ST M29W641DH, M29W641DL, M29W641DU User Manual

M29W641DH

M29W641DH, M29W641DL

M29W641DU

64 Mbit (4Mb x16, Uniform Block)

3V Supply Flash Memory

FEATURES SUMMARY

SUPPLY VOLTAGE

VCC = 2.7V to 3.6V Core Power Supply

VCCQ = 1.8V to 3.6V for Input/Output

VPP =12 V for Fast Program (optional)

ACCESS TIME: 70, 90, 100 and 120ns

PROGRAMMING TIME

10 µs typical

Double Word Program option

128 UNIFORM, 32-KWord MEMORY BLOCKS

PROGRAM/ERASE CONTROLLER

Embedded Program and Erase algorithms

ERASE SUSPEND and RESUME MODES

Read and Program another Block during Erase Suspend

UNLOCK BYPASS PROGRAM COMMAND

Faster Production/Batch Programming

WRITE PROTECT OPTIONS

M29W641DH: WP Pin for Write Protection of Highest Address Block

M29W641DL: WP Pin for Write Protection of Lowest Address Block

M29W641DU: No Write Protection

TEMPORARY BLOCK UNPROTECTION MODE

COMMON FLASH INTERFACE

EXTENDED MEMORY BLOCK

Extra block used as security block or to store additional information

LOW POWER CONSUMPTION

Standby and Automatic Standby

ELECTRONIC SIGNATURE

Manufacturer Code: 0020h

Device Code M29W641D: 22C7h

PRODUCT PREVIEW

Figure 1. Packages

TSOP48 (N) 12 x 20mm

FBGA

TFBGA63 (ZA) 7 x 11mm

April 2003

1/42

This is preliminary information on a new product now in development. Details are subject to change without notice.

M29W641DH, M29W641DL, M29W641DU

TABLE OF CONTENTS

SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4. TFGBA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Data Inputs/Outputs (DQ8-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Reset/Block Temporary Unprotect (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VPP (VPP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VCC Supply Voltage (2.7V to 3.6V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VCCQ Supply Voltage (1.8V to 3.6V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Special Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Block Protect and Chip Unprotect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Block Protect and Chip Unprotect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Read/Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Unlock Bypass Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Unlock Bypass Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chip Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2/42

M29W641DH, M29W641DL, M29W641DU

Enter Extended Block Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Exit Extended Block Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 3. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 4. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 14

STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 5. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 5. Data Polling Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 6. Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 6. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 7. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 8. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 10. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 10. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 11. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 11. Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 12. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 12. Reset/Block Temporary Unprotect AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 13. Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 13. Accelerated Program Timing Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 14. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . 25 Table 14. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 25 Figure 15. TFBGA63 - 7x11mm, 6x8 active ball array, 0.8mm pitch, Bottom view package outline 26 Table 15. TFBGA63 - 7x11mm, 6x8 active ball array, 0.8mm pitch, Package Mechanical Data . . 26

PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 16. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

APPENDIX A. BLOCK ADDRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 17. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3/42

M29W641DH, M29W641DL, M29W641DU

APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 18. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 19. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 20. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 21. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 22. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 23. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

APPENDIX C. EXTENDED MEMORY BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Factory Locked Extended Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Customer Lockable Extended Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 24. Extended Block Address and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

APPENDIX D. BLOCK PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 25. Programmer Technique Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 16. Programmer Equipment Group Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 17. Programmer Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 18. In-System Equipment Group Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 19. In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 26. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4/42

M29W641DH, M29W641DL, M29W641DU

SUMMARY DESCRIPTION

The M29W641D is a 64 Mbit (4Mb x16) non-vola- tile memory that can be read, erased and reprogrammed. These operations can be performed using a single, low voltage, 2.7V to 3.6V VCC sup-

ply for the circuitry and a 1.8V to 3.6V VCCQ supply for the Input/Output pins. An optional 12 V VPP

power supply is provided to speed up customer programming.

On power-up the memory defaults to its Read mode where it can be read in the same way as a ROM or EPROM.

The highest address block of the M29W641DH or the lowest address block of the M29W641DL can be protected from accidental programming or erasure using the WP pin (if WP = VIL). The M29W641DU does not feature the WP pin.

Each block can be erased independently so it is possible to preserve valid data while old data is erased. The blocks can be protected to prevent accidental Program or Erase commands from modifying the memory. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.

The M29W641D has an extra block, the Extended Block, (of 32 KWords) that can be accessed using a dedicated command. The Extended Block can be protected and so is useful for storing security information. However the protection is not reversible, once protected the protection cannot be undone.

Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic.

The memory is offered in a 48-pin TSOP package (M29W641DL and M29W641DH) or in a 63-ball TFBGA package (M29W641DU). All devices are delivered with all the bits erased (set to 1).

Figure 2. Logic Diagram

 

VCC

VCCQ VPP

 

22

16

A0-A21

 

DQ0-DQ15

W

 

 

E

M29W641D

 

 

G

 

 

RB

 

 

RP

 

 

WP

 

 

 

 

VSS

 

 

AI06697b

Table 1. Signal Names

 

A0-A21

Address Inputs

 

 

 

 

DQ0-DQ7

Data Inputs/Outputs

 

 

 

 

DQ8-

Data Inputs/Outputs

 

DQ15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chip Enable

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Enable

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Write Enable

 

W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset/Block Temporary Unprotect

 

RP

 

(M29W641DH and M29W641DL only)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ready/Busy Output (M29W641DU

 

RB

 

only)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WP

Write Protect

 

 

 

 

VCC

Supply Voltage

 

 

 

 

VCCQ

Supply Voltage for Input/Output

 

 

 

 

 

 

 

 

 

 

VPP

Supply Voltage for Fast Program

 

(optional)

 

 

 

 

 

 

 

 

 

 

 

 

VSS

Ground

 

 

 

 

 

 

 

 

5/42

M29W641DH, M29W641DL, M29W641DU

Figure 3. TSOP Connections

A15

 

 

 

 

 

A16

1

48

 

 

A14

 

 

 

 

 

 

VCCQ

 

 

 

 

 

 

 

 

 

 

A13

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

A12

 

 

 

 

 

DQ15

A11

 

 

 

 

 

DQ7

 

 

 

 

 

A10

 

 

 

 

 

DQ14

 

 

 

 

 

 

 

A9

 

 

 

 

 

 

DQ6

 

 

 

 

 

 

 

A8

 

 

 

 

 

DQ13

A21

 

 

 

 

 

DQ5

 

 

 

 

 

A20

 

 

 

 

 

DQ12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ4

 

 

 

W

 

 

 

 

 

 

 

 

 

12

37

 

VCC

 

 

RP

 

 

VPP

 

M29W641D

 

 

DQ11

13

36

 

 

 

 

 

 

 

 

 

 

 

DQ3

 

WP

 

 

 

 

 

 

A19

 

 

 

 

 

DQ10

A18

 

 

 

 

 

 

DQ2

A17

 

 

 

 

 

 

DQ9

 

 

A7

 

 

 

 

 

 

DQ1

 

 

A6

 

 

 

 

 

 

DQ8

 

 

A5

 

 

 

 

 

 

DQ0

 

 

A4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

 

 

A3

 

 

 

 

 

 

VSS

 

 

A2

 

 

 

 

 

 

E

 

 

 

A1

24

25

 

 

A0

 

 

 

 

 

 

 

 

 

 

AI06698

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6/42

ST M29W641DH, M29W641DL, M29W641DU User Manual

M29W641DH, M29W641DL, M29W641DU

Figure 4. TFGBA Connections (Top view through package)

 

1

2

3

4

5

6

7

8

A

NC(1)

NC(1)

 

 

 

 

NC(1)

NC(1)

B

NC(1)

 

 

 

 

 

NC(1)

NC(1)

C

 

A3

A7

RB

W

A9

A13

 

D

 

A4

A17

VPP

RP

A8

A12

 

 

 

 

E

 

A2

A6

A18

A21

A10

A14

 

F

 

A1

A5

A20

A19

A11

A15

 

G

 

A0

DQ0

DQ2

DQ5

DQ7

A16

 

H

 

E

DQ8

DQ10

DQ12

DQ14

VCCQ

 

J

 

G

DQ9

DQ11

VCC

DQ13

DQ15

 

K

 

VSS

DQ1

DQ3

DQ4

DQ6

VSS

 

L

NC(1)

NC(1)

 

 

 

 

NC(1)

NC(1)

M

NC(1)

NC(1)

 

 

 

 

NC(1)

NC(1)

AI06879

Note: 1. Balls are shorted together via the substrate but not connected to the die.

7/42

M29W641DH, M29W641DL, M29W641DU

SIGNAL DESCRIPTIONS

See Figure 2, Logic Diagram, and Table 1, Signal Names, for a brief overview of the signals connected to this device.

Address Inputs (A0-A21). The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the Program/Erase Controller.

Data Inputs/Outputs (DQ0-DQ7). The Data I/O outputs the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the Command Interface of the Program/Erase Controller.

Data Inputs/Outputs (DQ8-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation. During Bus Write operations the Command Register does not use these bits. When reading the Status Register these bits should be ignored.

Chip Enable (E). The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to be performed. When Chip Enable is High, VIH, all other pins are ignored.

Output Enable (G). The Output Enable, G, controls the Bus Read operation of the memory.

Write Enable (W). The Write Enable, W, controls the Bus Write operation of the memory’s Command Interface.

Write Protect (WP). The Write Protect pin is available in the M29W641DH and M29W641DL only. It provides a hardware method of protecting the highest address block for the M29W641DH and the lowest address block for the M29W641DL. The Write Protect pin must not be left floating or unconnected.

When Write Protect is Low, VIL, the memory protects either the highest or lowest address block; Program and Erase operations in this block are ignored while Write Protect is Low.

When Write Protect is High, VIH, the memory reverts to the previous protection status for this block. Program and Erase operations can now modify the data in this block unless the block is protected using Block Protection.

Ready/Busy Output (RB). The Ready/Busy pin is an open-drain output that can be used to identify when the device is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, VOL. Ready/Busy is high-im- pedance during Read mode, Auto Select mode and Erase Suspend mode.

After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy be-

8/42

comes high-impedance. See Table 13 and Figure 12, Reset/Block Temporary Unprotect AC Characteristics.

The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.

Reset/Block Temporary Unprotect (RP). The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all Blocks that have been protected.

Note that if Write Protect (WP) is at VIL, then one of the two outermost blocks will remain protected even if RP is at VID.

A Hardware Reset is achieved by holding Reset/ Block Temporary Unprotect Low, VIL, for at least tPLPX. After Reset/Block Temporary Unprotect goes High, VIH, the memory will be ready for Bus Read and Bus Write operations after tPHEL or tRHEL, whichever occurs last. See Table 13 and Figure 12, Reset/Block Temporary Unprotect AC Characteristics, for more details.

Holding RP at VID will temporarily unprotect the protected Blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from VIH to VID must be slower than

tPHPHH.

VPP (VPP). When the VPP pin is raised to VPPH the memory automatically enters the Unlock By-

pass mode. When the pin is returned to VIH or VIL normal operation resumes. During Unlock Bypass Program operations the memory draws IPP from the pin to supply the programming circuits. See the description of the Unlock Bypass command in the Command Interface section. The transitions from

VIH to VPP and from VPP to VIH must be slower than tVHVPP, see Figure 13.

Never raise the pin to VPP from any mode except Read mode, otherwise the memory may be left in an indeterminate state.

VCC Supply Voltage (2.7V to 3.6V). VCC provides the power supply for all operations (Read, Program and Erase).

The Command Interface is disabled when the VCC Supply Voltage is less than the Lockout Voltage, VLKO. This prevents Bus Write operations from accidentally damaging the data during power up, power down and power surges. If the Program/ Erase Controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid.

VCCQ Supply Voltage (1.8V to 3.6V). VCCQ provides the power supply to the I/O pins and enables

all Outputs to be powered independently of VCC.

M29W641DH, M29W641DL, M29W641DU

VCCQ can be tied to VCC or can use a separate supply.

VSS Ground. VSS is the reference for all voltage measurements. The device features two VSS pins which must be both connected to the system ground.

Note: Each device in a system should have VCC, VCCQ and VPP decoupled from VSS with a

Table 2. Bus Operations

0.1µF ceramic capacitor close to the pin for current surge protection (high frequency, inherently low inductance capacitors should be as close as possible to the device). See Figure 8, AC Measurement Load Circuit. The PCB trace widths should be sufficient to carry the required VPP program and erase currents. See Table 9, DC Characteristics.

 

 

 

 

 

 

 

 

 

 

Address Inputs

Data Inputs/Outputs

Operation

 

E

 

G

 

W

 

 

 

A0-A21

DQ15-DQ0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bus Read

VIL

VIL

VIH

Cell Address

Data Output

Bus Write

VIL

VIH

VIL

Command Address

Data Input

Output Disable

 

X

VIH

VIH

X

Hi-Z

 

 

 

 

 

 

 

 

Standby

VIH

 

X

 

X

X

Hi-Z

Read Manufacturer

VIL

VIL

VIH

A0 = VIL, A1 = VIL, A9 = VID,

0020h

Code

Others VIL or VIH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Read Device Code

VIL

VIL

VIH

A0 = VIH, A1 = VIL, A9 = VID,

22C7h

Others VIL or VIH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98h (factory locked,

 

 

protects

 

 

 

 

 

 

 

 

 

 

 

WP

 

 

 

 

 

 

 

 

 

 

 

highest address block)

 

 

 

 

 

 

 

 

 

 

 

18h (not factory locked, WP

Extended Memory

VIL

VIL

VIH

A0 = VIH, A1 = VIH, A6 = VIL,

protects highest address

block)

 

 

Block Verify Code

A9 = VID, Others VIL or VIH

 

 

 

 

 

 

 

 

 

88h (factory locked, WP protects

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lowest block)

 

 

 

 

 

 

 

 

 

 

 

08h (not factory locked,

WP

 

 

 

 

 

 

 

 

 

 

 

 

protects lowest block)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: X = VIL or VIH.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9/42

M29W641DH, M29W641DL, M29W641DU

BUS OPERATIONS

There are five standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby and Automatic Standby. See Table 2, Bus Operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

Bus Read. Bus Read operations read from the memory cells, or specific registers in the Command Interface. A valid Bus Read operation involves setting the desired address on the Address Inputs, applying a Low signal, VIL, to Chip Enable and Output Enable and keeping Write Enable High, VIH. The Data Inputs/Outputs will output the value, see Figure 9, Read Mode AC Waveforms, and Table 10, Read AC Characteristics, for details of when the output becomes valid.

Bus Write. Bus Write operations write to the Command Interface. A valid Bus Write operation begins by setting the desired address on the Address Inputs. The Address Inputs are latched by the Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs last. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, VIH, during the whole Bus Write operation. See Figure 10 and Figure 11, Write AC Waveforms, and Table 11 and Table 12, Write AC Characteristics, for details of the timing requirements.

Output Disable. The Data Inputs/Outputs are in the high impedance state when Output Enable is High, VIH.

Standby. When Chip Enable is High, VIH, the memory enters Standby mode and the Data Inputs/Outputs pins are placed in the high-imped- ance state. To reduce the Supply Current to the Standby Supply Current, ICC2, Chip Enable should

be held within VCC ± 0.2V. For the Standby current level see Table 9, DC Characteristics.

During program or erase operations the memory will continue to use the Program/Erase Supply Current, ICC3, for Program or Erase operations until the operation completes.

Automatic Standby. If CMOS levels (VCC ± 0.2V) are used to drive the bus and the bus is inactive for 300ns or more the memory enters Automatic Standby where the internal Supply Current is reduced to the Standby Supply Current, ICC2. The Data Inputs/Outputs will still output data if a Bus Read operation is in progress.

Special Bus Operations

Additional bus operations can be performed to read the Electronic Signature and also to apply and remove Block Protection. These bus operations are intended for use by programming equipment and are not usually used in applications. They require VID to be applied to some pins.

Electronic Signature. The memory has two codes, the manufacturer code and the device code, that can be read to identify the memory. These codes can be read by applying the signals listed in Table 2, Bus Operations.

Block Protect and Chip Unprotect. Groups of blocks can be protected against accidental Program or Erase. The whole chip can be unprotected to allow the data inside the blocks to be changed.

Write Protect (WP) can be used to protect one of the outermost blocks. When Write Protect (WP) is at VIL one of the two outermost blocks is protected and remains protected regardless of the Block Protection Status or the Reset/Block Temporary Unprotect pin status. For the M29W641DH, it is the highest addressed block that can be protected. For the M29W641DL, it is the lowest.

Block Protect and Chip Unprotect operations are described in Appendix D.

10/42

M29W641DH, M29W641DL, M29W641DU

COMMAND INTERFACE

All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. Failure to observe a valid sequence of Bus Write operations will result in the memory returning to Read mode. The long command sequences are imposed to maximize data security.

See Table 3 for a summary of the commands.

Read/Reset Command

The Read/Reset command returns the memory to its Read mode where it behaves like a ROM or EPROM. It also resets the errors in the Status Register. Either one or three Bus Write operations can be used to issue the Read/Reset command.

The Read/Reset command can be issued, between Bus Write cycles before the start of a program or erase operation, to return the device to read mode. If the Read/Reset command is issued during the timeout of a Block erase operation then the memory will take up to 10µs to abort. During the abort period no valid data can be read from the memory. The Read/Reset command will not abort an Erase operation when issued while in Erase Suspend.

Auto Select Command

The Auto Select command is used to read the Manufacturer Code, the Device Code, the Block Protection Status and the Extended Memory Block Verify Code. Three consecutive Bus Write operations are required to issue the Auto Select command. Once the Auto Select command is issued the memory remains in Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/Reset commands are accepted in Auto Select mode, all other commands are ignored.

In Auto Select mode the Manufacturer Code can be read using a Bus Read operation with A0 = VIL and A1 = VIL. The other address bits may be set to either VIL or VIH. The Manufacturer Code for STMicroelectronics is 0020h.

The Device Code can be read using a Bus Read operation with A0 = VIH and A1 = VIL. The other address bits may be set to either VIL or VIH. The Device Code for the M29W641D is 22C7h.

The Block Protection Status of each block can be read using a Bus Read operation with A0 = VIL, A1 = VIH, and A12-A21 specifying the address of the block. The other address bits may be set to either VIL or VIH. If the addressed block is protected then 01h is output on Data Inputs/Outputs DQ0DQ7, otherwise 00h is output.

Read CFI Query Command

The Read CFI Query Command is used to read data from the Common Flash Interface (CFI) Memory Area. This command is valid when the de-

vice is in the Read Array mode, or when the device is in Autoselected mode.

One Bus Write cycle is required to issue the Read CFI Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area.

The Read/Reset command must be issued to return the device to the previous mode (the Read Array mode or Autoselected mode). A second Read/ Reset command would be needed if the device is to be put in the Read Array mode from Autoselected mode.

See Appendix B, Table 18 to Table 23 for details on the information contained in the Common Flash Interface (CFI) memory area.

Program Command

The Program command can be used to program a value to one address in the memory array at a time. The command requires four Bus Write operations, the final write operation latches the address and data, and starts the Program/Erase Controller.

If the address falls in a protected block then the Program command is ignored, the data remains unchanged. The Status Register is never read and no error condition is given.

During the program operation the memory will ignore all commands. It is not possible to issue any command to abort or pause the operation. Typical program times are given in Table 4. Bus Read operations during the program operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details.

After the program operation has completed the memory will return to the Read mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.

Note that the Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase Commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.

Fast Program Commands

There is a Fast Program command available to improve the programming throughput, by writing several adjacent words or bytes in parallel: the Double Word Program command.

Double Word Program Command. The Double Word Program command is used to write a page of two adjacent words in parallel. The two words must differ only for the address A0.

Three bus write cycles are necessary to issue the Double Word Program command.

11/42

M29W641DH, M29W641DL, M29W641DU

The first bus cycle sets up the Double Word Program Command.

The second bus cycle latches the Address and the Data of the first word to be written.

The third bus cycle latches the Address and the Data of the second word to be written and starts the Program/Erase Controller.

Only one bank can be programmed at any one time. The other bank must be in Read mode or Erase Suspend.

Programming should not be attempted when VPP is not at VPPH.

After programming has started, Bus Read operations in the Bank being programmed output the Status Register content, while Bus Read operations to the other Bank output the contents of the memory array.

After the program operation has completed the memory will return to the Read mode, unless an error has occurred. When an error occurs Bus Read operations to the Bank where the command was issued will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.

Note that the Fast Program commands cannot change a bit set at ’0’ back to ’1’. One of the Erase Commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.

Typical Program times are given in Table 4, Program, Erase Times and Program, Erase Endurance Cycles.

Unlock Bypass Command

The Unlock Bypass command is used in conjunction with the Unlock Bypass Program command to program the memory faster than with the standard program commands. When the cycle time to the device is long (as with some EPROM programmers) considerable time saving can be made by using these commands. Three Bus Write operations are required to issue the Unlock Bypass command.

Once the Unlock Bypass command has been issued the memory enters Unlock Bypass mode. When in this mode the memory can be read as if in Read mode.

When VPPH is applied to the VPP pin the memory automatically enters the Unlock Bypass mode and

the Unlock Bypass Program command can be issued immediately.

Unlock Bypass Program Command

The Unlock Bypass Program command can be used to program one address in the memory array at a time. The command requires two Bus Write operations, the final write operation latches the ad-

12/42

dress and data, and starts the Program/Erase Controller.

A Program operation initiated by issuing the Unlock Bypass Program command is identical to a Program operation initiated by issuing the Program command. It cannot be aborted and a Bus Read operation will output the Status Register. See the Program Command paragraph for further details.

Unlock Bypass Reset Command

The Unlock Bypass Reset command can be used to return to Read/Reset mode from Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass Reset command. Read/ Reset command does not exit from Unlock Bypass Mode.

Chip Erase Command

The Chip Erase command can be used to erase the entire chip. Six Bus Write operations are required to issue the Chip Erase Command and start the Program/Erase Controller.

If any blocks are protected then these are ignored and all the other blocks are erased. If all of the blocks are protected the Chip Erase operation appears to start but will terminate within about 100µs, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the erase operation the memory will ignore all commands, including the Erase Suspend command. It is not possible to issue any command to abort the operation. Typical chip erase times are given in Table 4. All Bus Read operations during the Chip Erase operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details.

After the Chip Erase operation has completed the memory will return to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read Mode.

The Chip Erase Command sets all of the bits in unprotected blocks of the memory to ’1’. All previous data is lost.

Block Erase Command

The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth Bus Write operation using the address of the additional block. The Block Erase operation starts the Program/Erase Controller about 50µs after the last Bus Write operation. Once the Program/Erase Controller starts it is not possible to select any more blocks. Each additional block must therefore be selected within 50µs of

M29W641DH, M29W641DL, M29W641DU

the lowest address block. The 50µs timer restarts when an additional block is selected. The Status Register can be read after the sixth Bus Write operation. See the Status Register section for details on how to identify if the Program/Erase Controller has started the Block Erase operation.

If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are protected the Block Erase operation appears to start but will terminate within about 100µs, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the Block Erase operation the memory will ignore all commands except the Erase Suspend command. Typical block erase times are given in Table 4. All Bus Read operations during the Block Erase operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details.

After the Block Erase operation has completed the memory will return to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.

The Block Erase Command sets all of the bits in the unprotected selected blocks to ’1’. All previous data in the selected blocks is lost.

Erase Suspend Command

The Erase Suspend Command may be used to temporarily suspend a Block Erase operation and return the memory to Read mode. The command requires one Bus Write operation.

The Program/Erase Controller will suspend within the Erase Suspend Latency time of the Erase Suspend Command being issued. Once the Program/ Erase Controller has stopped the memory will be set to Read mode and the Erase will be suspended. If the Erase Suspend command is issued during the period when the memory is waiting for an additional block (before the Program/Erase Controller starts) then the Erase is suspended immediately and will start immediately when the Erase Resume Command is issued. It is not possible to select any further blocks to erase after the Erase Resume.

During Erase Suspend it is possible to Read and Program cells in blocks that are not being erased; both Read and Program operations behave as normal on these blocks. If any attempt is made to program in a protected block or in the suspended

block then the Program command is ignored and the data remains unchanged. The Status Register is not read and no error condition is given. Reading from blocks that are being erased will output the Status Register.

It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands during an Erase Suspend. The Read/Reset command must be issued to return the device to Read Array mode before the Resume command will be accepted.

Erase Resume Command

The Erase Resume command must be used to restart the Program/Erase Controller after an Erase Suspend. The device must be in Read Array mode before the Resume command will be accepted. An erase can be suspended and resumed more than once.

Enter Extended Block Command

The device has an extra 32 KWord block (Extended Block) that can only be accessed using the Enter Extended Block command. Three Bus write cycles are required to issue the Extended Block command. Once the command has been issued the device enters Extended Block mode where all Bus Read or Write operations to the Boot Block addresses access the Extended Block. The Extended Block (with the same address as the Boot Blocks) cannot be erased, and can be treated as one-time programmable (OTP) memory. In Extended Block mode the Boot Blocks are not accessible.

To exit from the Extended Block mode the Exit Extended Block command must be issued.

The Extended Block can be protected, however once protected the protection cannot be undone.

Exit Extended Block Command

The Exit Extended Block command is used to exit from the Extended Block mode and return the device to Read mode. Four Bus Write operations are required to issue the command.

Block Protect and Chip Unprotect Commands

Groups of blocks can be protected against accidental Program or Erase. The whole chip can be unprotected to allow the data inside the blocks to be changed.

Block Protect and Chip Unprotect operations are described in Appendix D.

13/42

Loading...
+ 29 hidden pages