Datasheet RHF1401 Datasheet (ST)

RHF1401
Rad-hard 14-bit 30 Msps A/D converter
Datasheet − production data
Features
Qml-V qualified, smd 5962-06260
Failure immune (SEFI) and latch-up immune
(SEL) up to 120 MeV-cm
2
/mg at 2.7 V and
125° C
Hermetic package
Tested at F
Low power: 85 mW at 20 Msps
Optimized for 2 Vpp differential input
High linearity and dynamic performances
2.5 V/3.3 V compatible digital I/O
Internal reference voltage with external
=20Msps
s
reference option
Applications
Digital communication satellites
Space data acquisition systems
Aerospace instrumentation
Nuclear and high-energy physics
Description
The RHF1401 is a 14-bit analog-to-digital converter that uses pure (ELDRS-free) CMOS
0.25 µm technology combining high performance, radiation robustness and very low power consumption.

Table 1. Device summary

Ceramic SO-48 package
The upper metallic lid is not electrically connected to any
pins, nor to the IC die inside the package.
The RHF1401 is based on a pipeline structure and digital error correction to provide excellent static linearity. Specifically designed to optimize power consumption, the device only dissipates 85 mW at 20 Msps, while maintaining a high level of performance. The device also integrates a proprietary track-and-hold structure to ensure a large effective resolution bandwidth.
Voltage references are integrated in the circuit to simplify the design and minimize external components. A tri-state capability is available on the outputs to allow common bus sharing. A data­ready signal, which is raised when the data is valid on the output, can be used for synchronization purposes.
The RHF1401 has an operating temperature range of -55° C to +125° C and is available in a small 48-pin ceramic SO-48 package.
Order code SMD pin
RHF1401KSO1 -
RHF1401KSO-01V 5962F0626001VXC QMLV-Flight
April 2012 Doc ID 13317 Rev 7 1/39
This is information on a product in full production.
Quality
level
Engineering
model
Package
SO-48 Gold 1.1 g - -55 °C to +125 °C
Lead
finish
Mass EPPL Temp range
www.st.com
39
Contents RHF1401
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Equivalent circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . 9
2.2 Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Electrical characteristics (after 300 kRad) . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Results for differential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Results for single ended input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 User manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Optimizing the power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Driving the analog input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Reference connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Internal references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 External references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Digital outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Digital output load considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 PCB layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 Definitions of specified parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Static parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Dynamic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2/39 Doc ID 13317 Rev 7
RHF1401 Contents
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Doc ID 13317 Rev 7 3/39
Description RHF1401

1 Description

1.1 Block diagram

Figure 1. RHF1401 block diagram

VREFP
REFMODE
VIN
INCM
VINB
stage
1
stage
2
stage
n
INCM
Reference
circuits
GNDA
IPOL
VREFM DFSB
CLK
Timing
GND
Sequencer-phase shifting
Digital data correction
Buffers
VCCBI
OEB
DR
D0
D13
OR
VCCBE
AM04556
4/39 Doc ID 13317 Rev 7
RHF1401 Description

1.2 Pin connections

Figure 2. pin connections (top view)

GNDBI
GNDBE
VCCBE
NC NC OR
(MSB)D13
D12 D11 D10
D9 D8 D7 D6 D5 D4 D3 D2 D1
(LSB)D0
DR
VCCBE
GNDBE
VCCBI
10
10 11
11 12
12 13
13 14
14 15
15 16
16 17
17 18
18 19
19 20
20 21
21 22
22 23
23 24
24
1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9
48
48
DGND
47
47
DGND
46
46
CLK
45
45
DGND
44
44
DVCC
43
43
DVCC
42
42
AVCC
41
41
AVCC
40
40
AGND
39
39
INCM AGND
38
38
VINB
37
37
AGND
36
36
VIN
35
35
AGND
34
34
VREFM
33
33
VREFP
32
32
IPOL
31
31
AGND
30
30
AVCC
29
29
AVCC
28
28
DFSB
27
27
OEB
26
26
REFMODE
25
25
Doc ID 13317 Rev 7 5/39
Description RHF1401

1.3 Pin descriptions

Table 2. Pin descriptions

Pin Name Description Observations Pin Name Description Observations
1 GNDBI Digital buffer ground 0 V 25 REFMODE Ref. mode control input
2 GNDBE Digital buffer ground 0 V 26 OEB Output enable input
3VCCBE
4NC
5NC
6 OR Out of range output
7 D13(MSB)
8 D12 Digital output
9 D11 Digital output
10 D10 Digital output
11 D9 Digital output
12 D8 Digital output
13 D7 Digital output
14 D6 Digital output
15 D5 Digital output
16 D4 Digital output
17 D3 Digital output
18 D2 Digital output
19 D1 Digital output
20 D0(LSB) Digital output LSB
21 DR Data ready output
22 VCCBE
23 GNDBE Digital buffer ground 0 V 47 DGND Digital ground 0 V
24 VCCBI
Digital buffer power supply
Most significant bit output
Digital buffer power supply
Digital buffer power supply
2.5 V/3.3 V 27 DFSB Data format select input
Not connected to the dice
Not connected to the dice
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5V /3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output (2.5 V/3.3 V)
CMOS output
(1)
(2.5 V/3.3 V)
2.5 V/3.3 V 46 CLK Clock input
2.5 V 48 DGND Digital ground 0 V
28 AVCC Analog power supply 2.5 V
29 AVCC Analog power supply 2.5 V
30 AGND Analog ground 0 V
31 IPOL Analog bias current input
32 VREFP Top voltage reference
33 VREFM Bottom voltage reference 0 V
34 AGND Analog ground 0 V
35 VIN Analog input 1 V
36 AGND Analog ground 0 V
37 VINB Inverted analog input 1 V
38 AGND Analog ground 0 V
39 INCM Input common mode
40 AGND Analog ground 0 V
41 AVCC Analog power supply 2.5 V
42 AVCC Analog power supply 2.5 V
43 DVCC Digital power supply 2.5 V
44 DVCC Digital power supply 2.5 V
45 DGND Digital ground 0 V
1. See load considerations in Chapter 2.2: Timing characteristics.
2.5 V/3.3 V CMOS input
2.5 V/3.3 V CMOS input
2.5 V/3.3 V CMOS input
Can be external or internal
pp
pp
Can be external or internal
2.5 V compatible CMOS input
6/39 Doc ID 13317 Rev 7
RHF1401 Description

1.4 Equivalent circuits

Figure 3. Analog inputs Figure 4. Output buffers
AVCC
VIN or VINB
7 pF
(pad)
OEB
AGND
Data
AVCC
AGND
AM04557
Figure 5. Clock input Figure 6. Data format input
VCCBE
CLK
DVCC
DFSB
VCCBE
GNDBE
D0 …D13
7 pF
(pad)
AM04558
7 pF
(pad)
DGND
AM04559
7 pF
(pad)
GNDBE
Figure 7. Reference mode control input Figure 8. Output enable input
REFMODE
7 pF
(pad)
VCCBE
GNDBE
AM04561
OEB
7 pF
(pad)
VCCBE
GNDBE
AM04560
AM04562
Doc ID 13317 Rev 7 7/39
Description RHF1401

Figure 9. VREFP and INCM input

AVCC
AVCC
VREFP
7 pF
(pad)
AGND

Figure 10. VREFM input

INCM
7 pF
REFMODE REFMODE
High input impedance
VREFM
7 pF
(pad)
(pad)
AGND
AVCC
AGND
AM04564
AM04563
8/39 Doc ID 13317 Rev 7
RHF1401 Electrical characteristics

2 Electrical characteristics

2.1 Absolute maximum ratings and operating conditions

Table 3. Absolute maximum ratings

Symbol Parameter Values Unit
AV
CC
DV
CC
V
CCBI
V
CCBE
V
IN
V
INB
V
REFP
V
INCM
I
Dout
T
stg
R
thjc
R
thja
ESD HBM (human body model)
1. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
Analog supply voltage 3.3 V
Digital supply voltage 3.3 V
Digital buffer supply voltage 3.3 V
Digital buffer supply voltage 3.6 V
Analog inputs: bottom limit −> top limit -0.6 V −> AVCC+0.6 V V
External references: bottom limit −> top limit -0.6 V −> AVCC+0.6 V V
Digital output current -100 to 100 mA
Storage temperature -65 to +150 °C
Thermal resistance junction to case 22 °C/W
Thermal resistance junction to ambient 125 °C/W
(1)
2kV

Table 4. Operating conditions

Symbol Parameter Min Typ Max Unit
AV
CC
DV
CC
V
CCBI
V
CCBE
V
REFP
V
REFM
V
INCM
V
IN
V
INB
DFSB
OEB
1. See Figure 25. for differential input and Figure 42. to Figure 49. for single-ended.
Analog supply voltage 2.3 2.5 2.7 V
Digital supply voltage 2.3 2.5 2.7 V
Digital internal buffer supply 2.3 2.5 2.7 V
Digital output buffer supply 2.3 2.5 3.4 V
Forced top voltage reference 0.8 1 1.4 V
Bottom external reference voltage 0 0 0.5 V
Forced common mode voltage 0.2 0.5 1.1 V
Max. voltage versus GND 1 1.6
(1)
Min. voltage versus GND -0.2 GND V
Digital inputs 0 V
CCBE
V
VREFMODE
Doc ID 13317 Rev 7 9/39
Electrical characteristics RHF1401

2.2 Timing characteristics

Table 5. Timing characteristics

Symbol Parameter Test conditions Min Typ Max Unit
DC Clock duty cycle
T
T
T
T
T
T
Data output delay (fall of
od
clock to data valid)
Data pipeline delay
pd
Falling edge of OEB to
on
digital output valid data
Rising edge of OEB to
off
digital output tri-state
Data rising time 10 pF load capacitance 6 ns
rD
Data falling time 10 pF load capacitance 3 ns
fD
(1)
(2)
F
= 20 Msps 45 50 65 %
s
10 pF load capacitance 5 7.5 13 ns
Duty cycle = 50% 7.5 7.5 7.5 cycles
1. As per Figure 11.
2. If the duty cycle does not equal 50%: Tpd = 7 cycles + CLK pulse width.

Figure 11. Timing diagram

N+6
N+5
N+4
Analog input
N-2
N-1
N
N+1
N+3
N+2
1ns
1ns
N+7
N+8
CLK
Tpd+ Tod
Tod
OEB
Data output
DR
OR
Tod
N-8 N-7 N-6 NN-5 N -4 N+1N-3 N-1
The input signal is sampled on the rising edge of the clock while the digital outputs are synchronized on the falling edge of the clock. The duty cycles on DR and CLK are the same.
The rising and falling edges of the OR pin are synchronized with the falling edge of the DR pin.
10/39 Doc ID 13317 Rev 7
Toff Ton
HZ state
AM06120
RHF1401 Electrical characteristics

2.3 Electrical characteristics (after 300 kRad)

Unless otherwise specified, the test conditions in the following tables are: AVCC = DVCC = VCCBI =VCCBE = 2.5 V, F VREFP = 1V, INCM = 0.5V, VREFM = 0 V, T

Table 6. Analog inputs

Symbol Parameter Test conditions Min Typ Max Unit
=20 Msps, FIN= 15 MHz, V
s
= 25°C.
amb
at -1 dBFS,
IN
V
IN-VINB
C
Z
Full-scale reference voltage
(1)
(FS)
Input capacitance 7 pF
IN
Input impedance Fs = 20 Msps 3.3 kΩ
IN
ERB Effective resolution bandwidth
1. See Chapter 4: Definitions of specified parameters on page 33 for more information.

Table 7. Internal reference voltage

VREFP = 1 V (forced) VREFM = 0 V
(1)
2V
70 MHz
Symbol Parameter Test conditions Min Typ Max Unit
REFMODE = 0 internal reference
R
Output resistance of internal
out
reference
on
REFMODE = 1 internal reference
30 Ω
7.5 kΩ
off
V
REFP
V
INCM
1. V
REFM

Table 8. External reference voltage

Top internal reference voltage
Input common mode voltage REFMODE = 0 0.40 0.44 0.50 V
connected to GND.
(1)
REFMODE = 0 0.76 0.84 0.95 V
(1)
pp
Symbol Parameter Test conditions Min Typ Max Unit
V
REFP
V
REFM
V
INCM
1. See Figure 59.& Figure 60

Table 9. Static accuracy

Forced top reference voltage REFMODE = 1 0.8 1.4 V
Forced bottom ref voltage REFMODE = 1 0 0.5 V
Forced common mode voltage REFMODE = 1 0.2 1.1 V
Symbol Parameter Test conditions Min Typ Max Unit
(2)
(1)
Fin= 1.5 Msps
±0.4 LSB Vin at -1 dBFS Fs=1.5 Msps
±3 LSB
Guaranteed
DNL Differential non-linearity
INL Integral non-linearity
Monotonicity and no missing codes
1. See Figure 33 and Chapter 4 for more information. This parameter is not tested.
2. See Figure 34 and Chapter 4 for more information. This parameter is not tested.
Doc ID 13317 Rev 7 11/39
Electrical characteristics RHF1401

Table 10. Digital inputs and outputs

Symbol Parameter Test conditions Min Typ Max Unit
Clock input
CT Clock threshold DV
CA
Square clock amplitude (DC component = 1.25 V)
= 2.5 V 1.25 V
CC
DV
= 2.5 V 0.8 2.5 Vpp
CC
Digital inputs
V
IL
V
IH
Logic "0" voltage V
Logic "1" voltage V
= 2.5 V 0
CCBE
= 2.5 V
CCBE
0.75 x V
CCBE
0.25 x
V
CCBE
V
CCBE
Digital outputs
V
OL
V
OH
I
OZ
C
L

Table 11. Dynamic characteristics

Logic "0" voltage I
= -10 µA 0 0.25 V
OL
Logic "1" voltage IOH = 10 µA
High impedance leakage current
Output load capacitance
OEB set to V
High CLK frequencies
V
CCBE
-0.25
IH
-15 15 µA
15 pF
Symbol Parameter Test conditions Min Typ Max Unit
SFDR Spurious free dynamic range
SNR Signal to noise ratio 66 70 dB
THD Total harmonic distortion 70 86 dB
SINAD
Signal to noise and distortion ratio
F
= 15 MHz
in
= 20 Msps
F
s
V
at -1 dBFS
in
internal references
= 6 pF
C
L
70 91 dBFS
65 70 dB
ENOB Effective number of bits 10.6 11.5 bits
V
V
V
Higher values of SNR, SINAD and ENOB can be obtained by increasing the full-scale range of the analog input if the sampling frequency allows it.
12/39 Doc ID 13317 Rev 7
RHF1401 Electrical characteristics
G

2.4 Results for differential input

Setup
AVCC = DVCC = VCCBI = VCCBE = 2.5V
VREFP = 1 V
VREFM = 0 V
INCM = Vin/2
REFMODE = 1 (internal references are disabled)
Vin = full scale - 0.3 dB
Ta mb = 2 5 C °
A square clock is applied
Unless other test conditions are specified.

Figure 12. Differential configuration

External 1V
REFP
GENERATOR
ENERATOR
Dierential
input signal
C
f
VIN
2.5 V
VCCBE
VCCBI
AVCC
DVCC
VOCM
VOCM
External
C
is a filter capacitor to cut the HF noise. Its value is 10 nF for input frequencies equal to or
f
INCM
VINB
REFM
Ground
AM04565
below 20 kHz. The value of the capacitor is divided by two when the input frequency is multiplied by 2.
Doc ID 13317 Rev 7 13/39
Electrical characteristics RHF1401
1 M

Figure 13. ENOB vs. input frequency Figure 14. SINAD vs. input frequency

12
11.6
11.2
Fs =
10 ksps
ENOB (bits)
10.8
100 ksps
1 Msps
10.4
10
10E+0 100E +0 1E+3 10E+3 100E+3 1E +6 10E +6 100E +6
10 Msps
30 Msps
Input frequency
-60
-62
-64
-66
-68
SINA D (dB)
-70
-72
-74
-76
1E +1 1 E +2 1E +3 1 E +4 1E +5 1E +6 1 E+7 1E +8
Fs =
10 ksps
100 ksps
1 Msps
10 Msps
30 Msps
Input freq uenc y

Figure 15. THD vs. input frequency Figure 16. SNR vs. input frequency

-60
Fs =
-65
10 ksps
100 ksps
1 Msps
-70
10 Msps
30 Msps
-75
THD (dB)
-80
-85
76
74
72
70
68
SNR (dB)
66
64
62
Fs =
10 ksps
100 ksps
sps
10 Msps
30 Msps
-90
1E +1 1E +2 1 E +3 1E +4 1E +5 1E +6 1 E +7 1E +8
Input frequency
60
1E+1 1E+2 1E+3 1E+4 1E+5 1E +6 1E +7 1E +8
Input frequenc y

Figure 17. SFDR vs. input frequency Figure 18. Consumption vs. input frequency

90
85
80
75
SFDR (dB)
70
Fs =
10 ksps
100 ksps
1 Msps
10 Msps
65
60
1E +1 1E +2 1E +3 1E +4 1E +5 1E +6 1E +7 1E +8
30 Msps
Input frequency
120
110
100
90
80
70
er cons umption (mW)
60
Po
50
40
30
1E +1 1 E +2 1E +3 1 E +4 1E +5 1 E +6 1E +7 1E +8
Fs =
10 ksps
100 ksps
1 Msps 10 Msps 30 Msps
Input frequency
14/39 Doc ID 13317 Rev 7
RHF1401 Electrical characteristics
50 kHz
50 kHz
50 kH
o

Figure 19. ENOB vs. sampling frequency Figure 20. SINAD vs. sampling frequency

12
11.5
11
ENOB (bits)
10.5
10
1E+4 1E+5 1E+6 1E+7 1E+8
Fin =
10 Hz
1 kHz
2 MHz
10 MHz
S ampling frequenc y
-60
-62
-64
Fin = 10 Hz
1 kHz
-66
-68
SINAD (dB)
50 kHz
2 MHz
10 MHz
-70
-72
-74
1E +4 1E +5 1E +6 1E +7 1E +8
Sampling frequency

Figure 21. THD vs. sampling frequency Figure 22. SNR vs. sampling frequency

-60
-65 Fin =
10 Hz
-70
1 kHz
50 kHz
2 MHz
-75
THD (dB)
10 MHz
-80
-85
76
74
72
70
68
SNR (dB)
66
64
62
Fin = 10 Hz
1 kHz
2 MHz
10 MHz
-90
1E+4 1E +5 1E +6 1E +7 1E +8
S ampling frequency
60
1E +4 1E +5 1E +6 1E +7 1E +8
S ampling frequenc y

Figure 23. SFDR vs. sampling frequency Figure 24. Power consumption vs. sampling

frequency
90
85
80
75
SFDR (dB)
70
65
60
1E +4 1E +5 1E +6 1E +7 1 E +8
Fin = 10 Hz
1 kHz
2 MHz
10 MHz
z
S ampling frequency
180
160
140
120
100
80
wer cons umption (mW) P
60
40
20
1E+4 1E+5 1E+6 1E+7 1E+8
Fin =
10 Hz
1 kHz
50 kHz
2 MHz
10 MHz
S ampling frequency
Doc ID 13317 Rev 7 15/39
Electrical characteristics RHF1401
1 Msps

Figure 25. ENOB vs. VREFP Figure 26. SINAD vs. VREFP

12.5
12
11.5
11
Fs =
10 ksps
ENOB (bits)
10.5
100 ksps
10 Msps
10
20 Msps 25 Msps 30 Msps
9.5
0.8 0.9 1 1.1 1.2 1.3 1.4
35 Msps
External Vrefp (V)
-50 Fs =
10 ksps
-55
100 ksps
1 Msps
10 Msps
-60
20 Msps 25 Msps 30 Msps 35 Msps
-65
SINAD (dB)
-70
-75
-80
0.8 0.9 1 1.1 1.2 1.3 1.4
External Vrefp (V )

Figure 27. SNR vs. VREFP Figure 28. THD vs. VREFP

80
75
70
Fs =
10 ksps
65
SNR (dB)
60
55
0.8 0.9 1 1.1 1.2 1.3 1.4
100 ksps
1 Msps 10 Msps 20 Msps 25 Msps 30 Msps 35 Msps
External Vrefp (V )
-50
-55
-60
-65
Fs =
10 ksps
100 ksps
1 Msps 10 Msps 20 Msps 25 Msps 30 Msps 35 Msps
-70
THD (dB)
-75
-80
-85
-90
0.8 0.9 1 1.1 1.2 1.3 1.4
External Vrefp (V )

Figure 29. ENOB vs. sine clock, diff. input Figure 30. Clock threshold vs. temperature

12
11.5
11
ENOB (bits)
10.5
10
1 Msps 10 Msps 100 Msps
Sampling frequency
Fin =
10 Hz
1 kHz
50 kHz
2 MHz
10 MHz
16/39 Doc ID 13317 Rev 7
RHF1401 Electrical characteristics
10 k
e
100 k

Figure 31. ENOB vs. temperature Figure 32. Power consumption vs. temp.

12.5
12
11.5
11
Fs =
10.5
ENOB (bits)
10
9.5
9
-55 -35 -15 5 25 45 65 85 105 125
200 sps
1 ksps
100 ksps
1 Msps
sps
Temperature (C°)
50
40
30
20
r cons umption (mW)
Pow
10
0
-55 -35 -15 5 25 45 65 85 105 125
Fs =
10 ksps
sps
1 Msps
R pol=330 kOhms
Temperature (C °)

Figure 33. DNL, differential input Figure 34. INL, differential input

DNL (LSB)
INL (LSB)
Doc ID 13317 Rev 7 17/39
Electrical characteristics RHF1401
G

2.5 Results for single ended input

Setup
AVCC = DVCC = VCCBI = VCCBE = 2.5V
VREFP = 1 V
VREFM = 0 V
INCM = Vin/2
REFMODE = 1 (internal references are disabled)
Vin = full scale - 0.3 dB
Ta mb = 2 5 C °
A square clock is applied
Unless other test conditions are specified.

Figure 35. Single-ended input configuration

External 1V
REFP
REFM
Ground
VIN
VINB
2.5 V
VCCBE
VCCBI
AVCC DVCC
AM04566
Single ended
GENERATOR
ENERATOR
VOCM
VOCM
C
is a filter capacitor to cut the HF noise. Its value is 10 nF for input frequencies equal to or
f
input signal
C
External
f
INCM
below 20 kHz. The value of the capacitor is divided by two when the input frequency is multiplied by 2.
18/39 Doc ID 13317 Rev 7
RHF1401 Electrical characteristics
100 ksps

Figure 36. ENOB vs. Fin, single-ended Figure 37. SINAD vs. Fin, single-ended

11.5
11
10.5
10
ENOB (bits)
9.5
9
1E +1 1E +2 1E +3 1E +4 1E +5 1 E+6 1 E +7 1E +8
Fs =
10 ksps
1 Msps
10 Msps
30 Msps
Input frequency
-50
Fs =
10 ksps
-55
-60
SINAD (dB )
-65
-70
1E +1 1E +2 1E +3 1E +4 1E +5 1E +6 1E +7 1E +8
100 ksps
1 Msps
10 Msps
30 Msps
Input frequenc y

Figure 38. THD vs. Fin, single-ended Figure 39. SNR vs. Fin, single-ended

-55
-60
-65
-70
THD (dB)
-75
-80
Fs =
10 ksps
100 ksps
1 Msps
10 Msps
30 Msps
70
67
64
SNR (dB)
61
58
Fs =
10 ksps
100 ksps
1 Msps
10 Msps
30 Msps
-85
1E+1 1E +2 1E +3 1E +4 1E +5 1E+6 1E+7 1E+8
Input frequency
55
1E +1 1E +2 1E +3 1E +4 1 E +5 1E +6 1E +7 1E +8
Input frequency

Figure 40. SFDR vs. Fin, single-ended Figure 41. Power consumption vs. Fin

85
80
75
70
SFDR (dB)
65
60
55
1E+1 1E+2 1E+3 1E +4 1E +5 1E+6 1E +7 1E +8
Fs =
10 ksps
100 ksps
1 Msps
10 Msps
30 Msps
Input frequency
120
100
Fs =
80
60
er cons umption (mW )
Po
40
20
1E +1 1E +2 1 E +3 1E +4 1E +5 1E +6 1E +7 1E +8
10 ksps
100 ksps
1 Msps
10 Msps
30 Msps
Input frequency
Doc ID 13317 Rev 7 19/39
Electrical characteristics RHF1401
100 k
Fs =
Figure 42. ENOB vs. Vin, Fin 1 kHz, Vrefp = 0.8 V Figure 43. ENOB vs Vin, Fin = 2 MHz, Vrefp = 0.8 V
11.5 Fin = 1 kHz - VREFP=0.8V
11.0
10.5
10.0
ENOB (bits)
9.5
9.0
Fs =
10 ksps
100 ksps
1 Msps 10 Msps 20 Msps 25 Msps 30 Msps
1.01.11.21.31.41.51.6
Vin (Vpp)
11.5 Fin = 2MHz - VR EFP=0.8V
11.0
10.5
10.0
ENOB (bits)
Fs =
2 Msps
10 Msps
9.5
20 Msps 25 Msps 30 Msps
9.0
1.0 1.1 1.2 1.3 1.4 1. 5 1.6
Vin (Vpp)
Figure 44. ENOB vs. Vin, Fin 1 kHz, Vrefp = 1.0 V Figure 45. ENOB vs Vin, Fin = 2 MHz, Vrefp = 1.0 V
11.5 Fin = 1kHz - VREFP=1.0V
11.0
10.5
11.5 Fin = 2MHz - VREFP=1.0V
11.0
10.5
10.0
ENOB (bits)
9.5
9.0
Fs =
10 ksps
sps
1 Msps 10 Msps 20 Msps 25 Msps 30 Msps
1.0 1.1 1.2 1.3 1.4 1.5 1.6
Vin (Vpp)
10.0
ENOB (bits)
9.5
9.0
Fs =
2 Msps 10 Msps 20 Msps 25 Msps 30 Msps
1.01.11.21.31.41.51.6
Vin (Vpp)
Figure 46. ENOB vs. Vin, Fin 1 kHz, Vrefp = 1.2 V Figure 47. ENOB vs Vin, Fin = 2 MHz, Vrefp = 1.2 V
11.5 Fin = 1kHz - VREFP=1.2V
11.0
10.5
10.0
ENOB (bits)
9.5
9.0
Fs =
10 ksps
100ksps
1 Msps 10 Msps 20 Msps 25 Msps 30 Msps
1.0 1.1 1.2 1.3 1.4 1.5 1.6
Vin (Vpp)
11.5 F in = 2 MH z - V R E FP =1.2 V
11.0
10.5
ENOB (bits)
10.0
2 Msps
10 Msps
9.5 20 Msps 25 Msps 30 Msps
9.0
1.0 1.1 1.2 1.3 1.4 1.5 1.6
Vin (Vpp)
20/39 Doc ID 13317 Rev 7
RHF1401 Electrical characteristics
Figure 48. ENOB vs. Vin, Fin 1 kHz, Vrefp = 1.4 V Figure 49. ENOB vs Vin, Fin = 2 MHz, Vrefp = 1.4 V
11.5 Fin = 1kHz - VREFP=1.4V
11.0
10.5
10.0
ENOB (bits)
9.5
9.0
1.0 1.1 1.2 1.3 1.4 1.5 1.6
Vin (Vpp)
Fs =
10 ksps
100 ksps
1 Msps 10 Msps 20 Msps 25 Msps 30 Msps
11.5 Fin = 2MHz - VR EFP=1.4V
11.0
10.5
10.0
ENOB (bits)
9.5
9.0
1.01.11.21.31.41.51.6
Fs =
2 Msps 10 Msps 20 Msps 25 Msps 30 Msps
Vin (V pp)
Doc ID 13317 Rev 7 21/39
User manual RHF1401

3 User manual

3.1 Optimizing the power consumption

The polarization current in the input stage is set by an external resistor (R
). When
pol
selecting the resistor value, it is possible to optimize the power consumption according to the sampling frequency of the application. For this purpose, an external R
resistor is
pol
placed between the IPOL pin and the analog ground.
The values in Figure 50 are achieved with VREFP = 1 V, VREFM = 0 V, INCM = 0.5 V and the input signal is 2 Vpp with a differential DC connection. If the conditions are changed, the Rpol resistor varies slightly.
Figure 50 shows the optimum Rpol resistor value to obtain the best ENOB value. It also
shows the minimum and maximum values to get good results. ENOB decreases by approximately 0.2 dB when you change Rpol from optimum to maximum or minimum.
If Rpol is higher than the maximum value, there is not enough polarization current in the analog stage to obtain good results. If Rpol is below the minimum, THD increases significantly.
Therefore, the total dissipation can be adjusted across the entire sampling range to fulfill the requirements of applications where power saving is critical.
For sampling frequencies below 2 MHz, the optimum resistor value is approximately 400 kOhms.
Figure 50. Rpol values vs. F
1000
S
max im um optimum minimum
100
is tor (k Ohms )
10
R pol res
1
0 5 10 15 20 25 30 35 40
S ampling frequenc y (Ms ps )
The power consumption depends on the Rpol value and the sampling frequency. In
Figure 51, it is shown with the internal references disabled (REFMODE = 1) and Rpol
defined in Figure 50 as the optimum.
22/39 Doc ID 13317 Rev 7
RHF1401 User manual
o

Figure 51. Power consumption values vs. Fs with internal references disabled

200
180
160
140
120
100
nsumption (mW)
80
60
40
Power c
20
0
0 5 10 15 20 25 30 35 40
S ampling frequency (MHz)
Doc ID 13317 Rev 7 23/39
User manual RHF1401

3.2 Driving the analog input

The input frequency can range from DC to tens of MHz.
The input stages (VIN and VINB) have a special design that limits the input amplitude. For each of them, the maximum input voltage is 1.6 V for low sampling frequencies and less for high sampling frequencies. The low voltage is ground.
In differential mode, high sampling limitation is seen in Figure 25.
For all input frequencies, it is mandatory to add a capacitor on the PCB (between VIN and VINB) to cut the HF noise. The lower the frequency, the higher the capacitor.
The full-scale range is twice the difference between Vrep and Vrefm.

Figure 52. Equivalent VIN - VINB (differential input)

VIN -VINB
(level + FS, code 16383)
VIN
FS (full-scale) = 2(VREFP - VREFM)
INCM (level 0, code 8191)
VINB
(level - FS, code 0)
AM04567

Table 12. Output codes for DFSB = 1

Vin - Vinb = Output code
+range/2 16383
0 8191
-range/2 0
The RHF1401 is designed to obtain optimum performance when driven on differential inputs with a differential amplitude of two volts peak-to-peak (2 V
). This is the result of 1 Vpp on
pp
the VIN and VINB inputs in phase opposition.
The RHF1401 is specifically designed to meet sampling requirements for intermediate frequency (IF) input signals. In particular, the track-and-hold in the first stage of the pipeline is designed to minimize the linearity limitations as the analog frequency increases.
24/39 Doc ID 13317 Rev 7
RHF1401 User manual
V

Figure 53. 2 Vpp differential input

1 V
INCM
1 Vp -p
VIN
REFP
REFMODE
2.5
INCM
1 Vp -p
VIN -VINB (2 Vp-p)
VINB
INCM
0.5V
REFM
Ground
AM04570
Figure 54 shows a differential input solution. The input signal is fed to the transformer’s
primary, while the secondary drives both ADC inputs. The transformer must be matched with generator output impedance: 50 Ω in this case for proper matching with a 50 Ω generator. The tracks between the secondary and VIN and VINB pins must be as short as possible.

Figure 54. Differential implementation using a balun

50 Ω track
Analog input signal
(50 Ω output)
ADT1 -1
1:1
Short track
33 pF
VIN
50 Ω
VINB
INCM
External
470 nF* ceramic (as close as possible to the transformer)
*the use of a ceramic technology is preferable for a large bandwidth stability of the capacitor
100 nF* ceramic (as close as possible to INCM pin)
INCM (optional)
AM04571
The input common-mode voltage of the ADC (INCM) is connected to the center tap of the transformer’s secondary in order to bias the input signal around the common voltage (see
Table 7 on page 11).The INCM is decoupled to maintain a low noise level on this node.
Ceramic technology for decoupling provides good capacitor stability across a wide bandwidth.
Doc ID 13317 Rev 7 25/39
User manual RHF1401

Figure 55. Optimized single-ended configuration (DC coupling), external REFP

high input rail
INCM
0 V (ground)
Vp - p
VIN -VINB
VIN
VIN
VINB
External
INCM
External
REFP
INCM
REFM
Ground
AM04569
The RHF1401 is designed for use in a differential input configuration. Nevertheless, it can achieve good performance in a single-ended input configuration. In single-ended, performances depend on the input voltage, input frequency, voltage of references and sampling frequency (refer to Figure 42. to Figure 49.)
Some applications may require a single-ended input, which can easily be achieved with the configuration shown in Figure 56. However, with this type of configuration, a degradation in the rated performance of the RHF1401 may occur compared with a differential configuration. A sufficiently decoupled DC reference should be used to bias the RHF1401 inputs. An AC-coupled analog input can also be used and the DC analog level set with a high value resistor R (6 kΩ to 100 kΩ) connected to a proper DC source. Cin and R behave like a high-pass filter and are calculated to set the lowest possible cut-off frequency.
26/39 Doc ID 13317 Rev 7
RHF1401 User manual

Figure 56. AC-coupling single-ended input configuration

50 Ω track
Analog input signal
(50 Ω output)
Cin
50 Ω
R
R
Short track
INCM
VIN
VINB
100 nF ceramic* (as close as possible to INCM pin)
External INCM (optional)
AM04572
470 pF
ceramic*
Short track
100 nF
ceramic*
*the use of a ceramic technology is preferable for a large bandwidth stability of the capacitor

Figure 57. AC-coupling single-ended input configuration for low frequencies

50 Ω track
Analog input signal
(50 Ω output)
50 Ω
Cin
C
Short track
R
R
Short track
VIN
INCM
VINB
*ceramic technology for a large bandwidth stability of the capacitor
100 nF ceramic* (as close as possible to INCM pin)
External INCM (optional)
AM04573
The C capacitor is efficient in reducing noise at high frequencies. When coupled with the resistors, R and C together behave like a high-pass filter. For example, if R = 10 k and C = 33 pF, the cut-off frequency of this filter equals 482 kHz.
Doc ID 13317 Rev 7 27/39
User manual RHF1401
INCM

3.3 Reference connections

3.3.1 Internal references

In the standard configuration, the ADC is biased with two internal reference voltages. There are two voltage references: VREFP and INCM. They should be decoupled to minimize low and high frequency noise. Both are enabled when the REFMODE pin is set to 0.
The VREFM pin has no internal reference and must be connected to a voltage reference. It is usually connected to the analog ground.
Figure 58. Internal reference setting
As close as possible to the ADC pins

3.3.2 External references

External reference voltages can be used for specific applications requiring even better linearity or enhanced temperature behavior or different voltage values (see Table 7: Internal
reference voltage on page 11). Internal references are disabled when the REFMODE pin is
equal to 1. In this case, external references must be applied to the device.
The external voltage references with the configuration shown in Figure 59 and Figure 60 can be used to obtain optimum performance. Decoupling is achieved by using ceramic capacitors, which provide optimum linearity versus frequency.
VIN
VINB
REFMODE
VREFP
INCM
VREFM
100 nF*
100 nF*
*the use of a cerami c technology is preferable for a large bandwidth stability of the capacitor.
470 nF*
470 nF*
AM04574
28/39 Doc ID 13317 Rev 7
RHF1401 User manual
Figure 59. External reference setting Figure 60. Example with zeners
VIN
VINB
REFMODE
VCCA VREFP
INCM
VREFM
As close as possible to the ADC pins
100 nF*
100 nF*
470 nF*
470 nF*
DC
source
DC
source
AM04575
VIN
VINB
As close as possible
As close as possible to the ADC pins
to the ADC pins
VCCA VREFP
INCM
REFMODE
VREFM
100 nF*
100 nF*
100 nF*
100 nF*
R
R1
R2
470 nF*
470 nF*
470 nF*
470 nF*
AM04576
Note: *The use of ceramic technology is preferable to ensure large bandwidth stability of the
capacitor.
In multi-channel applications, the high impedance input (when REFMODE = 1) of the references allows one to drive several ADCs with only two voltage reference devices.
The voltage of the analog input common mode (INCM) should stay close to V
REFP
/2. Higher
levels introduce more distortion.
Doc ID 13317 Rev 7 29/39
User manual RHF1401

3.4 Clock input

The quality of the converter very much depends on the accuracy of the clock input in terms of jitter. The use of a low-jitter, crystal-controlled oscillator is recommended.
The following points should also be considered.
The clock’s power supplies must be independent of the ADC’s output supplies to avoid
digital noise modulation at the output.
When powered-on, the circuit needs several clock periods to reach its normal operating
conditions.

Figure 61. Clock input schematic

Square clock
DVcc/2
Sine clock
DVcc/2
CLK
Short track
50 Ω clock generator
50 Ω
CLK
Short track
50 Ω
AM04577
The signal applied to the CLK pin is critical to obtain full performance from the RHF1401. Below 10 MHz, the sine clock does not have transition times fast enough to achieve good performances. It is recommended to use a square signal with fast transition times and to place proper termination resistors as close as possible to the device.
The sampling instant is determined by the clock signal’s rising edge. The jitter associated with this instant must be as low as possible to avoid SNR degradation on fast moving input signals. To make sure any error is less than 0.5 LSB, the total jitter T
must satisfy the
j
following condition for a full-scale input signal.
j
π F
⋅⋅
n1+
2
in
1
-------------------------------------- -
<
T
For example, the total jitter with a 14-bit resolution for a 10 MHz full-scale input should be no more than 1 picosecond (rms).
In most cases, the clock signal jitter is responsible for noise. Therefore, you must pay attention to the clock signal when fast signals are acquired with a low frequency clock.
30/39 Doc ID 13317 Rev 7
RHF1401 User manual

3.5 Operating modes

Extra functionalities are provided to simplify the application board as much as possible. The operating modes offered by the RHF1401 are described in Tab le 1 3.

Table 13. RHF1401 operating modes

Inputs Outputs
Analog input differential
amplitude
(V
(V
(VIN-V
XXHHZ
1. High impedance.
) above maximum range
IN-VINB
) below minimum range
IN-VINB
) within range
INB

3.5.1 Digital inputs

Data format select bit (DFSB): when set to low level (VIL), the digital input DFSB provides
a two’s complement digital output MSB. This can be of interest when performing some further signal processing. When set to high level (V output coding.
Output enable bit (OEB): when set to low level (V set to high level (V converter goes on sampling. When OEB is set to a low level again, the data arrives on the output with a very short T
Figure 11 on page 10 summarizes this functionality.
DFSB OEB OR DR Most significant bit (MSB)
HLHCLKD13
L L H CLK D13 complemented
HLHCLKD13
L L H CLK D13 complemented
HLLCLKD13
L L L CLK D13 complemented
(1)
IH
), all digital outputs remain active. When
), all digital output buffers are in a high impedance state while the
IH
delay. This feature enables the chip select of the device.
on
IL
HZ (all digital outputs are in high
HZ
impedance)
), DFSB provides standard binary
Reference mode control (REFMODE): this allows the internal or external settings of the voltage references VREFP and INCM. REFMODE = 0 for internal references, REFMODE = 1 for external references (and disables both references VREFP and INCM).

3.5.2 Digital outputs

Out of range (OR): this function is implemented on the output stage in order to set an "out-
of-range" flag whenever the digital data is over the full-scale range. Typically, there is a detection of all data at ‘0’ or all data at ‘1’. It sets an output signal OR, which is in a low level state (V data is out of range.
Data ready (DR): the Data Ready output is an image of the clock being synchronized on the output data (D0 to D13). This is a very helpful signal that simplifies the synchronization of the measurement equipment of the controlling DSP. Like all other digital outputs, DR goes into high impedance when OEB is set to a high level, as shown in Figure 11 on page 10.
) when the data stays within the range, or in a high-level state (VOH) when the
OL
Doc ID 13317 Rev 7 31/39
User manual RHF1401

3.5.3 Digital output load considerations

The features of the internal output buffers limit the maximum load on the digital data output. In particular, the shape and amplitude of the Data Ready signal, toggling at the clock frequency, can be weakened by a higher equivalent load.
In applications that impose higher load conditions, it is recommended to use the falling edge of the master clock instead of the Data Ready signal. This is possible because the output transitions are internally synchronized with the falling edge of the clock.
Figure 62. Output buffer fall time Figure 63. Output buffer rise time
25
25
20
15
10
Fall time (nS)
5
0
0 1020304050
VCCBE=2.5V
VCCBE=3.3V
load capacitor (pF)

3.6 PCB layout precautions

The use of dedicated analog and digital ground planes on the PCB is recommended for
high-speed circuit applications to provide low parasitic inductance and resistance. AGND is connected to the analog ground plane and DGND, GNDBI, GNDBE are connected to the digital ground plane.
To minimize the transition current when the output changes, the capacitive load at the
digital outputs must be reduced as much as possible by using the shortest-possible routing tracks. One way to reduce the capacitive load is to remove the ground plane under the output digital pins and layers at high sampling frequencies.
The separation of the analog signal from the clock signal and digital outputs is
mandatory to prevent noise from coupling onto the input signal.
Power supply bypass capacitors must be placed as close as possible to the IC pins to
improve high-frequency bypassing and reduce harmonic distortion.
All leads must be as short as possible, especially for the analog input, so as to
decrease parasitic capacitance and inductance.
Choose the smallest-possible component sizes (SMD).
20
15
10
Rise time (nS)
5
0
0 1020304050
VCCBE=2.5V
VCCBE=3.3V
load capacitor (pF)
32/39 Doc ID 13317 Rev 7
RHF1401 Definitions of specified parameters

4 Definitions of specified parameters

4.1 Static parameters

Differential non-linearity (DNL)
The average deviation of any output code width from the ideal code width of 1 LSB.
Integral non-linearity (INL)
An ideal converter exhibits a transfer function that is a straight line from the starting code to the ending code. The INL is the deviation from this ideal line for each transition.

4.2 Dynamic parameters

Spurious free dynamic range (SFDR)
The ratio between the power of the worst spurious signal (not always a harmonic) and the amplitude of the fundamental tone (signal power) over the full Nyquist band. Expressed in dBc.
Total harmonic distortion (THD)
The ratio of the rms sum of the first five harmonic distortion components to the rms value of the fundamental line. Expressed in dB.
Signal to noise ratio (SNR)
The ratio of the rms value of the fundamental component to the rms sum of all other spectral components in the Nyquist band (F harmonics. Reported in dB.
/2) excluding DC, fundamental and the first five
s
Signal-to-noise and distortion ratio (SINAD)
A similar ratio to the SNR but that includes the harmonic distortion components in the noise figure (not the DC signal). Expressed in dB. From SINAD, the effective number of bits (ENOB) can easily be deduced using the formula:
SINAD = 6.02
When the analog input signal is not full-scale (FS) but has an A expression becomes:
SINAD = 6.02
×
ENOB + 1.76 dB
×
ENOB + 1.76 dB + 20 log (A0 / FS)
amplitude, the SINAD
0
Analog input bandwidth
The maximum analog input frequency at which the spectral response of a full power signal is reduced by 3 dB. Higher values can be achieved with smaller input levels.
Pipeline delay
The delay between the initial sample of the analog input and the availability of the corresponding digital data output on the output bus. Also called data latency. Expressed as a number of clock cycles.
Doc ID 13317 Rev 7 33/39
Package information RHF1401

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
34/39 Doc ID 13317 Rev 7
RHF1401 Package information

Figure 64. Ceramic SO-48 package mechanical drawing

Note: The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the
package. Connecting unused pins or metal lid to ground or to the power supply will not affect the electrical characteristics.

Table 14. Ceramic SO-48 package mechanical data

Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A 2.18 2.47 2.72 0.086 0.097 0.107
b 0.20 0.254 0.30 0.008 0.010 0.012
c 0.12 0.15 0.18 0.005 0.006 0.007
D 15.57 15.75 15.92 0.613 0.620 0.627
E 9.52 9.65 9.78 0.375 0.380 0.385
E1 10.90 0.429
E2 6.22 6.35 6.48 0.245 0.250 0.255
E3 1.52 1.65 1.78 0.060 0.065 0.070
e 0.635 0.025
f 0.20 0.008
L 12.28 12.58 12.88 0.483 0.495 0.507
P 1.30 1.45 1.60 0.051 0.057 0.063
Q 0.66 0.79 0.92 0.026 0.031 0.036
S1 0.25 0.43 0.61 0.010 0.017 0.024
Millimeters Inches
Doc ID 13317 Rev 7 35/39
Ordering information RHF1401

6 Ordering information

Table 15. Order codes

Order code Quality level Temp range Package Marking Packing
RHF1401KSO1 Engineering model
RHF1401KSO-01V QMLV-Flight 5962F0626001VXC
-55 °C to +125 °C
SO-48
RHF1401KSO1
Strip pack
Note: Contact your local ST sales office for information regarding the specific conditions for
products in die form and QML-Q versions.
36/39 Doc ID 13317 Rev 7
RHF1401 Revision history

7 Revision history

Table 16. Document revision history

Date Revision Changes
First public release. Failure immune and latchup immune value increased to
29-Jun-2007 1
29-Oct-2007 2
09-Nov-2009 3
120 MeV-cm2/mg. Updated package mechanical information. Removed reference to non rad-hard components from External
references, common mode: on page 16.
Updated Figure 1: RHF1401 block diagram. Added explanation on Figure 3: Timing diagram. Added introduction to Section 6: Typical performance characteristics. Updated Section 7.2: Clock signal requirements and Section 7.3:
Power consumption optimization.
Added Section 7.4: Low sampling rate recommendations. Updated information on Data Ready signal in Section 7.5: Digital
inputs/outputs.
Added Figure 24: Impact of clock frequency on RHF1401
performance and Figure 25: CLK signal derivation.
Changed input clock features in Ta bl e 1 0. Modified Ta b le 1 4 . Added Figure 62 to Figure 42.
26-Feb-2010 4
13-Sep-2010 5
Modified Figure 1: RHF1401 block diagram. Added details for Tdr and changed values for Tpd in Table 5: Timing
characteristics.
Modified Figure 11: Timing diagram. Changed values for VREFP in Ta bl e 4 . Changed Vin operating conditions in Ta b le 4 , Figure 42 and
Figure 55.
Changed values for DNL in Ta bl e 9 .
Modified Figure 1 on page 4 and Figure 9 on page 8. Added note 2. on page 10. Modified C
typ value in Table 6: Analog inputs as per Figure 3.
IN
Modified Figure 11: Timing diagram. Replaced Figure 18. Added Table 12: Output codes for DFSB = 1. Modified Figure53: 2V
differential input.
pp
Doc ID 13317 Rev 7 37/39
Revision history RHF1401
Table 16. Document revision history
Date Revision Changes
29-Jul-2011 6
06-Apr-2012 7
Added Note: on page 31 and in the "Pin connections" diagram on the cover page.
Added Table 1: Device summary on cover page. Updated curves in Section 2.3: Electrical characteristics (after
300 kRad).
Modified Section 3.1: Optimizing the power consumption. Modified Section 3.2: Driving the analog input. Modified Section 3.3.1: Internal references. Modified Section 3.3.2: External references. Modified Section 3.6: PCB layout precautions.
38/39 Doc ID 13317 Rev 7
RHF1401
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 13317 Rev 7 39/39
Loading...