Datasheet RHF310 Datasheet (ST)

RHF310
Rad-hard 400 µA high-speed operational amplifier
Preliminary data
OptimWatt
consumption and low 400 μA quiescent current
Bandwidth: 120 MHz (gain = 2)
Slew rate: 115 V/μs
Specified on 1 kΩ
Input noise: 7.5 nV/Hz
Tested with 5 V power supply
300 krad MIL-STD-883 1019.7 ELDRS free
compliant
SEL immune at 125° C, LET up to
110 MEV.cm
SET characterized, LET up to
110 MEV.cm
QMLV qualified under SMD 5962-0723301
Mass: 0.45 g
TM
device featuring ultra-low 2 mW
(a)
2
/mg
2
/mg
Applications
Low-power, high-speed systems
Communication and space equipment
Harsh radiation environments
ADC drivers

Table 1. Device summary

Pin connections
(top view)
1
NC
IN -
IN +
-VCC
4
The upper metallic lid is not electrically connected to any
pins, nor to the IC die inside the package.
8
NC
+VCC
OUT
NC
5
Description
The RHF310 is a very low power, high-speed operational amplifier. A bandwidth of 120 MHz is achieved while drawing only 400 µA of quiescent current. This low-power characteristic is particularly suitable for high-speed battery powered devices requiring dynamic performance. The RHF310 is a single operator available in a Flat-8 package, saving board space as well as providing excellent thermal performance.
Order code SMD pin
RHF310K1 -
Quality
level
Engineering
model
Package
Flat-8 Gold RHF310K1 -
Lead
finish
Marking EPPL Packing
RHF310K-01V 5962F0723301VXC QMLV-Flight Flat-8 Gold 5962F0723101VXC -
Note: Contact your ST sales office for information on the specific conditions for products in die form and
QML-Q versions.
a. OptimWattTM is an STMIcroelectronics registered trademark that applies to products with specific features that optimize
energy efficiency.
July 2011 Doc ID 15577 Rev 3 1/22
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
Strip pack
www.st.com
22
Contents RHF310
Contents
1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Power supply considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Single power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Measurement of the input voltage noise eN . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Measurement of the negative input current noise iNn . . . . . . . . . . . . . . . 14
4.3 Measurement of the positive input current noise iNp . . . . . . . . . . . . . . . . 14
5 Intermodulation distortion product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Bias of an inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 Active filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1 Ceramic Flat-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/22 Doc ID 15577 Rev 3
RHF310 List of figures
List of figures
Figure 1. Frequency response, positive gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Frequency response vs. capa-load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Output amplitude vs. load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. Input voltage noise vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Distortion at 1 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. Distortion at 10 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. Positive slew rate on 1 kW load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Negative slew rate on 1 kW load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 9. Quiescent current vs. V Figure 10. I Figure 11. I
sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 12. Bandwidth vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 13. CMR vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 14. SVR vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 15. Slew rate vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 16. R Figure 17. I Figure 18. V Figure 19. V Figure 20. I Figure 21. I
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
OL
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
bias
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
io
and VOL vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
OH
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
out
vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CC
Figure 22. Circuit for power supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 23. Circuit for +5 V single supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 24. Noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 25. Inverting summing amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 26. Compensation of the input bias current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 27. Low-pass active filtering, Sallen-Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 28. Ceramic Flat-8 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Doc ID 15577 Rev 3 3/22
Absolute maximum ratings and operating conditions RHF310

1 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
V
T
R
R
P
Supply voltage
CC
(voltage difference between -VCC and +VCC pins)
Differential input voltage
id
Input voltage range
in
Storage temperature -65 to +150 °C
stg
Maximum junction temperature 150 °C
T
j
Thermal resistance junction to ambient area 50 °C/W
thja
Thermal resistance junction to case 40 °C/W
thjc
Maximum power dissipation
max
for T
=150°C
j
HBM: human body model
pins 1, 4, 5, 6, 7 and 8 pins 2 and 3
ESD
MM: machine model
pins 1, 4, 5, 6, 7 and 8 pins 2 and 3
CDM: charged device model (all pins)
Latch-up immunity 200 mA
1. All voltages values are measured with respect to the ground pin.
2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltage must never exceed VCC +0.3 V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. This is a minimum value. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground through only one pin. This is done for all pins.

Table 3. Operating conditions

(1)
(3)
(6)
(2)
(5)
(4)
(at T
amb
(7)
=25°C)
6V
±0.5 V
±2.5 V
830 mW
2
kV
0.5
200
V
60
1.5 kV
Symbol Parameter Value Unit
V
V
T
1. Tj must never exceed +150°C. P = (Tj - T must dissipate in the application.
Supply voltage 4.5 to 5.5 V
CC
Common-mode input voltage
icm
Operating free-air temperature range
amb
4/22 Doc ID 15577 Rev 3
amb
/ R
(1)
= (Tj - T
thja
case
+1.5 V to
-V
CC
-1.5 V
+V
CC
-55 to +125 °C
) / R
with P the power that the RHF310
thjc
V
RHF310 Electrical characteristics

2 Electrical characteristics

Table 4. Electrical characteristics for VCC = ±2.5 V, T
amb
= 25° C
(unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
DC performance
+125°C -6.5 +6.5
V
Input offset voltage
io
-55°C -6.5 +6.5
+125°C 15
Non-inverting input bias current
I
ib+
-55°C 15
+125°C 7
Inverting input bias current
I
ib-
-55°C 7
+125°C 55
CMR
SVR
Common mode rejection ratio 20 log (ΔV
/ΔVio)
ic
Supply voltage rejection ratio
/ΔV
20 log (ΔV
CC
out
)
ΔVic = ±1 V
-55°C 55
+125°C 50
ΔVCC= 3.5V to 5V
-55°C 50
mV+25°C -6.5 1.7 +6.5
μA+25°C 3.1 12
μA+25°C 0.1 5
dB+25°C 57 61
dB+25°C 65 82
PSRR
I
Power supply rejection ratio 20 log (ΔVCC/ΔV
Supply current No load
CC
out
)
Dynamic performance and output characteristics
R
Transimpedance
OL
Small signal -3 dB bandwidth on 1k Ω load
Bw
Gain flatness at 0.1 dB
=200mVpp at
ΔV
CC
1kHz
+25°C 50 dB
+125°C 600
µA+25°C 400 530
-55°C 600
+125°C 500
ΔV
= ±1 V,
out
RL = 1 kΩ
kΩ+25°C 600 1450
-55°C 500
Rfb = 3 kΩ, AV = +1 +25°C 230
R
= 510 Ω, AV = +10 +25°C 26
fb
+125°C 70
Rfb = 3 kΩ, AV = +2
+25°C 70 120
MHz
-55°C 70
=20mV
V
out
AV = +2, RL = 1k Ω
pp
+25°C 25
Doc ID 15577 Rev 3 5/22
Electrical characteristics RHF310
Table 4. Electrical characteristics for VCC = ±2.5 V, T
amb
= 25° C
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
= 2 Vpp,
V
SR Slew rate
V
V
High level output voltage RL = 100 Ω
OH
Low level output voltage RL = 100 Ω
OL
(1)
I
sink
I
out
(2)
I
source
Output to GND
Noise and distortion
eN Equivalent input noise voltage
(3)
out
= +2, RL = 100 Ω
A
V
+25°C 115 V/μs
+125°C 1.5
+25°C 1.55 1.65
-55°C 1.5
+125°C -1.5
+25°C -1.66 -1.55
-55°C -1.5
+125°C 70
Output to GND
+25°C 70 110
-55°C 70
+125°C 60
+25°C 60 100
-55°C 60
F = 100 kHz +25°C 7.5 nV/Hz
V
V
mA
Equivalent positive input noise
(3)
current
F = 100 kHz +25°C 13 pA/√ Hz
iN
Equivalent negative input noise
(3)
current
F = 100 kHz +25°C 6 pA/√ Hz
AV = +2, V RL = 100 Ω
SFDR Spurious free dynamic range
F = 1 MHz +25°C -87
F = 10 MHz +25°C -55
1. See Figure 10 for more details.
2. See Figure 11 for more details.
3. See Chapter 5 on page 15.

Table 5. Closed-loop gain and feedback components

Gain (V/V) + 2 - 2 + 4 - 4 + 10 - 10
(Ω) 1.2k 1k 150 300 100 180
R
fb
= 2 Vpp,
out
+25°C
dBc
6/22 Doc ID 15577 Rev 3
RHF310 Electrical characteristics
01234
-80
-70
-60
-50
-40
-30
-20
-10
0
H2
H3
Vcc=5V F=10MHz Load=1k
Ω
H2 and H3 (dBc)
Output (Vp-p)
Figure 1. Frequency response, positive gain Figure 2. Frequency response vs. capa-load
24 22 20 18 16 14 12 10
8 6 4
Gain (dB)
2 0
-2
-4
Small Signal
-6
Vcc=5V
-8
-10 1M 10M 100M
Load=1k
Ω
Gain=+10
Gain=+4
Gain=+2
Gain=+1
Frequency (Hz)
10
8
C-Load=10pF R-iso=33 ohms
6
4
R-iso
R-iso
C-Load
C-Load
C-Load=22pF R-iso=47ohms
Vout
Vout
1k
1k
2
0
Vin
Vin
+
-2
Gain (dB)
-4
+
-
-
3k
3k
3k
3k
-6
Gain=+2, Vcc=5V,
Gain=+2, Vcc=5V,
-8
Small Sig nal
Small Sig nal
-10 1M 10M 100M
Frequency (Hz)
C-Load=4.7pF R-iso=0
Figure 3. Output amplitude vs. load Figure 4. Input voltage noise vs. frequency
4.0
3.5
Gain=32dB Rg=12ohms Rfb=510ohms non-inverting input in short-circuit Vcc=5V
3.0
2.5
Max output amplitude (Vp-p)
2.0 10 100 1k 10k 100k
Load (ohms)
Figure 5. Distortion at 1 MHz Figure 6. Distortion at 10 MHz
-20
Vcc=5V
-30
F=1MHz
Ω
Load=1k
-40
-50
-60
-70
H2
H2 and H3 (dBc)
-80
-90
-100 01234
H3
Output (Vp-p)
Doc ID 15577 Rev 3 7/22
Electrical characteristics RHF310
-40 -20 0 20 40 60 80 100 120
90
100
110
120
130
140
150
160
170
180
190
200
Gain=+2 Vcc=5V Load=1k
Ω
Bw (MHz)
Temperature (°C)
Figure 7. Positive slew rate on 1 kΩ load Figure 8. Negative slew rate on 1 kΩ load
Figure 9. Quiescent current vs. V
400
200
Gain=+2
0
Vcc=5V Inputs to ground, no load
Icc (micro-A)
-200
CC
Icc(+)
Figure 10. I
150
125
100
75
Isink (mA)
50
sink
-400
1.25 1.50 1.75 2.00 2.25 2.50
Figure 11. I
source
0
-25
-50
-75
Isource (mA)
-100
-125
-150
0.0 0.5 1.0 1.5 2.0
8/22 Doc ID 15577 Rev 3
+/-Vcc (V)
V (V)
Icc(-)
25
0
-2.0 -1.5 -1.0 -0.5 0.0
V (V)

Figure 12. Bandwidth vs. temperature

RHF310 Electrical characteristics
-40 -20 0 20 40 60 80 100 120
70
72
74
76
78
80
82
84
86
88
90
Vcc=5V Load=1k
Ω
SVR (dB)
Temperature (°C)
-40 -20 0 20 40 60 80 100 120
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Open Loop Vcc=5V
Temperature ( C)
Vio (mV)

Figure 13. CMR vs. temperature Figure 14. SVR vs. temperature

66
64
62
60
CMR (dB)
58
Vcc=5V
Ω
Load=1k
56
-40 -20 0 20 40 60 80 100 120
Temperature (°C)

Figure 15. Slew rate vs. temperature Figure 16. ROL vs. temperature

140
130
120
110
100
SR (V/micro−s)
Gain=+2
90
Vcc=5V Load=1k
80
-40 -20 0 20 40 60 80 100 120
neg. SR
pos. SR
Ω
Temperature (°C)
1.60
1.55
1.50
1.45
1.40
(M )
OL
R
1.35
1.30
1.25
Open Loop Vcc=5V
1.20
-40 -20 0 20 40 60 80 100 120
Temperature (°C)
Figure 17. I
( A)
BIAS
I

vs. temperature Figure 18. Vio vs. temperature

bias
5
4
3
2
1
0
-1
-2
-3
Ib(+)
Ib(−)
Vcc=5V
-40 -20 0 20 40 60 80 100 120
Temperature (°C)
Doc ID 15577 Rev 3 9/22
Electrical characteristics RHF310
-40 -20 0 20 40 60 80 100 120
-300
-250
-200
-150
-100
-50
0
50
100
150
200
Output: short-circuit Vcc=5V
Iout (mA)
Isource
Isink
Temperature (°C)

Figure 19. VOH and VOL vs. temperature Figure 20. I

2
VOH
1
0
(V)
-1
OH & OL
V
-2
-3
-4
Figure 21. I
400
200
-200
(micro A)
-400
CC
I
-600
-800
-1000
VOL
Gain=+2 Vcc=+/-2.5V
Ω
Load=1k
-40-200 20406080
Temperature (°C)
vs. temperature
CC
Icc(+)
0
Icc(-)
Gain=+2 Vcc=5V no Load in(+) and in(-) to GND
-40 -20 0 20 40 60 80 100 120
Temperature ( C)
vs. temperature
out
10/22 Doc ID 15577 Rev 3
RHF310 Power supply considerations

3 Power supply considerations

Correct power supply bypassing is very important for optimizing the performance of the device in high-frequency ranges. The bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 1 µF is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10 nF can be added, which should also be placed as close as possible to the IC pins. The bypass capacitors must be incorporated for both the negative and positive supply.

Figure 22. Circuit for power supply bypassing

+V
CC
10 µF
+
10 nF
+

3.1 Single power supply

If you use a single-supply system, biasing is necessary to obtain a positive output dynamic range between the 0 V and +V amplifier provides an output swing from +0.9 V to +4.1 V on 1 kΩ loads.
The amplifier must be biased with a mid-supply (nominally +V DC component of the signal at this value. Several options are possible to provide this bias supply, such as a virtual ground using an operational amplifier or a two-resistance divider (which is the cheapest solution). A high resistance value is required to limit the current consumption. On the other hand, the current must be high enough to bias the non-inverting input of the amplifier. If we consider this bias current (55 µA maximum) as 1% of the current through the resistance divider, two resistances of 470 Ω can be used to maintain a mid supply.
-
-V
supply rails. Considering the values of VOH and VOL, the
CC
10 nF
10 µF +
CC
AM00835
/2) in order to maintain the
CC
The input provides a high-pass filter with a break frequency below 10 Hz, which is necessary to remove the original 0 V DC component of the input signal and to set it at +V
/2.
CC
Figure 23 on page 12 illustrates a 5 V single power supply configuration.
A capacitor C keep the right DC component at the output. C
is added in the gain network to ensure a unity gain at low frequencies to
G
contributes to a high-pass filter with Rfb//RG
G
and its value is calculated with a consideration of the cut-off frequency of this low-pass filter.
Doc ID 15577 Rev 3 11/22
Power supply considerations RHF310

Figure 23. Circuit for +5 V single supply

+5 V
10 µF
IN
+5 V
R1 470 Ω
R2 470 Ω
R 1 kΩ
+ 1 µF
in
10 nF
+
+
OUT
_
R
fb
R
G
C
G
1 kΩ
AM00841
12/22 Doc ID 15577 Rev 3
RHF310 Noise measurements

4 Noise measurements

The noise model is shown in Figure 24.
eN: input voltage noise of the amplifier.
iNn: negative input current noise of the amplifier.
iNp: positive input current noise of the amplifier.

Figure 24. Noise model

+
+
R3
N3
iN
_
eN
-
iN
Output
HP3577 Input noise: 8 nV/√Hz
R1
N2
R2
N1
AM00837
The thermal noise of a resistance R is:
4kTRΔF
where ΔF is the specified bandwidth, and k is the Boltzmann's constant, equal to 1,374.10-23J/°K. T is the temperature (°K).
On a 1 Hz bandwidth the thermal noise is reduced to:
4kTR
The output noise eNo is calculated using the superposition theorem. However, eNo is not the simple sum of all noise sources but rather the square root of the sum of the square of each noise source, as shown in Equation 1.
Equation 1
eNo V12V22V32V42V52V6
+++++=
2
Doc ID 15577 Rev 3 13/22
Noise measurements RHF310
Equation 2
eNo2eN2g2iNn2R22iNp
+×+× R3
2
× g
2
2
R2
------- -
4kTR1 4kTR2 1
R1
The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is:
Equation 3
2
instrumentation()
eNo Measured()
=
2
The input noise is called equivalent input noise because it is not directly measured but is evaluated from the measurement of the output divided by the closed loop gain (eNo/g).
After simplification of the fourth and fifth terms of Equation 2, you obtain:
Equation 4
eNo2eN2g2iNn2R22iNp
2
+×+× R3 g g4kTR21

4.1 Measurement of the input voltage noise eN

Assuming a short-circuit on the non-inverting input (R3=0), from Equation 4 you can derive:
R2
------- -+
R1
2
R2
------- -+
4kTR3×++×+=
R1
2
4kTR3×+×+=
Equation 5
eNo eN
2g2
iNn2R22g4kTR2×+×+×=
To easily extract the value of eN, the resistance R2 must be as low as possible. On the other hand, the gain must be high enough.
R3=0, gain: g=100

4.2 Measurement of the negative input current noise iNn

To measure the negative input current noise iNn, R3 is set to zero and Equation 5 is used. This time, the gain must be lower in order to decrease the thermal noise contribution.
R3=0, gain: g=10

4.3 Measurement of the positive input current noise iNp

To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The value of R3 must be selected so as to keep its thermal noise contribution as low as possible against the iNp contribution.
R3=100 Ω, gain: g=10
14/22 Doc ID 15577 Rev 3
RHF310 Intermodulation distortion product

5 Intermodulation distortion product

The non-ideal output of the amplifier can be described by the following series of equations.
V
outC0C1VinC2
++ +=
V
2
in
C+nV
n
in
where the input is Vin= Asinωt, C0 is the DC component, C1(Vin) is the fundamental and C is the amplitude of the harmonics of the output signal V
out
.
A one-frequency (one-tone) input signal contributes to harmonic distortion. A two-tone input signal contributes to harmonic distortion and to the intermodulation product.
The study of the intermodulation and distortion for a two-tone input signal is the first step in characterizing the driving capability of multi-tone input signals.
In this case:
VinA ω1tsin A ω2tsin+=
therefore:
V
outC0C1
A ω1tsin A ω2tsin+()C2A ω1tsin A ω2tsin+()
++ +=
2
CnA ω1tsin A ω2tsin+()
n
From this expression, we can extract the distortion terms and the intermodulation terms from a single sine wave.
Second-order intermodulation terms IM2 by the frequencies (ω
an amplitude of C2A
2
.
Third-order intermodulation terms IM3 by the frequencies (2ω
ω
+2ω2) and (ω1+2ω2) with an amplitude of (3/4)C3A3.
1
) and (ω1+ω2) with
1-ω2
), (2ω1+ω2), (
1-ω2
The intermodulation product of the driver is measured by using the driver as a mixer in a summing amplifier configuration (Figure 25). In this way, the non-linearity problem of an external mixing device is avoided.
n
Doc ID 15577 Rev 3 15/22
Intermodulation distortion product RHF310

Figure 25. Inverting summing amplifier

V
in1
V
in2
R
1
R
2
R
fb
_
V
out
+
1 kΩ
R
AM00842
16/22 Doc ID 15577 Rev 3
RHF310 Bias of an inverting amplifier

6 Bias of an inverting amplifier

A resistance is necessary to achieve good input biasing, such as resistance R shown in
Figure 26.
The value of this resistance is calculated from the negative and positive input bias current. The aim is to compensate for the offset bias current, which can affect the input offset voltage and the output DC component. Assuming I R is:
R

Figure 26. Compensation of the input bias current

R
-
I
ib
in
_
, I
ib-
R
×
inRfb
-----------------------=
R
in
R
, Rin, Rfb and a 0 V output, the resistance
ib+
R+
fb
fb
VCC+
Output
+
+
I
ib
-
V
CC
Load
R
AM00839
Doc ID 15577 Rev 3 17/22
Active filtering RHF310

7 Active filtering

Figure 27. Low-pass active filtering, Sallen-Key

C1
1
R
IN
2
R
+
C2
_
R
fb
From the resistors R
R
G
and RG it is possible to directly calculate the gain of the filter in a
fb
classic non-inverting amplification configuration.
R
AVg1
fb
--------+==
R
g
The response of the system is assumed to be:
Vout
----------------- -
Vin
jω
jω
-------------------------------------------==
12ζ
T
jω
------
ω
jω
g
c
jω()
------------ -++
2
ω
c
2
The cut-off frequency is not gain-dependent and so becomes:
OUT
1 kΩ
AM00843
The damping factor is calculated using the following expression.
1
-- -
ζ
ωcC1R1C1R2C2R1C1R1g++()=
2
The higher the gain, the more sensitive the damping factor. When the gain is higher than 1, it is preferable to use very stable resistor and capacitor values. In the case of R1=R2=R:
Due to a limited selection of capacitor values in comparison with the resistors, you can set
18/22 Doc ID 15577 Rev 3
C1=C2=C, so that:
ω
c
ζ
ζ
1
------------------------------------ -=
R1R2C1C2
2C
2C1
-------------------------------- -=
2C1C
2R2R
1
-------------------------------- -=
2R1R
R
--------
R
2
R
--------
R
2
fb
g
fb
g
RHF310 Package information

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Doc ID 15577 Rev 3 19/22
Package information RHF310

8.1 Ceramic Flat-8 package information

Figure 28. Ceramic Flat-8 package mechanical drawing

Note: The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the
package. Connecting unused pins or metal lid to ground or to the power supply will not affect the electrical characteristics.

Table 6. Ceramic Flat-8 package mechanical data

Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A 2.24 2.44 2.64 0.088 0.096 0.104
b 0.38 0.43 0.48 0.015 0.017 0.019
c 0.10 0.13 0.16 0.004 0.005 0.006
D 6.35 6.48 6.61 0.250 0.255 0.260
E 6.35 6.48 6.61 0.250 0.255 0.260
E2 4.32 4.45 4.58 0.170 0.175 0.180
E3 0.88 1.01 1.14 0.035 0.040 0.045
e 1.27 0.050
L 3.00 0.118
Q 0.66 0.79 0.92 0.026 0.031 0.092
S1 0.92 1.12 1.32 0.036 0.044 0.052
Millimeters Inches
N08 08
20/22 Doc ID 15577 Rev 3
RHF310 Revision history

9 Revision history

Table 7. Document revision history

Date Revision Changes
26-May-2009 1 Initial release.
Added Mass in Features on cover page. Added Table 1: Device summary on cover page, with full
12-Jul-2010 2
27-Jul-2011 3
ordering information. Updated temperature limits for T
min
< T
amb
< T
max
in
Table 3: Operating conditions.
Added Note: on page 20 and in the "Pin connections" diagram on the coverpage.
Doc ID 15577 Rev 3 21/22
RHF310
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
22/22 Doc ID 15577 Rev 3
Loading...