gain and feedback components

Gain (V/V) + 1 1 + 2- 2+ 4- 4+ 10- 10
R
(Ω) 300 270 300 270 240 240 200 200
fb
= 2 Vpp,
out
dBc
Doc ID 15576 Rev 3 5/22
Electrical characteristics RHF330
-2ns -1ns 0s 1ns 2ns
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
Gain=+2 Vcc=+5V Load=100
Ω
Output Response (V)
Time (ns)
Figure 1. Frequency response, positive gain Figure 2. Flatness, gain = +2 compensated
24 22 20 18 16 14 12 10
8 6 4
Gain (dB)
2 0
-2
-4
Small Signal
-6
Vcc=5V
-8
Load=100
-10 1M 10M 100M 1G
Gain=10
Gain=4
Gain=2
Gain=1
Ω
Frequency (Hz)
6.5
Vin
6.4
0.5pF
6.3
6.2
Gain=+2, Vcc=+5V, Small Signal
6.1
Gain (dB)
Vout
+
-
100
300
300
6.0
5.9
5.8 1M 10M 100M 1G
Frequency (Hz)
Figure 3. Flatness, gain = +4 compensated Figure 4. Flatness, gain = +10 compensated
12.2
12.1
12.0
11.9
11.8
11.7
Vin
11.6
Gain (dB)
11.5
2.7pF
11.4
11.3
Gain=+4, Vcc=+5V, Small Signal
11.2 1M 10M 100M 1G
Vout
+
-
100
240
82
Frequency (Hz)
20.3
20.2
20.1
20.0
19.9
19.8
Vin
19.7
Gain (dB)
19.6
12pF
19.5
19.4
Gain=+10, Vcc=+5V, Small Signal
19.3 1M 10M 100M 1G
Vout
+
-
100
200
22
Frequency (Hz)
Figure 5. Quiescent current vs. V
CC

Figure 6. Positive slew rate

20
15
10
Icc(+)
5
0
Icc (mA)
-5
-10
-15
Gain=+2 Input to ground, no load
-20
0.0 0.5 1.0 1.5 2.0 2.5
+/- Vcc (V)
Icc(-)
6/22 Doc ID 15576 Rev 3
RHF330 Electrical characteristics
Figure 7. Negative slew rate Figure 8. Output amplitude vs. load
2.00
1.75
1.50
1.25
1.00
0.75
0.50
Output Response (V)
0.25
0.00
-2ns -1ns 0s 1ns 2ns
Gain=+2 Vcc=+5V Load=100
Ω
Time (ns)
Figure 9. Distortion vs. amplitude Figure 10. I
Gain=+2 Vcc=+5V F=10MHz
Ω
Load=100
HD2
HD3
sink
V (V)
Figure 11. I
600
550
500
450
400
350
300
250
Isink (mA)
200
150
100
50
0
-2.0 -1.5 -1.0 -0.5 0.0
4.0
3.5
3.0
2.5
Max. Output Amplitude (Vp-p)
2.0 10 100 1k 10k 100k
Load (ohms)
source
0
-50
-100
-150
-200
-250
-300
-350
Isource (mA)
-400
-450
-500
-550
-600
0.0 0.5 1.0 1.5 2.0
V (V)

Figure 12. Noise figure

Gain=+2 Vcc=5V
Ω
Load=100
Vcc=5V
Doc ID 15576 Rev 3 7/22
Loading...
+ 15 hidden pages