ST RHF310 User Manual

RHF310
Rad-hard 400 µA high-speed operational amplifier
Preliminary data
OptimWatt
consumption and low 400 μA quiescent current
Bandwidth: 120 MHz (gain = 2)
Slew rate: 115 V/μs
Specified on 1 kΩ
Input noise: 7.5 nV/Hz
Tested with 5 V power supply
300 krad MIL-STD-883 1019.7 ELDRS free
compliant
SEL immune at 125° C, LET up to
110 MEV.cm
SET characterized, LET up to
110 MEV.cm
QMLV qualified under SMD 5962-0723301
Mass: 0.45 g
TM
device featuring ultra-low 2 mW
(a)
2
/mg
2
/mg
Applications
Low-power, high-speed systems
Communication and space equipment
Harsh radiation environments
ADC drivers

Table 1. Device summary

Pin connections
(top view)
1
NC
IN -
IN +
-VCC
4
The upper metallic lid is not electrically connected to any
pins, nor to the IC die inside the package.
8
NC
+VCC
OUT
NC
5
Description
The RHF310 is a very low power, high-speed operational amplifier. A bandwidth of 120 MHz is achieved while drawing only 400 µA of quiescent current. This low-power characteristic is particularly suitable for high-speed battery powered devices requiring dynamic performance. The RHF310 is a single operator available in a Flat-8 package, saving board space as well as providing excellent thermal performance.
Order code SMD pin
RHF310K1 -
Quality
level
Engineering
model
Package
Flat-8 Gold RHF310K1 -
Lead
finish
Marking EPPL Packing
RHF310K-01V 5962F0723301VXC QMLV-Flight Flat-8 Gold 5962F0723101VXC -
Note: Contact your ST sales office for information on the specific conditions for products in die form and
QML-Q versions.
a. OptimWattTM is an STMIcroelectronics registered trademark that applies to products with specific features that optimize
energy efficiency.
July 2011 Doc ID 15577 Rev 3 1/22
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
Strip pack
www.st.com
22
Contents RHF310
Contents
1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Power supply considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Single power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Measurement of the input voltage noise eN . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Measurement of the negative input current noise iNn . . . . . . . . . . . . . . . 14
4.3 Measurement of the positive input current noise iNp . . . . . . . . . . . . . . . . 14
5 Intermodulation distortion product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Bias of an inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 Active filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1 Ceramic Flat-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/22 Doc ID 15577 Rev 3
RHF310 List of figures
List of figures
Figure 1. Frequency response, positive gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Frequency response vs. capa-load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Output amplitude vs. load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. Input voltage noise vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Distortion at 1 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. Distortion at 10 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. Positive slew rate on 1 kW load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Negative slew rate on 1 kW load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 9. Quiescent current vs. V Figure 10. I Figure 11. I
sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 12. Bandwidth vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 13. CMR vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 14. SVR vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 15. Slew rate vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 16. R Figure 17. I Figure 18. V Figure 19. V Figure 20. I Figure 21. I
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
OL
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
bias
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
io
and VOL vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
OH
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
out
vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CC
Figure 22. Circuit for power supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 23. Circuit for +5 V single supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 24. Noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 25. Inverting summing amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 26. Compensation of the input bias current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 27. Low-pass active filtering, Sallen-Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 28. Ceramic Flat-8 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Doc ID 15577 Rev 3 3/22
Absolute maximum ratings and operating conditions RHF310

1 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
V
T
R
R
P
Supply voltage
CC
(voltage difference between -VCC and +VCC pins)
Differential input voltage
id
Input voltage range
in
Storage temperature -65 to +150 °C
stg
Maximum junction temperature 150 °C
T
j
Thermal resistance junction to ambient area 50 °C/W
thja
Thermal resistance junction to case 40 °C/W
thjc
Maximum power dissipation
max
for T
=150°C
j
HBM: human body model
pins 1, 4, 5, 6, 7 and 8 pins 2 and 3
ESD
MM: machine model
pins 1, 4, 5, 6, 7 and 8 pins 2 and 3
CDM: charged device model (all pins)
Latch-up immunity 200 mA
1. All voltages values are measured with respect to the ground pin.
2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltage must never exceed VCC +0.3 V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. This is a minimum value. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground through only one pin. This is done for all pins.

Table 3. Operating conditions

(1)
(3)
(6)
(2)
(5)
(4)
(at T
amb
(7)
=25°C)
6V
±0.5 V
±2.5 V
830 mW
2
kV
0.5
200
V
60
1.5 kV
Symbol Parameter Value Unit
V
V
T
1. Tj must never exceed +150°C. P = (Tj - T must dissipate in the application.
Supply voltage 4.5 to 5.5 V
CC
Common-mode input voltage
icm
Operating free-air temperature range
amb
4/22 Doc ID 15577 Rev 3
amb
/ R
(1)
= (Tj - T
thja
case
+1.5 V to
-V
CC
-1.5 V
+V
CC
-55 to +125 °C
) / R
with P the power that the RHF310
thjc
V
RHF310 Electrical characteristics

2 Electrical characteristics

Table 4. Electrical characteristics for VCC = ±2.5 V, T
amb
= 25° C
(unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
DC performance
+125°C -6.5 +6.5
V
Input offset voltage
io
-55°C -6.5 +6.5
+125°C 15
Non-inverting input bias current
I
ib+
-55°C 15
+125°C 7
Inverting input bias current
I
ib-
-55°C 7
+125°C 55
CMR
SVR
Common mode rejection ratio 20 log (ΔV
/ΔVio)
ic
Supply voltage rejection ratio
/ΔV
20 log (ΔV
CC
out
)
ΔVic = ±1 V
-55°C 55
+125°C 50
ΔVCC= 3.5V to 5V
-55°C 50
mV+25°C -6.5 1.7 +6.5
μA+25°C 3.1 12
μA+25°C 0.1 5
dB+25°C 57 61
dB+25°C 65 82
PSRR
I
Power supply rejection ratio 20 log (ΔVCC/ΔV
Supply current No load
CC
out
)
Dynamic performance and output characteristics
R
Transimpedance
OL
Small signal -3 dB bandwidth on 1k Ω load
Bw
Gain flatness at 0.1 dB
=200mVpp at
ΔV
CC
1kHz
+25°C 50 dB
+125°C 600
µA+25°C 400 530
-55°C 600
+125°C 500
ΔV
= ±1 V,
out
RL = 1 kΩ
kΩ+25°C 600 1450
-55°C 500
Rfb = 3 kΩ, AV = +1 +25°C 230
R
= 510 Ω, AV = +10 +25°C 26
fb
+125°C 70
Rfb = 3 kΩ, AV = +2
+25°C 70 120
MHz
-55°C 70
=20mV
V
out
AV = +2, RL = 1k Ω
pp
+25°C 25
Doc ID 15577 Rev 3 5/22
Electrical characteristics RHF310
Table 4. Electrical characteristics for VCC = ±2.5 V, T
amb
= 25° C
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
= 2 Vpp,
V
SR Slew rate
V
V
High level output voltage RL = 100 Ω
OH
Low level output voltage RL = 100 Ω
OL
(1)
I
sink
I
out
(2)
I
source
Output to GND
Noise and distortion
eN Equivalent input noise voltage
(3)
out
= +2, RL = 100 Ω
A
V
+25°C 115 V/μs
+125°C 1.5
+25°C 1.55 1.65
-55°C 1.5
+125°C -1.5
+25°C -1.66 -1.55
-55°C -1.5
+125°C 70
Output to GND
+25°C 70 110
-55°C 70
+125°C 60
+25°C 60 100
-55°C 60
F = 100 kHz +25°C 7.5 nV/Hz
V
V
mA
Equivalent positive input noise
(3)
current
F = 100 kHz +25°C 13 pA/√ Hz
iN
Equivalent negative input noise
(3)
current
F = 100 kHz +25°C 6 pA/√ Hz
AV = +2, V RL = 100 Ω
SFDR Spurious free dynamic range
F = 1 MHz +25°C -87
F = 10 MHz +25°C -55
1. See Figure 10 for more details.
2. See Figure 11 for more details.
3. See Chapter 5 on page 15.

Table 5. Closed-loop gain and feedback components

Gain (V/V) + 2 - 2 + 4 - 4 + 10 - 10
(Ω) 1.2k 1k 150 300 100 180
R
fb
= 2 Vpp,
out
+25°C
dBc
6/22 Doc ID 15577 Rev 3
RHF310 Electrical characteristics
01234
-80
-70
-60
-50
-40
-30
-20
-10
0
H2
H3
Vcc=5V F=10MHz Load=1k
Ω
H2 and H3 (dBc)
Output (Vp-p)
Figure 1. Frequency response, positive gain Figure 2. Frequency response vs. capa-load
24 22 20 18 16 14 12 10
8 6 4
Gain (dB)
2 0
-2
-4
Small Signal
-6
Vcc=5V
-8
-10 1M 10M 100M
Load=1k
Ω
Gain=+10
Gain=+4
Gain=+2
Gain=+1
Frequency (Hz)
10
8
C-Load=10pF R-iso=33 ohms
6
4
R-iso
R-iso
C-Load
C-Load
C-Load=22pF R-iso=47ohms
Vout
Vout
1k
1k
2
0
Vin
Vin
+
-2
Gain (dB)
-4
+
-
-
3k
3k
3k
3k
-6
Gain=+2, Vcc=5V,
Gain=+2, Vcc=5V,
-8
Small Sig nal
Small Sig nal
-10 1M 10M 100M
Frequency (Hz)
C-Load=4.7pF R-iso=0
Figure 3. Output amplitude vs. load Figure 4. Input voltage noise vs. frequency
4.0
3.5
Gain=32dB Rg=12ohms Rfb=510ohms non-inverting input in short-circuit Vcc=5V
3.0
2.5
Max output amplitude (Vp-p)
2.0 10 100 1k 10k 100k
Load (ohms)
Figure 5. Distortion at 1 MHz Figure 6. Distortion at 10 MHz
-20
Vcc=5V
-30
F=1MHz
Ω
Load=1k
-40
-50
-60
-70
H2
H2 and H3 (dBc)
-80
-90
-100 01234
H3
Output (Vp-p)
Doc ID 15577 Rev 3 7/22
Loading...
+ 15 hidden pages