ST PM6600 User Manual

6-row 32 mA LED driver with boost regulator
Features
Boost section
control
– 200 kHz to 1 MHz adjustable switching
frequency
– External synchronization for multi-device
application – Pulse-skip power saving mode at light load – Programmable soft-start – Programmable OVP protection – Stable with ceramic output capacitors – Thermal shutdown
Backlight driver section
– Six rows with 32 mA maximum current
capability (adjustable) – Up to 10 WLEDs per row – Unused rows detection – 500 ns minimum dimming time (1%
minimum dimming duty-cycle at 20 kHz) – ± 2.1% current accuracy – ± 2% current matching between rows – LED failure (open and short circuit)
detection
PM6600
for LCD panel backlight
VFQFPN-24 4 mm x 4 mm
Description
The PM6600 consists of a high efficiency monolithic boost converter and six controlled current generators (ROWs), specifically designed to supply LEDs arrays used in the backlight of LCD panels. The device can manage a nominal output voltage up to 36 V (i.e. 10 White-LEDs per ROW). The generators can be externally programmed to sink up to 32 mA and they can be dimmed via a PWM signal (1% dimming duty­cycle at 20 kHz can be managed). The device allows to detect and manage the open and shorted LED faults and to let unused ROWs floating. Basic protections (output over-voltage, internal MOSFET over-current and thermal shutdown) are provided.
Applications
Notebook monitors backlight
UMPC backlight

Table 1. Device summary

February 2010 Doc ID 14248 Rev 7 1/60
Order codes Package Packaging
PM6600
PM6600TR Tape and reel
VFQFPN-24 4 mm x 4 mm
(exposed pad)
Tu b e
www.st.com
60
Contents PM6600
Contents
1 Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Operation description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1 Boost section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 Switching frequency selection and synchronization . . . . . . . . . . . . . . . . . 28
7.4 System stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.1 Loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.2 Slope compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.6 Boost current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.7 Enable function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.8 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8 Backlight driver section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.1 Current generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 PWM dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2/60 Doc ID 14248 Rev 7
PM6600 Contents
9 Fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1 FAULT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 MODE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.3 Open LED fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.4 Shorted LED fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.5 Intermittent connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Appendix A Layout guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.1 Basic points: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.1.1 GNDs planes - 1 device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.1.2 GNDs planes - 3 devices (RGB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.3 LX area – vout power area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.4 Overvoltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.5 LDO5 – AVCC filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.6 ROWs current generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.7 Top layer of the standard PM6600 demonstration board. . . . . . . . . . . . . . 46
Appendix B Application note. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.1 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.2 Capacitors selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.3 Flywheel diode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.4 Design example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.4.1 Switching frequency setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.4.2 Row current setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.4.3 Inductor choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.4.4 Output capacitor choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.4.5 Input capacitor choice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.4.6 Overvoltage protection divider setting. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.4.7 Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.4.8 Boost current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.4.9 Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Doc ID 14248 Rev 7 3/60
Contents PM6600
Appendix C Application suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
C.1 Full application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
C.2 EN, DIM path in production line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C.3 ROW pins protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
C.4 Debug and measurements test points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
C.5 Inductor choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4/60 Doc ID 14248 Rev 7
PM6600 List of figures
List of figures
Figure 1. Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Pin connection (through top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Efficiency vs DIM duty cycle @ fDIM = 200 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Efficiency vs DIM duty cycle @ fDIM = 500 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. Efficiency vs DIM duty cycle @ fDIM = 1 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6. Efficiency vs DIM duty cycle @ fDIM = 5 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. Efficiency vs DIM duty cycle @ fDIM = 10 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 8. Efficiency vs DIM duty cycle @ fDIM = 20 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Efficiency vs DIM duty cycle @ Vin = 8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. Efficiency vs DIM duty cycle @ Vin = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Efficiency vs DIM duty cycle @ Vin = 18 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. Efficiency vs DIM duty cycle @ Vin = 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 13. Efficiency vs Vin @ DIM duty cycles = 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 14. Efficiency vs Vin @ DIM duty cycles = 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 15. Efficiency vs Vin @ DIM duty cycles = 75% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 16. Efficiency vs Vin @ DIM duty cycles = 100% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 17. Working waveforms @ fDIM = 100 Hz, D = 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 18. Working waveforms @ fDIM = 100 Hz, D = 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 19. Working waveforms @ fDIM = 100 Hz, D = 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 20. Working waveforms @ fDIM = 100 Hz, D = 80% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 21. Working waveforms @ fDIM = 200 Hz, D = 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 22. Working waveforms @ fDIM = 200 Hz, D = 20% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 23. Working waveforms @ fDIM = 200 Hz, D = 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 24. Working waveforms @ fDIM = 200 Hz, D = 80% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 25. Working waveforms @ fDIM = 500 Hz, D = 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 26. Working waveforms @ fDIM = 500 Hz, D = 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 27. Working waveforms @ fDIM = 1 kHz, D = 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 28. Working waveforms @ fDIM = 1 kHz, D = 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 29. Working waveforms @ fDIM = 10 kHz, D = 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 30. Working waveforms @ fDIM = 10 kHz, D = 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 31. Working waveforms @ fDIM = 20 kHz, D = 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 32. Working waveforms @ fDIM = 20 Hz, D = 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 33. Output voltage ripple @ fDIM = 200 Hz, D = 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 34. Output voltage ripple @ fDIM = 200 Hz, D = 20% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 35. Output voltage ripple @ fDIM = 200 Hz, D = 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 36. Output voltage ripple @ fDIM = 200 Hz, D = 80% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 37. Shorted LED protection @ fDIM = 200 Hz all WLEDs connected . . . . . . . . . . . . . . . . . . . 23
Figure 38. Shorted LED protection @ fDIM = 200 Hz 1 WLED shorted . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 39. Shorted LED protection @ fDIM = 200 Hz 2 WLEDs shorted. . . . . . . . . . . . . . . . . . . . . . . 23
Figure 40. Shorted LED protection @ fDIM = 200 Hz 3 WLEDs shorted - ROW disabled . . . . . . . . . 23
Figure 41. Open ROW detection @ fDIM = 200 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 42. Simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 43. AVCC filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 44. OVP threshold setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 45. Multiple device synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 46. External sync waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 47. Poor phase margin (a) and properly damped (b) load transient responses . . . . . . . . . . . . 31
Figure 48. Load transient response measurement set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Doc ID 14248 Rev 7 5/60
List of figures PM6600
Figure 49. Main loop and current loop diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 50. Effect of slope compensation on small inductor current perturbation (D > 0.5) . . . . . . . . . 33
Figure 51. Soft-start sequence waveforms in case of floating ROWs . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 52. fDIM enabling schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 53. VFQFPN-24 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 54. Top layer critical signals components assembly and layout . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 55. Top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 56. Bottom side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 57. Inductor current in DCM operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 58. Full application schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 59. EN pin filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 60. DIM pin filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 61. ROW pins protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6/60 Doc ID 14248 Rev 7
PM6600 Typical application circuit

1 Typical application circuit

Figure 1. Application circuit

VBOOST
Cout
Rslope
C13
R1
D
C10
R2
9
18
16
17
25
LX
19
L
Cin
VIN+
OVSEL
VIN
8
SYNC
23
AVCC
6
AVCC
Cavcc
SLOPE
Rf ilt
FAULT
Cldo5
PGND
ROW111ROW212ROW313ROW414ROW515ROW6
PM6600
LDO5
7
DIM20EN21FAULT
22
EN
5
AVCC
DIM
SGND
THP D
COMP1MOD E
SW3
10
BILIM
3
RILIM
2
FSW
4
SS
24
Css
Rcomp
MOD E
Rbilim
Rrilim
SW2
FSW
AVCC
Rfsw
Ccomp
VIN-
Doc ID 14248 Rev 7 7/60
Pin settings PM6600

2 Pin settings

2.1 Connections

Figure 2. Pin connection (through top view)

2.2 Pin description

Table 2. Pin functions

Pin Function
1COMP
2 RILIM
3 BILIM
4FSW
5MODE
6 AVCC +5 V analog supply. Connect to LDO5 through a simple RC filter.
7LDO5
8 VIN Input voltage. Connect to the main supply rail.
Error amplifier output. A simple RC series between this pin and ground is needed to compensate the loop of the boost regulator.
Output generators current limit setting. The output current of the ROWs can be programmed connecting a resistor to SGND.
Boost converter current limit setting. The internal MOSFET current limit can be programmed connecting a resistor to SGND.
Switching frequency selection and external sync input. A resistor to SGND is used to set the desired switching frequency. The pin can also be used as external synchronization input. See Section 7.3 on page 28 for details.
Current generators fault management selector. It allows to detect and manage LEDs failures. See Section 9.2 on page 39 for details.
Internal +5 V LDO output and power section supply. Bypass to SGND with a 1 µF ceramic capacitor.
8/60 Doc ID 14248 Rev 7
PM6600 Pin settings
Table 2. Pin functions (continued)
Pin Function
Slope compensation setting. A resistor between the output of the boost
9SLOPE
converter and this pin is needed to avoid sub-harmonic instability. Refer to section 1.4 for details.
10 SGND
Signal ground. Supply return for the analog circuitry and the current generators.
11 ROW1 Row driver output #1.
12 ROW2 Row driver output #2.
13 ROW3 Row driver output #3.
14 ROW4 Row driver output #4.
15 ROW5 Row driver output #5.
16 ROW6 Row driver output #6.
17 PGND Power ground. Source of the internal power-MOSFET.
18 OVSEL
Over-voltage selection. Used to set the desired OV threshold by an external divider. See Section 7.2 on page 27 for details.
19 LX Switching node. Drain of the internal power-MOSFET.
20 DIM
21 EN
22 FAULT
Dimming input. Used to externally set the brightness of the LEDs by using a PWM signal.
Enable input. When low, the device is turned off. If tied high or left floating, the device is turned on and a soft-start sequence takes place.
Fault signal output. Open drain output. The pin goes low when a fault condition is detected (see Section 9.1 on page 39 for details).
23 SYNC Synchronization output. Used as external synchronization output.
24 SS
Soft-start. Connect a capacitor to SGND to set the desired soft-start duration.
Doc ID 14248 Rev 7 9/60
Electrical data PM6600

3 Electrical data

3.1 Maximum rating

Table 3. Absolute maximum ratings

(1)
Symbol Parameter Value Unit
V
AVC C
V
LDO5
AVCC to SGND -0.3 to 6
LDO5 to SGND -0.3 to 6
PGND to SGND -0.3 to 0.3
V
IN
V
LX
VIN to PGND -0.3 to 40
LX to SGND -0.3 to 40
LX to PGND -0.3 to 40
RILIM, BILIM, SYNC, OVSEL, SS to SGND
V
AVC C
-0.3 to + 0.3
EN, DIM, FSW, MODE, FAULT to SGND -0.3 to 6
ROWx to PGND/ SGND -0.3 to 40
V
- 0.3 to
SLOPE to VIN
IN
V
+ 6
IN
SLOPE to SGND -0.3 to 40
Maximum LX RMS current 2.0 A
P
TOT
Power dissipation @ = 25 °C 2.3 W
Maximum withstanding voltage range test condition: CDF-AEC-Q100-002- “human body model”
± 2000 V
acceptance criteria: “normal performance”
V
1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

3.2 Thermal data

Table 4. Thermal data

Symbol Parameter Value Unit
R
thJA
T
STG
T
T
10/60 Doc ID 14248 Rev 7
Thermal resistance junction to ambient 42 °C/W
Storage temperature range -50 to 150 °C
Junction operating temperature range -40 to 125 °C
J
Operating ambient temperature range -40 to 85 °C
A
PM6600 Electrical data

3.3 Recommended operating conditions

Table 5. Recommended operating conditions

Values
Symbol Parameter
Min Typ Max
Supply section
Unit
V
Input voltage range 4.7 - 28 V
IN
Boost section
V
BST
f
SW
Output voltage range - 36 V
Adjustable switching frequency
FSW sync input duty-cycle
I
rowx
ROWs output maximum current
FSW connected to R
FSW
200 - 1000 kHz
-40%
-32mA
Doc ID 14248 Rev 7 11/60
Electrical characteristics PM6600

4 Electrical characteristics

VIN = 12 V; TA = 0 °C to 85 °C and MODE connected to AVCC unless specified

Table 6. Electrical characteristics

Symbol Parameter Test condition
Supply section
V
LDO5, VAVC C
I
IN,Q
I
IN,SHDN
V
UVLO,ON
V
UVLO,OFF
LDO output and IC supply voltage
Operating quiescent current
Operating current in shutdown EN low 20 30 μA
LDO5 under voltage lockout upper threshold
LDO5 under voltage lockout lower threshold
LDO linear regulator
EN High,
= 0 mA
I
LDO5
R
= 51 kΩ,
RILIM
= 220 kΩ,
R
BILIM
R
SLOPE
= 680 kΩ
DIM tied to SGND.
(1)
.
Val ues
Unit
Min Typ Max
4.6 5 5.5 V
1mA
4.6 4.75
3.8 4.0
V
IN
= 30 mA
= 4.3 V,
= 10 mA
> V
< V
= 28 V,
UVLO,ON
UVLO,OFF
25 40 60
Line regulation
LDO dropout voltage
LDO maximum output current limit
1. TA = TJ. All parameters at operating temperature extremes are guaranteed by design and statistical analysis (not production tested)
6 V = V I
LDO5
V
IN
I
LDO5
V
LDO5
V
LDO5
25
mV
80 120
mA
30
12/60 Doc ID 14248 Rev 7
PM6600 Electrical characteristics
Table 6. Electrical characteristics (continued)
Val ues
Symbol Parameter Test condition
Min Typ Max
Boost section
Unit
t
on,min
Power switch
K
B
OV protections
Minimum switching on time
200 ns
Default switching frequency FSW connected to AVCC 570 660 750
Minimum FSW Sync frequency
FSW sync Input low level threshold
FSW sync Input hysteresis
FSW sync Min ON time
SYNC output duty-cycle
SYNC output high level
SYNC output low level
LX current coefficient R
Internal MOSFET R
DSon
240
FSW connected to AVCC (Internal oscillator selected)
V
= 10 µA
I
SYNC
= -10 µA 20
I
SYNC
= 300 kΩ 5.7e5 6.7e5 7.7e5 V
BILIM
AVC C
-20
210
60
270 ns
34 40 %
280 500 mΩ
kHz
mV
mV
V
TH,OVP
V
TH,FRD
ΔV
OVP,FRD
Overvoltage protection reference (OVSEL) threshold
Floating ROWs detection (OVSEL) threshold
Voltage gap between the OVP and FRD thresholds
1.190 1.235 1.280 V
1.100 1.145 1.190 V
90 mV
Doc ID 14248 Rev 7 13/60
Electrical characteristics PM6600
Table 6. Electrical characteristics (continued)
Val ues
Symbol Parameter Test condition
Min Typ Max
Soft-start and power management
EN, turn-on level threshold 1.6
Unit
EN, turn-off level threshold 0.8
DIM, high level threshold 1.3
DIM, low level threshold 0.8
EN, pull-up current 2.5
SS, charge current 4 5 6
SS, end-of-startup threshold 2 2.4 2.8
SS, reduced switching frequency Release threshold
Current generators section
T
DIM-ON,min
K
R
ΔI
ROWx
V
IFB
V
TH,FAULT
V
FAU LT,L OW
Minimum dimming on-time R
ROWs current coefficient accuracy
ROWs current mismatch
Feedback regulation voltage No LEDs mismatch 400 mV
Shorted LED fault detection threshold
FAULT pin low-level voltage I
Thermal shutdown
(1)
0.8
= 51 kΩ 500 ns
RILIM
R
= 51 kΩ 998 ±21 V
RILIM
R
= 51 kΩ ±2 %
RILIM
8.2 V
FAULT,SINK
= 4 mA 350 mV
V
μA
V
T
SHDN
Thermal shutdown Turn-off temperature
150 °C
Note: The current mismatch is the maximum current difference among the ROWs of one device.
14/60 Doc ID 14248 Rev 7
PM6600 Typical operating characteristics

5 Typical operating characteristics

All the measures are done with a standard PM6600EVAL demonstration board and a standard WLED6021NB tamboured, with the components listed in the EVAL_KIT document.
The measures are done with this working conditions, unless specified:
Vin = 12 V
Vout = 6 rows x 10 WLEDs = 34 V (typ)
Iout = 20 mA each row
fsw = 660 kHz (nominal switching frequency, with FSW. AVCC)
Vrow1 to Vrow6 = {0.697, 0.75, 0.818, 0.696, 0.822, 0.363} V
Figure 3. Efficiency vs
100
90
80
70
60
50
40
Effici ency [% ]
30
20
10
0
DIM duty cycle @ f
0 20406080100
DIM duty cycle [%]
= 200 Hz
DIM
Vin = 6V
Vin = 12V
Vin = 18V
Vin = 24V
Figure 4. Efficiency vs
DIM duty cycle @ f
100
90
80
70
60
50
40
Effici ency [% ]
30
20
10
0
020406080100
DIM du ty cycle [%]
DIM
= 500 Hz
Vin = 6V
Vin = 12V
Vin = 18V
Vin = 24V
Figure 5. Efficiency vs
100
90
80
70
60
50
40
Effici ency [%]
30
20
10
0
DIM duty cycle @ f
0 2040 6080100
DIM du ty cycl e [%]
= 1 kHz
DIM
Vin = 6V
Vin = 12V
Vin = 18V
Vin = 24V
Figure 6. Efficiency vs
DIM duty cycle @ f
100
90
80
70
60
50
40
Effici ency [%]
30
20
10
0
0 20406080100
Doc ID 14248 Rev 7 15/60
DIM du ty cycle [%]
= 5 kHz
DIM
Vin = 6V
Vin = 12V
Vin = 18V
Vin = 24V
Typical operating characteristics PM6600
Figure 7. Efficiency vs
100
90
80
70
60
50
40
Effic iency [%]
30
20
10
0
0 20406080100
DIM duty cycle @ f
DIM duty cyc le [%]
= 10 kHz
DIM
Vin = 6V
Vin = 12V
Vin = 18V
Vin = 24V
Figure 9. Efficiency vs
100
90
80
70
60
50
40
Effici ency [% ]
30
20
10
0
DIM duty cycle @ Vin = 8 V
fDIM = 200Hz
fDIM = 500Hz
fDIM = 1k Hz
fDIM = 5k Hz
fDIM = 10kHz
fDIM = 20kHz
0 20406080100
DIM du ty cycle [%]
Figure 8. Efficiency vs
DIM duty cycle @ f
100
90
80
70
60
50
40
Efficien cy [%]
30
20
10
0
0 20 40 60 80 100
DIM du ty cycle [%]
DIM
= 20 kHz
Vin = 6V
Vin = 12V
Vin = 18V
Vin = 24V
Figure 10. Efficiency vs
DIM duty cycle @ Vin = 12 V
100
90
80
70
60
50
40
Effici ency [% ]
30
20
10
0
020406080100
DIM duty cycle [%]
fDIM = 200 Hz
fDIM = 500 Hz
fDIM = 1k Hz
fDIM = 5k Hz
fDIM = 10k Hz
fDIM = 20k Hz
Figure 11. Efficiency vs
100
90
80
70
60
50
40
Effici ency [%]
30
20
10
0
16/60 Doc ID 14248 Rev 7
DIM duty cycle @ Vin = 18 V
fDIM = 200Hz
fDIM = 500Hz
fDIM = 1k Hz
fDIM = 5k Hz
fDIM = 10k Hz
fDIM = 20k Hz
020406080100
DIM d uty cycl e [%]
Figure 12. Efficiency vs
DIM duty cycle @ Vin = 24 V
100
90
80
70
60
50
40
Effici ency [%]
30
20
10
0
0 20406080100
DIM duty cycle [%]
fDIM = 200 Hz
fDIM = 500 Hz
fDIM = 1k Hz
fDIM = 5k Hz
fDIM = 10k Hz
fDIM = 20k Hz
PM6600 Typical operating characteristics
Figure 13. Efficiency
100
90
80
70
60
50
40
Effici ency [%]
30
20
10
0
vs Vin @ DIM duty cycles = 10%
fDIM = 200Hz
fDIM = 500Hz
fDIM = 1k Hz
fDIM = 5k Hz
fDIM = 10k Hz
fDIM = 20k Hz
6121824
Vin [V]
Figure 14. Efficiency
vs Vin @ DIM duty cycles = 50%
100
90
80
70
60
50
40
Effici ency [%]
30
20
10
0
6 121824
Vin [V]
fDIM = 200Hz
fDIM = 500Hz
fDIM = 1k Hz
fDIM = 5k Hz
fDIM = 10k Hz
fDIM = 20k Hz
Figure 15. Efficiency
96
94
92
90
88
Efficien cy [%]
86
84
82
6121824
vs Vin @ DIM duty cycles = 75%
fDIM = 200Hz
fDIM = 500Hz
fDIM = 1k Hz
fDIM = 5k Hz
fDIM = 10k Hz
fDIM = 20k Hz
Vin [V]
Figure 16. Efficiency
vs Vin @ DIM duty cycles = 100%
95
94
93
92
91
90
Efficiency [%]
89
88
87
6 121824
Vin [V]
fDIM = 200Hz
fDIM = 500Hz
fDIM = 1k Hz
fDIM = 5k Hz
fDIM = 10k Hz
fDIM = 20k Hz
Doc ID 14248 Rev 7 17/60
Typical operating characteristics PM6600
Figure 17. Working waveforms @
f
= 100 Hz, D = 1%
DIM
Figure 18. Working waveforms @
f
= 100 Hz, D = 10%
DIM
Figure 19. Working waveforms @
f
= 100 Hz, D = 50%
DIM
Figure 20. Working waveforms @
f
= 100 Hz, D = 80%
DIM
18/60 Doc ID 14248 Rev 7
Loading...
+ 42 hidden pages