ST M34E02, M34E02-F User Manual

M34E02

M34E02-F

2 Kbit serial presence detect (SPD) EEPROM for double data rate (DDR1 and DDR2) DRAM modules

Features

2 Kbit EEPROM for DDR1 and DDR2 serial presence detect

Backward compatible with the M34C02

Permanent and reversible software data protection for lower 128 bytes

100 kHz and 400 kHz I2C bus serial interface

Single supply voltage:

1.7 V to 5.5 V

Byte and Page Write (up to 16 bytes)

Self-timed write cycle

Noise filtering

Schmitt trigger on bus inputs

Noise filter on bus inputs

Enhanced ESD/latch-up protection

More than 1 million erase/write cycles

More than 40 years’ data retention

ECOPACK® (RoHS compliant) packages

Packages:

ECOPACK2® (RoHS-compliant and Halogen-free)

UFDFPN8 (MB or MC) 2 x 3 mm

TSSOP8 (DW) 4.4 × 3 mm

May 2011

Doc ID 10367 Rev 11

1/34

www.st.com

Contents

M34E02, M34E02-F

 

 

Contents

1

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2

Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

2.1 Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5.3 Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5.4 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3

Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

3.1

Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

3.2

Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

3.3

Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

3.4

Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

3.5

Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

3.6

Setting the write-protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

3.6.1 SWP and CWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6.2 PSWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7.1 Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.2 Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.3 Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . 16

3.8 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8.1 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8.2 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8.3 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8.4 Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4

Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

2/34

Doc ID 10367 Rev 11

M34E02, M34E02-F

Contents

5

Use within a DDR1/DDR2 DRAM module . . . . . . . . . . . . . . . . . . .

. . . . 18

 

5.1 Programming the M34E02 and M34E02-F . . . . . . . . . . . . . . . . . . . .

. . . . 18

5.1.1 Isolated DRAM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1.2 DRAM module inserted in the application motherboard . . . . . . . . . . . . 19

6

Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

7

DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

8

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

9

Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

Doc ID 10367 Rev 11

3/34

List of tables

M34E02, M34E02-F

 

 

List of tables

Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3. Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 4. DRAM DIMM connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 5. Acknowledge when writing data or defining the write-protection

(instructions with R/W bit = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 6. Acknowledge when reading the write protection (instructions with R/W bit = 1). . . . . . . . . 20 Table 7. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 8. Operating conditions (for temperature range 1 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 9. Operating conditions (for temperature range 6 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 10. AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 11. Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 12. DC characteristics (for temperature range 1 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 13. DC characteristics (for temperature range 6 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 14. AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 15. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead

2 x 3 mm, data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 16. TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 30 Table 17. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 18. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4/34

Doc ID 10367 Rev 11

M34E02, M34E02-F

List of figures

 

 

List of figures

Figure 1. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 2. TSSOP and MLP connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 3. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 4. Maximum RP value versus bus parasitic capacitance (C) for an I2C bus . . . . . . . . . . . . . . . 9 Figure 5. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 6. Result of setting the write protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 7. Setting the write protection (WC = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 8. Write mode sequences in a non write-protected area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 9. Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 10. Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11. Serial presence detect block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 12. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 13. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 14. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead

2 x 3 mm, outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 15. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 30

Doc ID 10367 Rev 11

5/34

Description

M34E02, M34E02-F

 

 

1 Description

The M34E02 and M34E02-F are 2 Kbit serial EEPROM memories able to lock permanently the data in its first half (from location 00h to 7Fh). This facility has been designed specifically for use in DRAM DIMMs (dual interline memory modules) with serial presence detect (SPD). All the information concerning the DDR1 or DDR2 configuration of the DRAM module (such as its access speed, size and organization) can be kept write-protected in the first half of the memory.

The first half of the memory area can be write-protected using two different software write protection mechanisms. By sending the device a specific sequence, the first 128 bytes of the memory become write protected: permanently or resettable. In addition, the devices allow the entire memory area to be write protected, using the WC input (for example by tieing this input to VCC).

These I2C-compatible electrically erasable programmable memory (EEPROM) devices are organized as 256 × 8 bits.

I2C uses a two wire serial interface, comprising a bi-directional data line and a clock line. The devices carry a built-in 4-bit device type identifier code (1010) in accordance with the I2C bus definition to access the memory area and a second device type identifier code (0110) to define the protection. These codes are used together with the voltage level applied on the three chip enable inputs (E2, E1, E0).

The devices behave as a slave device in the I2C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a device select code and RW bit (as described in the Device select code table), terminated by an acknowledge bit.

When writing data to the memory, the memory inserts an acknowledge bit during the 9th bit time, following the bus master’s 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for WRITE, and after a NoAck for READ.

Figure 1. Logic diagram

6##

 

% %

3#,

7#

3$!

- % - % &

633

!) B

6/34

Doc ID 10367 Rev 11

M34E02, M34E02-F

Description

 

 

Figure 2. TSSOP and MLP connections (top view)

- % %- % &

%

 

 

6##

%

 

 

 

7#

 

%

 

 

3#,

633

 

 

3$!

!) B

1. See the Package mechanical data section for package dimensions, and how to identify pin-1.

Table 1.

Signal names

 

 

 

 

Signal names

Description

 

 

 

 

E0, E1, E2

Chip Enable

 

 

 

 

 

SDA

 

Serial Data

 

 

 

 

 

SCL

 

Serial Clock

 

 

 

 

 

 

 

 

 

Write Control

 

WC

 

 

 

 

 

 

VCC

 

Supply voltage

 

VSS

 

Ground

Doc ID 10367 Rev 11

7/34

Signal description

M34E02, M34E02-F

 

 

2 Signal description

2.1Serial Clock (SCL)

This input signal is used to strobe all data in and out of the device. In applications where this signal is used by slave devices to synchronize the bus to a slower clock, the bus master must have an open drain output, and a pull-up resistor can be connected from Serial Clock (SCL) to VCC. (Figure 4 indicates how the value of the pull-up resistor can be calculated). In most applications, though, this method of synchronization is not employed, and so the pullup resistor is not necessary, provided that the bus master has a push-pull (rather than open drain) output.

2.2Serial Data (SDA)

This bidirectional signal is used to transfer data in or out of the device. It is an open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A pull up resistor must be connected from Serial Data (SDA) to VCC. (Figure 4 indicates how the value of the pull-up resistor can be calculated).

2.3Chip Enable (E0, E1, E2)

These input signals are used to set the value that is to be looked for on the three least significant bits (b3, b2, b1) of the 7-bit device select code. In the end application, E0, E1 and E2 must be directly (not through a pull-up or pull-down resistor) connected to VCC or VSS to establish the device select code. When these inputs are not connected, an internal pulldown circuitry makes (E0,E1,E2) = (0,0,0).

The E0 input is used to detect the VHV voltage, when decoding an SWP or CWP instruction.

Figure 3. Device select code

 

6##

 

 

6##

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- %

 

 

- %

 

- % &

 

 

- % &

 

%I

 

 

%I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

633

 

 

633

!I B

2.4Write Control (WC)

This input signal is provided for protecting the contents of the whole memory from inadvertent write operations. Write Control (WC) is used to enable (when driven low) or disable (when driven high) write instructions to the entire memory area or to the Protection Register.

When Write Control (WC) is tied low or left unconnected, the write protection of the first half of the memory is determined by the status of the Protection Register.

8/34

Doc ID 10367 Rev 11

M34E02, M34E02-F

Signal description

 

 

2.5Supply voltage (VCC)

2.5.1Operating supply voltage VCC

Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified [VCC(min), VCC(max)] range must be applied (see Table 8). In order to secure a stable DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor (usually of the order of 10 nF to 100 nF) close to the VCC/VSS package pins.

This voltage must remain stable and valid until the end of the transmission of the instruction and, for a Write instruction, until the completion of the internal write cycle (tW).

2.5.2Power-up conditions

The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage defined in Table 8 and the rise time must not vary faster than 1 V/µs.

2.5.3Device reset

In order to prevent inadvertent write operations during power-up, a power-on reset (POR) circuit is included. At power-up, the device does not respond to any instruction until VCC reaches the internal reset threshold voltage (this threshold is lower than the minimum VCC operating voltage defined in Table 8).

When VCC passes over the POR threshold, the device is reset and enters the Standby Power mode. However, the device must not be accessed until VCC reaches a valid and stable VCC voltage within the specified [VCC(min), VCC(max)] range.

In a similar way, during power-down (continuous decrease in VCC), as soon as VCC drops below the power-on reset threshold voltage, the device stops responding to any instruction sent to it.

2.5.4Power-down conditions

During power-down (continuous decrease in VCC), the device must be in Standby Power mode (mode reached after decoding a Stop condition, assuming that there is no internal write cycle in progress).

Figure 4. Maximum RP value versus bus parasitic capacitance (C) for an I2C bus

resistor

100

 

 

 

 

 

 

 

 

 

 

 

 

When tLOW = 1.3 µs (min value for

 

 

p

 

 

 

 

 

fC = 400 kHz), the Rbus × Cbus

 

VCC

upll-u (k )

 

 

 

 

 

time constant must be below the

 

 

 

 

 

 

 

represented on the left.

 

 

 

 

R

 

 

 

400 ns time constant line

 

 

 

10

 

 

 

 

 

 

 

bus

 

 

 

 

 

 

line

 

×

C

 

 

 

 

Rbus

Here Rbus × Cbus

= 120 ns

bus =

400

 

 

 

 

 

 

 

 

 

 

Bus

4 kΩ

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

I²C bus

SCL

 

 

 

 

 

 

M24xxx

 

 

 

 

 

 

master

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

SDA

 

 

 

 

 

 

 

 

 

 

30 pF

 

 

 

 

 

Cbus

 

10

 

100

 

1000

 

 

 

 

 

 

 

 

Bus line capacitor (pF)

 

 

 

ai14796b

Doc ID 10367 Rev 11

9/34

ST M34E02, M34E02-F User Manual

Signal description

 

 

 

 

 

M34E02, M34E02-F

Figure 5. I2C bus protocol

 

 

 

 

SCL

 

 

 

 

 

 

SDA

 

 

 

 

 

 

 

Start

 

SDA

SDA

 

Stop

 

 

Input

Change

 

 

condition

 

 

condition

 

 

 

 

 

SCL

1

2

3

7

8

9

SDA

MSB

 

 

 

 

ACK

 

Start

 

 

 

 

 

 

condition

 

 

 

 

 

SCL

1

2

3

7

8

9

SDA

MSB

 

 

 

 

ACK

 

 

 

 

 

 

Stop

 

 

 

 

 

 

condition

 

 

 

 

 

 

AI00792c

Table 2.

Device select code

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Device type identifier

Chip Enable bits

 

 

 

 

 

Chip Enable

RW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

signals

b7(1)

b6

b5

b4

b3

b2

b1

b0

Memory area select

 

 

 

 

 

 

 

 

 

 

 

 

 

E2

E1

E0

1

0

1

0

E2

E1

E0

RW

code (two arrays)(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

Set write protection

 

 

(3)

 

 

 

 

0

0

1

0

 

(SWP)

 

VSS

VSS

VHV

 

 

 

 

 

Clear write protection

 

 

(3)

 

 

 

 

 

 

 

 

 

 

(CWP)

 

VSS

VCC

VHV

 

 

 

 

0

1

1

0

 

Permanently set write

E2

E1

E0

0

1

1

0

E2

E1

E0

0

 

protection (PSWP)(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Read SWP

 

VSS

VSS

(3)

 

 

 

 

0

0

1

1

 

 

VHV

 

 

 

 

 

Read CWP

 

VSS

VCC

(3)

 

 

 

 

0

1

1

1

 

 

VHV

 

 

 

 

 

Read PSWP(2)

E2

E1

E0

 

 

 

 

E2

E1

E0

1

 

1.The most significant bit, b7, is sent first.

2.E0, E1 and E2 are compared against the respective external pins on the memory device.

3.VHV is defined in Table 13.

10/34

Doc ID 10367 Rev 11

M34E02, M34E02-F

Device operation

 

 

3 Device operation

The device supports the I2C protocol. This is summarized in Figure 5 Any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated by the bus master, which will also provide the serial clock for synchronization. The memory device is always a slave in all communication.

3.1Start condition

Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in the high state. A Start condition must precede any data transfer command. The device continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock (SCL) for a Start condition.

3.2Stop condition

Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and driven high. A Stop condition terminates communication between the device and the bus master. A Read command that is followed by NoAck can be followed by a Stop condition to force the device into the Standby mode. A Stop condition at the end of a Write command triggers the internal EEPROM Write cycle.

3.3Acknowledge bit (ACK)

The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) low to acknowledge the receipt of the eight data bits.

3.4Data input

During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock (SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock (SCL) is driven low.

Doc ID 10367 Rev 11

11/34

Loading...
+ 23 hidden pages