Datasheet M29F800DT Datasheet (ST)

8 Mbit (1Mb x8 or 512Kb x16, Boot Block)

FEATURES SUMMARY

SUPPLY VOLTAGE
–V
ACCESS TIME: 55, 70, 90ns
PROGRAMMING TIME
– 10µs per Byte/Word typical
19 MEMORY BLOCKS
– 1 Boot Block (Top or Bottom Location) – 2 Parameter and 16 Main Blocks
PROGRAM/ERA SE CON T ROL LER
– Embedded Byte/Word Program algorithms
ERASE SUSPEND and RESUME MODES
– Read and Program another Block during
UNLOCK BYPASS PROGRAM COMMAND
– Faster Production/Batch Programm ing
TEMPORARY BLOCK UNPROTECTION
MODE
COMMON FLASH INTERFACE
– 64 bit Security Code
LOW POWER CONSUMPTION
– Standby and Automatic Standby
100,000 PROGRAM/ER ASE CYCL ES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h – Top Device Code M29F800DT: 22ECh – Bottom Device Code M29F800DB: 2258h
5V ±10% for Program, Erase and Read
CC =
Erase Suspend
M29F800DT
M29F800DB
5V Supp l y Fl ash Memory

Figure 1. Packages

SO44 (M)
TSOP48 (N)
12 x 20mm
1/39July 2003
M29F800DT, M29F800DB

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. SO Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5. Block Addresses (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. Block Addresses (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Inputs/Outputs (DQ8-DQ14 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Input/Output or Address Input (DQ15A-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reset/Block Temporary Unprotect (RP).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CC
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Special Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Block Protection and Blocks Unprotection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Bus Operations, BYTE = V Table 3. Bus Operations, BYTE = V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
IL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
IH
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read/Reset Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Unlock Bypass Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Unlock Bypass Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Block Erase Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Erase Suspend Comma nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/39
M29F800DT, M29F800DB
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3
Block Protect and Chip Unprotect Commands.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Commands, 16-bit mode, BYTE = V Table 5. Commands, 8-bit mode, BYTE = V
Table 6. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 15
STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7. Data Polling Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. Data Toggle Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
IH
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
IL
Table 9. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 9. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10. Device Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 11. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 13. Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 14. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 14. Reset/Block Temporary Unprotect AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 15. Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 15. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Outline . . . . . . . . 25
Table 16. SO44 – 44 lead Plastic Small Outline , 525 mils body width, Package Mechani cal Data 25
Figure 16. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . 26
Table 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 26
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 19. Top Boot Block Addresses, M29F800DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 20. Bottom Boot Block Addresses, M29F800DB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3/39
M29F800DT, M29F800DB
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 21. Query Structure Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 22. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 23. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 24. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 25. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 25. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
APPENDIX C. BLOCK PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 27. Programmer Technique Bus Operations, BYTE = V
Figure 17. Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Figure 18. Programmer Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 19. In-System Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 20. In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
or VIL . . . . . . . . . . . . . . . . . . . . . 33
IH
Table 28. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4/39
M29F800DT, M29F800DB

SUMMARY DESCRIPTION

The M29F800D is a 8 Mbit (1Mb x8 or 512Kb x16) non-volatile memory that can be read, erased and reprogrammed. These operations can be per­formed using a single low voltage (5V) supply. On power-up the memory defaults to its Read mode where it can be read in the same way as a ROM or EPROM.
The memory is divided into blocks that can be erased independently so it is pos sible to pres erve valid data while old data is erased. Each block can be protected independently to prev ent accidental Program or Erase commands from modifying the memory. Program and Erase com m ands are wri t­ten to the Command Interface of t he memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents.
The end of a program or erase operation can be detected and any error conditions identified. The

Figure 2. Logic Diagram Table 1. Signal Names

command set required to control the memory is consistent with JEDEC standards.
The blocks in the memory are asymmetrically ar­ranged, see Figures 5 and 6, Block Addresses. The first or last 64 Kbytes h ave been divided into four additional blocks. The 16 Kbyte Boot Block can be used for small initialization code to start the microprocessor, the two 8 Kbyte Parameter Blocks can be used for parameter storage and the remaining 32K is a small Main Block where the ap­plication may be stored.
Chip Enable, Output Enable and Write Enable sig­nals control the bus operation of the memory. They allow simple conne ction to most micropro­cessors, often without additional logic.
The memory is offered in SO44 a nd TSOP48 (12 x 20mm) pack ages. The m emory is supplied with
all the bits erased (set to ’1’).
A0-A18
W
RP
BYTE
A0-A18 Address Inputs DQ0-DQ7 Data Inputs/Outputs
V
CC
19
E
G
M29F800DT M29F800DB
V
SS
15
DQ0-DQ14
DQ15A–1
RB
AI06148B
DQ8-DQ14 Data Inputs/Outputs
DQ15A–1 Data Input/Output or Address Input E G W RP
RB
BYTE V
CC
V
SS
NC Not Connected Internally
Chip Enable Output Enable Write Enable Reset/Block Temporary Unprotect Ready/Busy Output
(not available on SO44 package) Byte/Word Organization Select Supply Voltage Ground
5/39
M29F800DT, M29F800DB

Figure 3. SO Connections Figure 4. TSOP Connections

RB A18 A17 A8
V
SS
DQ0 DQ8
A7 A6 A5 A4 A3 A2 A1 A0
1 2 3 4 5 6 7 8 9 10 11
M29F800DT M29F800DB
12
E
13 14
G
15 16 17DQ1
DQ9
18 19
DQ10
DQ3
20 21
DQ11
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 2322
RP W
A9 A10 A11 A12 A13 A14 A15 A16 BYTE V
SS
DQ15A–1 DQ7 DQ14 DQ6 DQ13 DQ5DQ2 DQ12 DQ4 V
CC
A15 A14 A13 A12 A11
1
48
A16 BYTE V
SS
DQ15A–1 DQ7
A10 DQ14
37 36
DQ6 DQ13 DQ5 DQ12 DQ4 V
CC
DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G V
SS
E A0
A9
A8 NC NC
W RP NC NC RB
A18 A17
A7 A6 A5 A4 A3 A2 A1
12
M29F800DT M29F800DB
13
24 25
AI06150
AI06149
6/39

Figure 5. Block Addresses (x8)

M29F800DT, M29F800DB
Top Boot Block Addresses (x8)
FFFFFh
FC000h
FBFFFh
FA000h F9FFFh
F8000h
F7FFFh
F0000h
EFFFFh
E0000h
1FFFFh
10000h
0FFFFh
00000h
M29F800DT
16 KByte
8 KByte
8 KByte
32 KByte
64 KByte
64 KByte
64 KByte
Total of 15
64 KByte Blocks
Bottom Boot Block Addresses (x8)
FFFFFh
F0000h
EFFFFh
E0000h
1FFFFh
10000h
0FFFFh
08000h
07FFFh
06000h
05FFFh
04000h
03FFFh
00000h
M29F800DB
64 KByte
64 KByte
64 KByte
32 KByte
8 KByte
8 KByte
16 KByte
Total of 15
64 KByte Blocks
Note: Al so see Appendix A, Tables 19 and 20 for a full list i ng of the Block Addresses.
AI06152
7/39
M29F800DT, M29F800DB

Figure 6. Block Addresses (x16)

Top Boot Block Addresses (x16)
7FFFFh
7E000h
7DFFFh
7D000h
7CFFFh
7C000h
7BFFFh
78000h
77FFFh
70000h
0FFFFh
08000h
07FFFh
00000h
M29F800DT
8 KWord
4 KWord
4 KWord
16 KWord
32 KWord
32 KWord
32 KWord
Total of 15
32 KWord Blocks
Bottom Boot Block Addresses (x16)
7FFFFh
78000h
77FFFh
70000h
0FFFFh
08000h
07FFFh
04000h
03FFFh
03000h
02FFFh
02000h
01FFFh
00000h
M29F800DB
32 KWord
32 KWord
32 KWord
16 KWord
4 KWord
4 KWord
8 KWord
Total of 15
32 KWord Blocks
Note: Al so see Appendix A, Tables 19 and 20 for a full list i ng of the Block Addresses.
AI06153
8/39

SIGNAL DESCRIPTIONS

See Figure 2, Logic Diagram, and Table 1, Sign al Names, for a brief overview of the signals connect­ed to this device.

Address Inputs (A0-A18). The Address Inputs select the cells i n the memory array to a ccess dur­ing Bus Read operations. During Bus Write opera­tions they control the commands sent to the Command Interface of the internal state machine.

Data Inputs/Outputs (DQ0-DQ7). The Data In­puts/Outputs output the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the Command Interface of the internal state machine.

Data Inputs/Outputs (DQ8-DQ14). The Data In­puts/Outputs output the data stored at the selected address during a Bus Read operation when BYTE is High, VIH. When BYTE is Low, VIL, these pins are not used and are high impedance. During Bus Write operations the Command Register does not use these bits. When reading t he Status Register these bits should be ignored.

Data Input/Ou tput or Address Input (DQ15A-1).

When BYTE
is High, VIH, this pin behaves as a
Data Input/Output pin (as DQ8-DQ14). When
is Low, VIL, this pin behaves as an address
BYTE
pin; DQ15A–1 Low will select the LSB of the Word on the other addresses, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data Input/Output to include this pin when BYTE
is High and ref erences to the Address In-
puts to include this pin when BYTE
is Low except
when stated explicitly otherwise.
Chip Enable (E
). The Chip Enable, E, activates
the memory, allowing Bus Read and Bus Write op­erations to be performed. When Chip Enable is High, V
Output Enable (G
, all other pins are ignored.
IH
). The Output Enable, G, con-
trols the Bus Read operation of the memory.
Write Enable (W
). The Write Enable, W, controls
the Bus Write operation of the memory’s Com­mand Interf a c e .
Reset/Block Temporary Unprotect (RP
). The
Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all Blocks that hav e b een protected.
A Hardware Reset is achieved by holding Reset/ Block Temporary Unprotect Low, V t
. After Reset/Block Temporary Unprotect
PLPX
goes High, V
, the memory will be ready for Bus
IH
, for at least
IL
M29F800DT, M29F800DB
Read and Bus Write operations after t t
, whichever occurs last. See the Ready/Busy
RHEL
Output section, Table 15 and Figure 14, Reset/ Temporary Unprotect AC Characteristics for more details.
Holding RP
at VID will temporarily unprotect the protected Blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from V t
PHPHH
.
Ready/Busy Output (RB
to VID must be slower than
IH
). The Ready/Busy pin is an open-drain output that can be used to identify when the device is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, V
. Ready/Busy is high-im-
OL
pedance during Read mode, Auto Select mode and Erase Suspend mode.
After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy be­comes high-impedance. See Tabl e 15 and Figure 14, Reset/Temporary Unprotect AC Ch aracteris­tics .
The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.
Byte/Word Organization Select (BYTE
Byte/Word Organization Select pin is used to switch between the 8-bit and 16-bit B us m odes of the memory. When Byte/Word Organization Se­lect is Low, V it is High, V
Supply Voltage. The VCC Supply Voltage
V
CC
, the memory is in 8-bit mode, when
IL
, the memo ry is in 16-bit mode .
IH
supplies the power for all operations (Read, Pro­gram, Erase etc.).
The Command Interface is disabled when the V Supply Voltage is less than the L ockout Voltage,
. This prevents Bus Write operations from ac-
V
LKO
cidentally damaging the data during power up, power down and power surges. If the Program/ Erase Controller is programming or erasing during this time then the operation aborts and the memo­ry contents being altered will be invalid.
A 0.1µF capacitor should be connected between the V
Supply Voltage pin and the VSS Ground
CC
pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations, I
Ground. The VSS Ground is the reference for
V
SS
CC3
.
all voltage measurements.
PHEL
). The
or
CC
9/39
M29F800DT, M29F800DB

BUS OPERATIONS

There are five standard bus operations that control the device. These are Bus Read, Bus Wri te, Out­put Disable, Standby and Automatic Standby. See Tables 2 and 3, Bus Operat ions, for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

Bus Read. Bus Read operations read from the memory cells, or specific registers in the Com­mand Interface. A valid Bus Read operation in­volves setting the desired address on the Address Inputs, applying a Low sig nal, V and Output Enable and keeping Write Enable High, V

. The Data Inputs/Outputs will output the
IH
value, see Figure 11, Read Mode AC Waveforms, and Table 12, Read AC Characteristics, for details of when the output becomes valid.

Bus Write. Bus Write operations write to the Command Interface. A valid Bus Write operation begins by setting the desire d address on t he Ad­dress Inputs. The Address Inputs are latched by the Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs last. The Data Inputs/Outputs a re latched by the Com­mand Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output En­able must remain High, V

IH
Write operation. See Figures 12 and 13, Write AC Waveforms, and Tables 13 and 14, Write AC Characteristics, for details of the timing require­ments.

Output Disa bl e . The Data Inputs/Outputs are in the high impedance s tate when Output Enable is High, V

.
IH

Standby. When Chip Enable is High, V memory enters Standby mode and the Data In­puts/Outputs pins are placed in the high-imped-

, to Chip Enable
IL
, during the whole Bus
, the
IH
ance state. To reduce the S upply Current to the Standby Supply Current, I be held within V
± 0.2V. For the Standby current
, Chip Enable should
CC2
level see Table 11, DC Characteristics. During program or erase operations the memory
will continue to use the Program/Erase Supply Current, I
, for Program or Erase operations un-
CC3

til the operation completes. Automatic Standby. If CMOS levels (V

± 0.2V)
CC
are used to drive the bus and the bus is inactive for 150ns or more the memory enters Automatic Standby where the internal Supply Current is re­duced to the Standby Supply Current, I
CC2
. The Data Inputs/Outputs will still output data if a Bus Read operation is in progress.
Special Bus Operations. Additional bus opera­tions can be performed to read the Electronic Sig­nature and also to apply and remove Block Protection. These bus operations are intended for use by programming equipment and are not usu­ally used in applications. They require V
to be
ID

applied to some pins. Electronic Signature. The memory has two

codes, the manufacturer code and the device code, that can be read to identify the memory. These codes can be read by applying t he signals listed in Tables 2 and 3, Bus Operations.

Block Protection and Blocks Unprotection.

Each block can be separately protected against accidental Program or Erase. Protected blocks can be unprotected to allow data to be changed.
There are two methods available for protecting and unprotecting the blocks, one for use on pro­gramming equipment and the other for in-system use. Block Protect and Chip Unprot ec t operat ions are described in Appendix C.
Table 2. Bus Operations, BYTE
Operation E G W
Bus Read Bus Write Output Disable X Standby Read Manufacturer
Code
Read Device Code
Note: X = VIL or VIH.
10/39
V
IL
V
IL
V
IH
V
IL
V
IL
= V
IL
Address Inputs
DQ15A–1, A0-A18
V
IL
V
IH
V
IH
X X X Hi-Z Hi-Z
V
IL
V
IL
V
Cell Address Hi-Z Data Output
IH
V
Command Address Hi-Z Data Input
IL
V
X Hi-Z Hi-Z
IH
A0 = VIL, A1 = VIL, A9 = VID,
V
IH
Others V A0 = VIH, A1 = VIL, A9 = VID,
V
IH
Others V
IL
IL
or V
or V
IH
IH
Data Inputs/Outputs
DQ14-DQ8 DQ7-DQ0
Hi-Z 20h
Hi-Z
ECh (M29F800DT)
58h (M29F800DB)
M29F800DT, M29F800DB
Table 3. Bus Operations, BYTE = V
Operation E G W
Bus Read Bus Write Output Disable X Standby Read Manufacturer
Code
Read Device Code
Note: X = VIL or VIH.
V
IL
V
IL
V
IH
V
IL
V
IL
IH
V
IL
V
IH
V
IH
X X X Hi-Z
V
IL
V
IL
V
Cell Address Data Output
IH
V
Command Address Data Input
IL
V
X Hi-Z
IH
A0 = VIL, A1 = VIL, A9 = VID,
V
IH
Others V A0 = VIH, A1 = VIL, A9 = VID,
V
IH
Others V

COMMAND INTERFACE

All Bus Write operations t o the me mory are in ter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. Failure to observe a valid sequence of Bus Write operations will result in the memory return­ing to Read mode. The long command sequences are imposed to maximize data security.
The address used for the commands changes de­pending on whether the memory is in 16-bit or 8­bit mode. See either Table 4, or 5, de pending on the configuration that is being used, for a summary of the commands.

Read/Reset Command. The Read/Reset com­mand returns the memory to its Read mode where it behaves like a ROM or EPROM, unless other­wise stated. It also resets t he errors in the S tatus Register. Either one or three Bus Write operations can be used to issue the Read/Reset command.

The Read/Reset Command can be issued, be­tween Bus Write cycles before the start of a pro­gram or erase operation, to return the device to read mode. Once the program or erase operation has started the Read/Reset command is no longer accepted. The Read/Reset command will not abort an Erase operation when issued while in Erase Suspend.

Auto Select Command. The Auto Select com­mand is used to read the Manufacturer C ode, t he Device Code and the Block Protection Status. Three consecutive Bus Write operations are re­quired to issue the Auto Select command. Once the Auto Select comma nd is issued the memory remains in Auto S elect mode until a Read/Reset command is issued. Read CFI Query and Read/ Reset commands are accepted in Auto Select mode, all other commands are ignored.

Address Inputs
A0-A18
or V
IL
IH
or V
IL
IH
Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
0020h
22ECh (M29F800DT)
2258h (M29F800DB)
From the Auto Select mode the Manufacturer Code can be read using a Bus Read operation with A0 = V may be set to either V
and A1 = VIL. The other address bits
IL
or VIH. The Manufa cturer
IL
Code for STMicroelectronics is 0020h. The Device Code can be read using a B us Read
operation with A0 = V address bits may be set to either V
and A1 = VIL. The other
IH
or VIH.
IL
The Bl ock Prot ection S t atus of each block can be read using a Bus Read operation with A0 = V A1 = V
, and A 12 -A 18 specify i n g t he addres s of
IH
the bl ock. The oth er addr ess bit s may b e set t o ei­ther V
or VIH. If t h e ad dr ess ed b loc k is pro tec te d
IL
then 01h is output on Data Inputs/Outputs DQ0­DQ7, otherwise 00h is output.

Program Command. The Program command can be used to program a value to one address in the memory array at a time. The command re­quires four Bus Write operations, the final write op­eration latches the address and data in the internal state machine and starts the Program/Erase Con­troller.

If the address falls in a pro tected block then the Program command is ignored, the data remains unchanged. The Status Register is never read and no error condition is given.
During the program operat ion the memo ry will ig­nore all commands. I t is n ot poss ible t o iss ue any command to abort or pause the operation. Typical program times are given in Table 6. Bus Read op­erations during the program o peration will output the Status Register on the Data Inputs/Outputs. See the section on the S tatus Register for more details.
After the program operation has completed the memory will return to the Read mode, unle ss an error has occurred. When an error occurs the
,
IL
11/39
M29F800DT, M29F800DB
memory will continue to output the Status Regis­ter. A Read/Reset command must be issued to re­set the error condition and return to Read mode.
Note that the Program command cannot change a
bit set at ’0’ bac k to ’1’. One of the E rase Com­mands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.

Unlock Bypass Command. The Unlock Bypass command is used in conjunction with the Unlock Bypass Program command to program the memo­ry. When the access time to the device is long (as with some EPROM programmers) considerable time saving can be made by using these com­mands. Three Bus Write operations are requ ired to issue the Unlock Bypass command.

Once the Unlock Bypas s command has bee n is­sued the memory will only accept the Unloc k By­pass Program command and the Unlock Bypass Reset command. The memory can be read as if in Read mode.

Unlock Bypass Program Command. The Un­lock Bypass Prog ram comma nd can be used to program one address in memory at a time. The command requires two B us Write operations, the final write operation latches the address and data in the internal stat e machine and starts th e Pro­gram/Erase Controller.

The Program operation using the Unlock Bypass Program command behaves identically to the Pro­gram operation using the Program command. A protected block cannot be programmed; the oper­ation cannot be aborted and the Status Register is read. Errors must be reset using the Read/Reset command, which l eaves the de vice in Unlo ck By­pass Mode. See the Program command for details on the behavior.

Unlock Bypass Reset Command. The Unlock Bypass Reset command can be used to return t o Read/Reset mode from Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass Reset command. Read/Reset command does not exit from Unlock Bypass Mode.

Chip Erase Command. The Chip Erase com­mand can be used to erase the entire chip. Six Bus Write operations are required to issue the Chip Erase Command and start the Program/Erase Controller.

If any blocks are protected then these are ignored and all the other blocks are erased. If all of the blocks are protect e d th e Chip Erase op erat i on ap­pears to start but will terminate within about 100µs, leaving the data unchanged. No error condition is given when protected blocks are ignored.
During the erase operation the memory will ignore all commands. It is not possible to issue any com­mand to abort the operation. Typical chip erase
times are given in Table 6. All Bus Read opera­tions during the Chip E rase operation will output the Status Register on the Data Inputs/Outputs. See the section on the S tatus Register for more details.
After the Chip Erase operation has completed t he memory will return to the Read Mode, unle ss an error has occurred. When an error occurs the memory will continue to output the Status Regis­ter. A Read/Reset command must be issued to re­set the error condition and return to Read Mode.
The Chip Erase Command sets all of the bits in un­protected blocks of the memory to ’1’. All previous data is lost.

Block Erase Command. The Block Erase com­mand can be use d to erase a list of one or more blocks. Six Bus Write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth Bus Write operation using the address of the additional block. The Block Erase operation starts the Program/Erase Controller about 50µs after the last Bus Write operation. Once the Program/Erase Controller starts it is not possible to select any more blocks. Each additional block must therefore be selected within 50µs of the last block. The 50µs timer restarts when an additional block is selected. The Status Register can be read after the sixth Bus Write operation. See the Status Register for details on how to identify if the Program/Erase Controller has started the Block Erase operation.

If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are p rotected the Block Erase operation appears to start but will terminate within about 100µs, leaving the data un­changed. No error condition is given when protect­ed blocks are ignored.
During the Block Erase operation the me mory wi ll ignore all commands except the Erase Susp end command. Typical b lock era se times a re g iven in Table 6. All Bus Read operations during the Block Erase ope ra tion will output the S t a tus R e gister on the Data Inputs/Outputs. See the section on the Status Register for more details.
After the Block Erase operation has completed the memory will return to the Read Mode, unle ss an error has occurred. When an error occurs the memory will continue to output the Status Regis­ter. A Read/Reset command must be issued to re­set the error condition and return to Read mode.
The Block Erase Command sets all of the bits in the unprotected selected blocks to ’1’. All previous data in the selected blocks is lost.

Erase Suspend Command. The Erase Suspend Command may be used to temporarily suspend a Block Erase operation and return the memory to

12/39
M29F800DT, M29F800DB
Read mode. The command requires one Bus Write operation.
The Program/Erase Controller will sus pend within the Erase Suspend Latency Time (refer to Table 6 for value) of the Erase Suspend Command being issued. Once the Program/Erase Controller has stopped the memory will be set to Read mode and the Erase will be suspended. If the Erase Suspend command is issued during the period when the memory is waiting for an additional block (before the Program/Erase Controller starts) then the Erase is suspended immediate ly and wi ll start im­mediately when the Erase Resume Comm and is issued. It is not possible to select any further blocks to erase after the Erase Resume.
During Erase Suspend it is possible to Read and Program cells in blocks that are not being erased; both Read and Program operations behave as normal on these blocks. If any attempt is made to program in a protected block or in the suspended block then the Program comm and is ignored and the data remains unchanged. The Status Register is not read and no error condi tion is given. Read­ing from blocks that are being erased will output the Status Register.
It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands during an Erase Suspend. The Read/Reset command must be issued to return the device to Read Array
mode before the Resume command will be ac­cepte d.

Erase Resume Command. The Erase Resume command must be used to restart the Program/ Erase Controller from Erase Suspend. An erase can be suspended and resumed more than once.

Read CFI Query Command. The Read CFI Query Command is used to read data from the Common Flash Interface (CFI) Memory Area. This command is valid when the device is ready to read the array data or when the device is in autoselect­ed mode.

One Bus Write cycle is required to issue the Read CFI Query Command. Once the command is is­sued subsequent Bus Read ope rations read from the Common Flash Interface Mem ory Area. The Read/Reset command must be issued to return the device to Read Array mode. See Appendix B, Tables 21, 22, 23, 24, 25 and for details on the in­formation contained in the Commo n Flash Inter­face (CFI) memory area.

Block Protect and Chip Unprot ect Commands.

Each block can be separately protected against accidental Program or E ras e. The whole chip can be unprotected to allow the data inside t he blo cks to be changed.
Block Protect and Chip Unprote ct operations are described in Appendix C.
13/39
M29F800DT, M29F800DB
Table 4. Commands, 16-bit mode, BYTE = V
IH
Bus Write Operations
Command
1st 2nd 3rd 4th 5th 6th
Length
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
1X F0
Read/Reset
3 555 AA 2AA 55 X F0 Auto Select 3 555 AA 2AA 55 555 90 Program 4 555 AA 2AA 55 555 A0 PA PD Unlock Bypass 3 555 AA 2AA 55 555 20 Unlock Bypass
Program
2X A0PAPD
Unlock Bypass Reset 2 X 90 X 00 Chip Erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10 Block Erase 6+ 555 AA 2AA 55 555 80 555 AA 2AA 55 BA 30 Erase Suspend 1 X B0 Erase Resume 1 X 30 Read CFI Query 1 55 98
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block.
All values in the table are i n hexadecimal. The Com ma nd In terf ace o nly uses A– 1, A0-A1 0 a nd DQ0-D Q7 to v er ify t he co mm ands ; A1 1-A1 8, DQ8- DQ1 4 and DQ 15 are D on’t Care. DQ15A–1 is A–1 when BYTE
is VIL or DQ15 when BYTE is VIH.
14/39
M29F800DT, M29F800DB
Table 5. Commands, 8-bit mode, BYTE = V
IL
Bus Write Operations
Command
1st 2nd 3rd 4th 5th 6th
Length
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
1X F0 Read/Reset
3 AAA AA 555 55 X F0 Auto Select 3 AAA AA 555 55 AAA 90 Program 4 AAA AA 555 55 AAA A0 PA PD Unlock Bypass 3 AAA AA 555 55 AAA 20 Unlock Bypass
Program
2X A0PAPD
Unlock Bypass Reset 2 X 90 X 00 Chip Erase 6 AAA AA 555 55 AAA 80 AAA AA 555 55 AAA 10 Block Erase 6+ AAA AA 555 55 AAA 80 AAA AA 555 55 BA 30 Erase Suspend 1 X B0 Erase Resume 1 X 30 Read CFI Query 1 AA 98
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block.
All values in the table are i n hexadecimal. The Com ma nd In terf ace o nly uses A– 1, A0-A1 0 a nd DQ0-D Q7 to v er ify t he co mm ands ; A1 1-A1 8, DQ8- DQ1 4 and DQ 15 are D on’t Care. DQ15A–1 is A–1 when BYTE
is VIL or DQ15 when BYTE is VIH.

Table 6. Program, Erase Times and Progra m, Erase Endu ran ce Cycle s

Parameter Min
Typ
(1, 2)
Chip Erase 12 Block Erase (64 Kbytes) 0.8
Erase Suspend Latency Time 30 µs
Program (Byte or Word) 10 Chip Program (Byte by Byte) 12 Chip Program (Word by Word) 6 Program/Erase Cycles (per Block) 100,000 cycles
Data Retention 20 years
Note: 1. Typical val ues measure d at room temperature and nominal voltages.
2. Sampled, but not 100% tested.
3. Maximum value mea sured at worst cas e conditions for both temperature and V
4. Maximum value mea sured at worst cas e conditions for both temperature and V
after 100,0 0 program/er ase cycles.
CC
.
CC
Max
60
6
200
60 30
(4)
(3)
(3)
(3)
(3)
(2)
Unit
µs
s s
s s
15/39
M29F800DT, M29F800DB

STATUS REGISTER

Bus Read operations from any address always read the Status Register during Program and Erase operations. It is also read during Erase Sus­pend when an address within a block being erased is accessed.
The bits in the Status Register are summarized in Table 7, Status Register Bits.

Data Polling Bit (DQ7). The Data Polling Bit can be used to identify whether the Program/Erase Controller has successfully completed its opera­tion or if it has responded to an Erase Suspend. The Data Polling Bit is output on DQ7 when the Status Register is read.

During Program operations the Data Polling Bit outputs the complement of the bit being pro­grammed to DQ7. After successful completion of the Program operation the memory returns to Read mode and Bus Read operations from the ad­dress just programmed o utput DQ7, not its com­plement.
During Er ase ope rations the Data Polling Bit ou t-
puts ’0’, the complement of the erased state of DQ7. After successful completion of the Erase op­eration the memory returns to Read Mode.
In Erase Suspend mode the Data Polling Bit will output a ’1’ during a Bus Read operation within a block being erased. The Data Polling Bit will change from a ’0’ to a ’1’ when the Program/Erase Controller has suspended the Erase operation.
Figure 7, Data Polling Flowchart, gives an exam­ple of how to use the Data Polling Bit. A Valid Ad­dress is the address being programmed or an address within the block being erased.

Toggle Bit (DQ6). The Toggle Bit can be used to identify whether the Program/Erase Controller has successfully completed its operation or if it has re­sponded to an Erase Suspen d. The Toggle Bit is output on DQ6 when the Status Register is read.

During Program and Erase operations the Toggle Bit changes from ’0’ to ’ 1’ to ’ 0’, et c., with su cces­sive Bus Read operations at any address. After successful completion of the operation the memo­ry returns to Read mode.
During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has suspended the Erase operation.
If any attempt is made to erase a protected bl ock, the operation is abort ed, no error is signalle d and DQ6 toggles for approximately 100µs. If any at­tempt is made to program a protected block or a suspended block, the operation is abort ed, no er-
ror is signalled and DQ6 toggles for approximately 1µs.
Figure 8, Data Toggle Flowchart, g ives an exam­ple of how to use the Data Toggle Bit.

Error Bit (DQ5). The Error Bit can be used to identify errors detected by the Program/Erase Controller. The Error B it is set to ’1’ when a Pro­gram, Block Erase or Chip Erase operation fails to write the correct data to the memory. If the Error Bit is set a Read/Rese t command must be issued before other commands are issued. The E rror bit is output on DQ5 when the Status Register is read.

Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to do so will set DQ5 to ‘1’. A Bus Read operation to that ad­dress will s h ow the bit is s ti ll ‘0’. One of t h e E r as e commands must b e used to set all the bits in a block or in the whole memory from ’0’ to ’1’

Erase Timer Bit (DQ3). The Erase Timer Bit can be used to identify the start of Program/Erase Controller operation during a Block Erase com­mand. Once the Program/Erase Controller starts erasing the Erase Timer Bit is set to ’1’. Before the Program/Erase Controller starts the Erase Timer Bit is set to ’0’ and additional block s to be erased may be written to the Command Interface. The Erase Timer Bit is output on DQ3 when the Status Register is read.

Alternative Toggle Bit (DQ2). The Alternative Toggle Bit can be used to monitor the Program/ Erase controller during Erase operations. The Al­ternative Toggle Bit is output on DQ2 when the Status Register is read.

During Chip Erase and Block Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with successive Bus Read operations from addresses within the blocks being erased. A protected block is treated the same as a block not being erased. Once the operation completes the memory returns to Read mode.
During Erase Suspend the Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read operations from addresses within the blocks being erased. Bus Read operations to ad­dresses within blocks not being erased will ou tput the memory cell data as if in Read mode.
After an Erase operation that c auses t he Error Bit to be set the Alternative Toggle Bit can be used to identify which block or blocks have caused the er­ror. The Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Re ad Opera­tions from addresses within blocks that have not erased correctly. The Alternative Togg le Bit does not change if the addressed block has erased cor­rectly.
16/39
M29F800DT, M29F800DB

Table 7. Status Register Bits

Operation Addre ss DQ7 DQ6 DQ5 DQ3 DQ2
Program Any Address DQ7 Toggle 0 ––0 Program During Erase
Suspend
Any Address DQ7
Program Error Any Address DQ7
Toggle 0 0
Toggle 1 0
Chip Erase Any Address 0 Toggle 0 1 Toggle 0 Block Erase before
timeout
Erasing Block 0 Toggle 0 0 Toggle 0
Non-Erasing Block 0 Toggle 0 0 No Toggle 0
RB
Block Erase
Erasing Block 0 Toggle 0 1 Toggle 0
Non-Erasing Block 0 Toggle 0 1 No Toggle 0
Erasing Block 1 No Toggle 0 Toggle 1
Erase Suspend
Non-Erasing Block Data read as normal 1
Good Block Address 0 Toggle 1 1 No Toggle 0
Erase Error
Faulty Block Address 0 Toggle 1 1 Toggle 0
Note: U nspecified da ta bits should be i gnored.

Figure 7. Dat a Po ll i ng Fl o wc h a rt Fi gure 8. Data Toggl e Fl owchart

READ DQ6
DQ5 & DQ6
TOGGLE
NO
READ DQ6
TOGGLE
START
READ
DQ6
=
DQ5
= 1
TWICE
DQ6
=
NO
YES
YES
NO
YES
START
READ DQ5 & DQ7
at VALID ADDRESS
DQ7
DATA
NO
DQ5
READ DQ7
at VALID ADDRESS
DQ7
DATA
FAIL PASS
= 1
YES
=
NO
YES
YES
=
NO
AI03598
FAIL PASS
AI01370C
17/39
M29F800DT, M29F800DB

MAXIMUM RATING

Stressing the device ab ove the rating listed in the Absolute Maximum Ratings" table may cause per­manent damage to the device. Exposure to Abso­lute Maximum Rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the dev ice at

Table 8. Absolute Maximum Ratings

Symbol Parameter Min Max Un it
T
BIAS
T
STG
V
IO
V
CC
V
ID
Note: 1. Minimum voltage may un dershoot to –2V during transi tion and for less t han 20ns during transitions .
2. Maximum voltage may overshoot to V
Temperature Under Bias –50 125 °C Storage Temperature –65 150 °C
Input or Output Voltage Supply Voltage –0.6 6 V Identification Voltage –0.6 13.5 V
(1,2)
+2V durin g transition and for less than 20ns during trans i tions.
CC
these or any other conditions above those indicat­ed in the Operating sections of this specification is not implied. Refer also to the STMicroelectronics SURE Program and ot her relevant quality docu­ments.
V
–0.6
CC
+0.6
V
18/39
M29F800DT, M29F800DB

DC AND AC PARAMETERS

This section summarizes t he operating m easure­ment conditions, and the DC and AC characteris­tics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement

Table 9. Operating and AC Measurement Conditions

Parameter
Min Max Min Max
V
Supply Voltage
CC
Ambient Operating Temperature (range 1) 0 70 0 70 °C
Ambient Operating Temperature (range 3) –40 125 –40 125 °C Ambient Operating Temperature (range 6) –40 85 –40 85 °C Load Capacitance (C Input Rise and Fall Times 10 10 ns Input Pulse Voltages 0 to 3 0.45 to 2.4 V Input and Output Timing Ref. Voltages 1.5 0.8 and 2.0 V
)
L
Conditions summarized in Table 9, Operating and AC Measurement Conditions. Designers should check that the operating cond itions in their circuit match the operating conditions when relying on the quoted parameters.
M29F800D
4.5 5.5 4.5 5.5 V
30 100 pF
Unit55 70/ 90

Figure 9. AC Measurement I/O Waveform Figure 10. AC Measurement Load Circuit

High Speed (55ns)
3V
0V
Standard (70, 90ns)
2.4V
0.45V
1.5V
2.0V
0.8V
AI05276
V
CC
DEVICE UNDER
TEST
0.1µF
CL includes JIG capacitance
1.3V
1N914
3.3k
CL

Table 10. Device Capacitance

Symbol Parameter Test Condition Min Max Unit
C
IN
C
OUT
Note: S am pled only, not 100% tested.
Input Capacitance Output Capacitance
V
V
OUT
IN
= 0V
= 0V
6pF
12 pF
OUT
AI05277
19/39
M29F800DT, M29F800DB

Table 11. DC Characteristics

Symbol Parameter Test Condition Min Max Unit
I
LI
I
LO
I
CC1
I
CC2
I
CC3
I
CC4
V
IL
V
IH
V
OL
V
OH
V
ID
I
ID
V
LKO
Note: 1. Sampled only, not 100% tested.
Input Leakage Current Output Leakage Current
Supply Current (Read)
Supply Current (Standby) TTL
Supply Current (Standby) CMOS
(1)
Supply Current (Program/Erase)
Input Low Voltage –0.5 0.8 V
Input High Voltage Output Low Voltage Output High Voltage TTL CMOS Identification Voltage 11.5 12.5 V Identification Current
Program/Erase Lockout Supply Voltage
0V ≤ V
0V ≤ V
E
= VIL, G = VIH,
IN
OUT
≤ V
≤ V
f = 6MHz
E
= V
IH
E
= VCC ±0.2V,
RP
= VCC ±0.2V
Program/Erase
Controller active
I
= 5.8mA
OL
I
= –2.5mA
OH
A9 = V
ID
CC
CC
±1 ±1
µA µA
20 mA
2mA
150
µA
20 mA
2V
CC
+ 0.5
0.45 V
2.4 V
100
µA
3.2 4 .2 V
V
20/39

Figure 11. Read Mode AC Waveforms

A0-A18/ A–1
tAVQV tAXQX
E
G
DQ0-DQ7/ DQ8-DQ15
tBHQV
BYTE
tELBL/tELBH tBLQZ
M29F800DT, M29F800DB
tAVAV VALID
tELQV tEHQX
tELQX tEHQZ
tGLQX tGHQX
tGLQV
tGHQZ
VALID
AI06154

Table 12. Read AC Characteristics

Symbol Alt Parameter Test Condition
E
t
AVAV
t
AVQV
(1)
t
ELQX
t
ELQV
(1)
t
GLQX
t
GLQV
(1)
t
EHQZ
(1)
t
GHQZ
t
EHQX
t
GHQX
t
AXQX
t
ELBL
t
ELBH
t
BLQZ
t
BHQV
Note: 1. Sampled only, not 100% tested.
t
RC
t
ACC
t
LZ
t
CE
t
OLZ
t
OE
t
HZ
t
DF
t
OH
t
ELFL
t
ELFH
t
FLQZ
t
FHQV
Address Valid to Next Address Valid
Address Valid to Output Valid
Chip Enable Low to Output Transition Chip Enable Low to Output Valid Output Enable Low to Output Transition Output Enable Low to Output Valid Chip Enable High to Output Hi-Z
Output Enable High to Output Hi-Z
Chip Enable, Output Enable or Address Transition to Output Transition
Chip Enable to BYTE Low or High Max 5 5 ns
BYTE Low to Output Hi-Z Max 25 30 ns BYTE High to Output Valid Max 30 40 ns
= VIL,
G
= V
E
= VIL,
G
= V
G
= V
G
= V
E
= V
E
= V
G
= V
E
= V
IL
IL
IL
IL
IL
IL
IL
IL
M29F800D
Unit
55 70/ 90
Min 55 70 ns
Max 55 70 ns
Min 0 0 ns
Max 55 70 ns
Min 0 0 ns Max 30 30 ns Max 18 20 ns
Max 18 20 ns
Min 0 0 ns
21/39
M29F800DT, M29F800DB

Figure 12. Write AC Waveforms, Write Enable Controlled

tAVAV
A0-A18/ A–1
tAVWL
E
VALID
tWLAX
tWHEH
tELWL
G
tWLWHtGHWL
W
tDVWH
DQ0-DQ7/ DQ8-DQ15
V
CC
RB
tVCHEL
VALID
tWHRL

Table 13. Write AC Characteristics, Write Enable Controlled

Symbol Alt Parameter
t
AVAV
t
ELWL
t
WLWH
t
DVWH
t
WHDX
t
WHEH
t
WHWL
t
AVWL
t
WLAX
t
GHWL
t
WHGL
(1)
t
WHRL
t
VCHEL
Note: 1. Sampled only, not 100% tested.
t
WC
t
CS
t
WP
t
DS
t
DH
t
CH
t
WPH
t
AS
t
AH
t
OEH
t
BUSY
t
VCS
Address Valid to Next Address Valid Min 55 70 ns Chip Enable Low to Write Enable Low Min 0 0 ns Write Enable Low to Write Enable High Min 45 45 ns Input Valid to Write Enable High Min 45 45 ns Write Enable High to Input Transition Min 0 0 ns Write Enable High to Chip Enable High Min 0 0 ns Write Enable High to Write Enable Low Min 20 20 ns Address Valid to Write Enable Low Min 0 0 ns Write Enable Low to Address Transition Min 45 45 ns Output Enable High to Write Enable Low Min 0 0 ns Write Enable High to Output Enable Low Min 0 0 ns
Program/Erase Valid to RB Low Max 30 30 ns VCC High to Chip Enable Low
tWHGL
tWHWL
tWHDX
AI06155
M29F800D
Unit
55 70/ 90
Min 50 50 µs
22/39

Figure 13. Write AC Waveforms, Chip Enable Controlled

tAVAV
A0-A18/ A–1
tAVEL
W
VALID
M29F800DT, M29F800DB
tELAX
tEHWH
tWLEL
G
tELEHtGHEL
E
tDVEH
DQ0-DQ7/ DQ8-DQ15
V
CC
RB
tVCHWL
VALID
tEHRL

Table 14. Write AC Characteristics, Chip Enable Controlled

Symbol Alt Parameter
t
AVAV
t
WLEL
t
ELEH
t
DVEH
t
EHDX
t
EHWH
t
EHEL
t
AVEL
t
ELAX
t
GHEL
t
EHGL
(1)
t
EHRL
t
VCHWL
Note: 1. Sampled only, not 100% tested.
t
WC
t
WS
t
CP
t
DS
t
DH
t
WH
t
CPH
t
AS
t
AH
t
OEH
t
BUSY
t
VCS
Address Valid to Next Address Valid Min 55 70 ns Write Enable Low to Chip Enable Low Min 0 0 ns Chip Enable Low to Chip Enable High Min 45 45 ns Input Valid to Chip Enable High Min 45 45 ns Chip Enable High to Input Transition Min 0 0 ns Chip Enable High to Write Enable High Min 0 0 ns Chip Enable High to Chip Enable Low Min 20 20 ns Address Valid to Chip Enable Low Min 0 0 ns Chip Enable Low to Address Transition Min 45 45 ns Output Enable High Chip Enable Low Min 0 0 ns Chip Enable High to Output Enable Low Min 0 0 ns
Program/Erase Valid to RB Low Max 30 30 ns VCC High to Write Enable Low
tEHGL
tEHEL
tEHDX
AI06156
M29F800D
Unit
55 70/ 90
Min 50 50 µs
23/39
M29F800DT, M29F800DB

Figure 14. Reset/Block Temporary Unprotect AC Wavefo rms

E, G
W,
tPHWL, tPHEL, tPHGL
RB
RP

Table 15. Reset/Block Temporary Unprotect AC Characteristics

Symbol Alt Parameter
(1)
t
PHWL
t
PHEL
(1)
t
PHGL
(1)
t
RHWL
(1)
t
RHEL
(1)
t
RHGL
t
PLPX
(1)
t
PLYH
(1)
t
PHPHH
Note: 1. Sampled only, not 100% tested.
t
RH
t
RB
t
RP
t
READY
t
VIDR
tPLPX
tPLYH
RP High to Write Enable Low, Chip Enable Low, Output Enable Low
RB High to Write Enable Low, Chip Enable Low, Output Enable Low
RP Pulse Width Min 500 500 ns RP Low to Read Mode Max 10 10 µs
RP Rise Time to V
ID
tRHWL, tRHEL, tRHGL
tPHPHH
AI06870
M29F800D
Unit
55 70/ 90
Min 50 50 ns
Min 0 0 ns
Min 500 500 ns
24/39
M29F800DT, M29F800DB

PACKAGE MECHANICAL

Figure 15. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Outline

A2
A
C
b
e
CP
D
N
E
EH
1
Note: Drawing is not to scale.
LA1 α
SO-d

Table 16. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data

Symbol
Typ Min Max Typ Min Max
A 2.80 0.1102
A1 0.10 0.0039
millimeters inches
A2 2.30 2.20 2.40 0.0906 0.0866 0.0945
b 0.40 0.35 0.50 0.0157 0.0138 0.0197
C 0.15 0.10 0.20 0.0059 0.0039 0.0079
CP 0.08 0.0030
D 28.20 28.00 28.40 1.1102 1.1024 1.1181 E 13.30 13.20 13.50 0.5236 0.5197 0.5315
EH 16.00 15.75 16.25 0.6299 0.6201 0.6398
e1.27 – 0.0500
L 0.80 0.0315 a8 8
N44 44
25/39
M29F800DT, M29F800DB

Figure 16. TSOP48 – 48 lead Plastic Thin Smal l Outline, 12 x 20mm, Package Outline

1
48
e
D1
24
E1
B
25
L1
A2
E
DIE
LA1 α
C
CP
Note: Drawing is not to scale.
TSOP-G

Table 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Me chan ica l Data

Symbol
Typ Min Max Typ Min Max
A 1.2 00 0.0472
A1 0.100 0.050 0.150 0.0039 0.0020 0.0 059
millimeters inches
A
A2 1.000 0.950 1.050 0.0394 0.0374 0.0 413
B 0.220 0.170 0.270 0.0087 0.0067 0.0106
C 0.100 0.210 0.0039 0.0083 CP 0.080 0.0031 D1 12.000 11.900 12.100 0.4724 0.4685 0.4764
E 20.000 19.800 20.200 0.7874 0.7795 0.7 953
E1 18. 400 18.300 18.500 0.7244 0.7205 0.7283
e 0.500 0.0197
L 0.600 0.500 0.700 0.0236 0.0 197 0.0276
L1 0.8 00 0.0315
α
26/39
305305
M29F800DT, M29F800DB

PART NUMBERING

Table 18. Ordering Information Scheme

Example: M29F800DB 55 N 6 T
Device Type
M29
Operating Voltage
F = V
Device Function
800D = 8 Mbit (x8/x16), Boot Block
Array Matrix
T = Top Boot B = Bottom Boot
Speed
55 = 55 ns 70 = 70 ns 90 = 90 ns
= 5V ± 10%
CC
Package
M = SO44 N = TSOP48: 12 x 20 mm
Temperature Range
1 = 0 to 70 °C 3 = –40 to 125°C 6 = –40 to 85 °C
Option
Blank = Standard Packing T = Tape & Reel Packing E = Lead-free Package, Standard Packing F = Lead-free Package, Tape & Reel Packing
Devices are shipped from the factory with the memory content bits erased to ’1’.
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.
27/39
M29F800DT, M29F800DB

APPENDIX A. BLOCK ADDRESS TABLE

Table 19. Top Boot Block Addresses, M29F800DT

Size
#
(Kbytes)
18 16 FC000h-FFFFFh 7E000h-7FFFFh 17 8 FA000h-FBFFFh 7D000h-7DFFFh 16 8 F8000h-F9FFFh 7C000h-7CFFFh 15 32 F0000h-F7FFFh 78000h-7BFFFh 14 64 E0000h-EFFFFh 70000h-77FFFh 13 64 D0000h-DFFFFh 68000h-6FFFFh 12 64 C0000h-CFFFFh 60000h-67FFFh 11 64 B0000h-BFFFFh 58000h-5FFFFh 10 64 A0000h-AFFFFh 50000h-57FFFh
9 64 90000h-9FFFFh 48000h-4FFFFh 8 64 80000h-8FFFFh 40000h-47FFFh 7 64 70000h-7FFFFh 38000h-3FFFFh 6 64 60000h-6FFFFh 30000h-37FFFh 5 64 50000h-5FFFFh 28000h-2FFFFh 4 64 40000h-4FFFFh 20000h-27FFFh 3 64 30000h-3FFFFh 18000h-1FFFFh 2 64 20000h-2FFFFh 10000h-17FFFh 1 64 10000h-1FFFFh 08000h-0FFFFh 0 64 00000h-0FFFFh 00000h-07FFFh
Addres s Range
(x8)
Address Ran ge
(x16)

Table 20. Bottom Boot Block Addresses, M29F800DB

Size
#
(Kbytes)
18 64 F0000h-FFFFFh 78000h-7FFFFh 17 64 E0000h-EFFFFh 70000h-77FFFh 16 64 D0000h-DFFFFh 68000h-6FFFFh 15 64 C0000h-CFFFFh 60000h-67FFFh 14 64 B0000h-BFFFFh 58000h-5FFFFh 13 64 A0000h-AFFFFh 50000h-57FFFh 12 64 90000h-9FFFFh 48000h-4FFFFh 11 64 80000h-8FFFFh 40000h-47FFFh 10 64 70000h-7FFFFh 38000h-3FFFFh
9 64 60000h-6FFFFh 30000h-37FFFh 8 64 50000h-5FFFFh 28000h-2FFFFh 7 64 40000h-4FFFFh 20000h-27FFFh 6 64 30000h-3FFFFh 18000h-1FFFFh 5 64 20000h-2FFFFh 10000h-17FFFh 4 64 10000h-1FFFFh 08000h-0FFFFh 3 32 08000h-0FFFFh 04000h-07FFFh 2 8 06000h-07FFFh 03000h-03FFFh 1 8 04000h-05FFFh 02000h-02FFFh 0 16 00000h-03FFFh 00000h-01FFFh
Address Range
(x8)
Address Range
(x16)
28/39
M29F800DT, M29F800DB

APPENDIX B. COMMON FLASH INTERFACE (CFI)

The Common Flash Interface is a JEDEC ap­proved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to det ermine various electrical and t iming parameters, density information and functions supported by the mem­ory. The system can interface easily with the de­vice, enabling the software to upgrade itself when necessary.
When the CFI Query Command is issued the de­vice enters CFI Query mode and the data structure

Table 21. Query Structure Overview

Address
x16 x8
10h 20h CFI Query Identification String Command set ID and algorithm data offset
1Bh 36h System Interface Information Device timing & voltage information
27h 4Eh Device Geometry Definition Flash device layout
40h 80h
61h C2h Security Code Area 64 bit unique device number
Note: Query data are always presented on the lowest order data outputs.
Primary Algorithm-specific Extended Query table
Sub-section Name Description
is read from the memory. Tables 21, 22, 23, 24, 25 and 26 show the address es used to retrieve the data.
The CFI data structure also contains a security area where a 64 bit unique security number is writ­ten (see Table 26, Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change t he secu rity num­ber after it has been written by ST. Issue a Read command to return to Read mode.
Additional information specific to the Primary Algorithm (optional)

Table 22. CFI Query Identification String

Address
x16 x8
10h 20h 0051h "Q" 11h 22h 0052h Query Unique ASCII String "QRY" "R" 12h 24h 0059h "Y " 13h 26h 0002h 14h 28h 0000h 15h 2Ah 0040h 16h 2Ch 0000h 17h 2Eh 0000h 18h 30h 0000h 19h 32h 0000h
1Ah 34h 0000h
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
Data Description Value
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm
Address for Primary Algorithm extended Query table (see Table 24) P = 40h
Alternate Vendor Command Set and Control Interface ID Code second vendor - specified algorithm supported
Address for Alternate Algorithm extended Query table
AMD
Compatible
NA
NA
29/39
M29F800DT, M29F800DB

Table 23. CFI Query System Interface Information

Address
x16 x8
1Bh 36h 0045h
1Ch 38h 0055h
1Dh 3Ah 0000h 1Eh 3Ch 0000h
1Fh 3Eh 0004h
20h 40h 0000h 21h 42h 000Ah 22h 44h 0000h 23h 46h 0004h 24h 48h 0000h 25h 4Ah 0003h 26h 4Ch 0000h
Note: 1. Not support ed in the CFI
Data Description Value
V
Logic Supply Minimum Program/Erase voltage
CC
bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV
V
Logic Supply Maximum Program/Erase voltage
CC
bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV
[Programming] Supply Minimum Program/Erase voltage
V
PP
V
[Programming] Supply Maximum Program/Erase voltage
PP
Typical timeout per single byte/word program = 2
Typical timeout for minimum size write buffer program = 2 Typical timeout per individual block erase = 2 Typical timeout for full chip erase = 2 Maximum timeout for byte/word program = 2 Maximum timeout for write buffer program = 2 Maximum timeout per individual block erase = 2 Maximum timeout for chip erase = 2
n
ms
n
ms
n
times typical
n
n
times typical
n
µs
n
µs
times typical
n
times typical
4.5V
5.5V
NA NA
16µs
NA
1s
see note (1)
256µs
NA
8s
see note (1)
30/39

Table 24. Device Geometry Definition

Address
x16 x8
27h 4Eh 0014h
Data Desc ription Value
Device Size = 2
n
in number of bytes
M29F800DT, M29F800DB
1 MByte
28h 29h
2Ah 2Bh
2Ch 58h 0004h
2Dh 2Eh
2Fh
30h 31h
32h 33h
34h 35h
36h 37h
38h 39h
3Ah 3Bh
3Ch
50h 52h
54h 56h
5Ah
5Ch 5Eh
60h 62h
64h 66h
68h
6Ah 6Ch
6Eh
70h 72h
74h 76h
78h
0002h 0000h
0000h 0000h
0000h 0000h
0040h 0000h
0001h 0000h
0020h 0000h
0000h 0000h
0080h 0000h
000Eh 0000h
0000h 0001h
Flash Device Interface Code description
Maximum number of bytes in multi-byte program or page = 2 Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous Erase Blocks of the same size.
Region 1 Information Number of identical size erase block = 0000h+1
Region 1 Information Block size in Region 1 = 0040h * 256 byte
Region 2 Information Number of identical size erase block = 0001h+1
Region 2 Information Block size in Region 2 = 0020h * 256 byte
Region 3 Information Number of identical size erase block = 0000h+1
Region 3 Information Block size in Region 3 = 0080h * 256 byte
Region 4 Information Number of identical-size erase block = 000Eh+1
Region 4 Information Block size in Region 4 = 0100h * 256 byte
x8, x16
Async.
n
NA
4
1
16 Kbyte
2
8 Kbyte
1
32 Kbyte
15
64 Kbyte
31/39
M29F800DT, M29F800DB

Table 25. Primary Algorithm-Specific Extended Qu ery Ta bl e

Address
x16 x8
Data Description Value
40h 80h 0050h
41h 82h 0052h "R" 42h 84h 0049h "I" 43h 86h 0031h Major version number, ASCII "1" 44h 88h 0030h Minor version number, ASCII "0" 45h 8Ah 0000h Address Sensitive Unlock (bits 1 to 0)
46h 8Ch 0002h Erase Suspend
47h 8Eh 0001h Block Protection
48h 90h 0001h Temporary Block Unprotect
49h 92h 0004h Block Protect /Unprotect
4Ah 94h 0000h Simultaneous Operations, 00 = not supported No 4Bh 96h 0000h Burst Mode, 00 = not supported, 01 = supported No 4Ch 98h 0000h Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word No
Primary Algorithm extended Query table unique ASCII string “PRI”
00 = required, 01= not required Silicon Revision Number (bits 7 to 2)
00 = not supported, 01 = Read only, 02 = Read and Write
00 = not supported, x = number of sectors in per group
00 = not supported, 01 = supported
04 = M29W400B
"P"
Yes
2
1
Yes
4

Table 26. Security Code Area

Address
x16 x8
61h C3h, C2h XXXX 62h C5h, C4h XXXX 63h C7h, C6h XXXX 64h C9h, C8h XXXX
Data Description
64 bit: unique device number
32/39

APPENDIX C. BLOCK PROTECTION

Block protection can be used to prevent any oper­ation from modifying the data s tored in the Flash. Each Block can be protected individually. Once protected, Program and Erase operations on the block fail to change the data.
There are three techniques that can be used to control Block Protection, these are the Program­mer technique, the In-System technique and Tem­porary Unprotection. Temporary Unprotection is controlled by the Reset/B lock Temporary Unpro­tection pin, RP
; this is described in the Signal De-
scriptions section. Unlike the Command Interface of the Program/
Erase Controller, the techniques for protecting and unprotecting blocks change between different Flash memory suppliers. For example , the tech­niques for AMD parts will not work on STMicro­electronics parts. Care should be taken when changing drivers for one part to work on another.

Programm er Technique

The Programmer techniq ue uses high (V
) volt-
ID
age levels on some of the bus pins. These cannot be achieved using a standard microprocessor bus, therefore the technique is recommended on ly for use in Programming Equipment.
To protect a block follow the flowchart in Figure 17, Programmer Equipment Block Prot ect Flowchart. To unprotect the whole chip it is necessary to pro­tect all of the blocks f irst, then all blocks can be un­protected at the same time. To unprotect the chip follow Figure 18, Programmer Equipment Chip Unprotect Flowchart. Table 27, Programmer
M29F800DT, M29F800DB
Technique Bus Operations, gives a summary of each operation.
The timing on these flowcharts is critical. Care should be taken to en sure that, where a pau se is specified, it is followed as closely as possible. Do not abort the procedure be fore reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing.

In-System Technique

The In-System technique requires a high volt age level on the Reset/Blocks Temporary Unprotect pin, RP maximum ratings of the components on the micro­processor bus, therefore this technique is suitable for use after the Flash has been fitted to the sys­tem.
To protect a block follow the flowchart in Figure 19, In-System Block Protect Flowchart. To unprotect the whole chip it is ne cessary to protect all of the blocks first, then all the blocks can be unprotected at the same time. To unprotect the chip follow Fig­ure 20, In-System Chip Unprotect Flowchart.
The timing on these flowcharts is critical. Care should be taken to en sure that, where a pau se is specified, it is followed as closely as possible. Do not allow the microprocessor to s ervice interrupts that will upset the timing and do not abort the pro­cedure before reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing.
. This can be achieved without violating the
Table 27. Programmer Technique Bus Op erati ons , BYTE
Operation E G W
Block Protect
Chip Unprotect
Block Protection Verify
Block Unprotection Verify
V
IL
V
IDVIDVIL
V
IL
V
IL
VIDVIL Pulse
Pulse
V
V
V
IL
IL
IH
V
IH
A9 = V
A0 = VIL, A1 = VIH, A6 = VIL, A9=VID,
A0 = VIL, A1 = VIH, A6 = VIH, A9 = VID,
Address Inputs
A0-A18
, A12-A18 Block Address
ID
Others = X
A9 = V
, A12 = VIH, A15 = VIH
ID
Others = X
A12-A18 Block Address
Others = X
A12-A18 Block Address
Others = X
= VIH or V
IL
Data Inputs/Outputs
DQ15A–1, DQ14 -DQ0
X
X
Pass = XX01h
Retry = XX00h
Retry = XX01h
Pass = XX00h
33/39
M29F800DT, M29F800DB

Figure 17. Programmer Equipment Block Protect Flowchart

START
ADDRESS = BLOCK ADDRESS
W = V
IH
n = 0
G, A9 = VID,
E = V
IL
Wait 4µs
W = V
IL
Wait 100µs
Verify Protect Set-upEnd
W = V
IH
E, G = VIH,
A0, A6 = VIL,
A1 = V
IH
E = V
IL
Wait 4µs
G = V
IL
Wait 60ns
Read DATA
DATA
=
01h
YES
A9 = V
IH
E, G = V
IH
PASS
NO
++n
= 25
A9 = V
E, G = V
NO
YES
IH
IH
34/39
FAIL
AI03469

Figure 18. Pr ogramm er Equi pm ent Chi p Unprotect Fl owchar t

START
PROTECT ALL BLOCKS
M29F800DT, M29F800DB
CURRENT BLOCK = 0
ADDRESS = CURRENT BLOCK ADDRESS
n = 0
A6, A12, A15 = V
E, G, A9 = V
Wait 4µs
W = V
Wait 10ms
W = V
E, G = V
A0 = VIL, A1, A6 = V
E = V
Wait 4µs
IH
ID
IL
IH
IH
IL
(1)
IH
Verify Unprotect Set-upEnd
G = V
IL
Wait 60ns
Read DATA
=
00h
YESNO
DATA
++n
NO
= 1000
YES
A9 = V
IH
E, G = V
IH
FAIL PASS
CURRENT BLOCK
LAST
BLOCK
YES
A9 = V
IH
E, G = V
IH
INCREMENT
NO
AI03470
35/39
M29F800DT, M29F800DB

Figure 19. In-System Equipment Block Protect Flowchart

START
n = 0
RP = V
ID
Verify Protect Set-upEnd
ADDRESS = BLOCK ADDRESS
ADDRESS = BLOCK ADDRESS
ADDRESS = BLOCK ADDRESS
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = V
WRITE 60h
A0 = VIL, A1 = VIH, A6 = V
WRITE 60h
A0 = VIL, A1 = VIH, A6 = V
Wait 100µs
WRITE 40h
A0 = VIL, A1 = VIH, A6 = V
Wait 4µs
READ DATA
DATA
RP = V
=
01h
NO
YES
IH
IL
IL
IL
IL
++n
= 25
NO
36/39
ISSUE READ/RESET
COMMAND
PASS
YES
RP = V
IH
ISSUE READ/RESET
COMMAND
FAIL
AI03471

Figure 20. In-System Equipment Chip Unprotect Flowchart

START
PROTECT ALL BLOCKS
M29F800DT, M29F800DB
Verify Unprotect Set-upEnd
CURRENT BLOCK = 0
A0 = VIL, A1 = VIH, A6 = V
A0 = VIL, A1 = VIH, A6 = V
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = V
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = V
n = 0
RP = V
ID
WRITE 60h
ANY ADDRESS WITH
WRITE 60h
ANY ADDRESS WITH
Wait 10ms
WRITE 40h
Wait 4µs
READ DATA
IH
IH
IH
IH
INCREMENT
CURRENT BLOCK
++n
NO
= 1000
YES
RP = V
IH
ISSUE READ/RESET
COMMAND
FAIL
DATA
=
00h
YESNO
LAST
BLOCK
RP = V
ISSUE READ/RESET
COMMAND
PASS
NO
YES
IH
AI03472
37/39
M29F800DT, M29F800DB

REVISION HIST ORY

Table 28. Document Revision History

Date Version Revision Details
13-Dec-2001 -01 First Issue
V
21-Jan-2002 -02
01-Mar-2002 -03
17-Feb-2003 4.0
08-Jul-2003 4.1
(max) value corrected
IH
Description of Ready/Busy signal clarified (and Figure 14 modified) Clarified allowable commands during block erase Clarified the mode the device returns to in the CFI Read Query command section
Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot (revision version 03 equals 3.0). Erase Suspend Latency Time (typical) and Data Retention parameters added to Table 6, Program, Erase Times and Program, Erase Endurance Cycles, and notes added to the table. Logic Diagram and Data Toggle Flowchart corrected. Lead-free package options E and F added to Table 18, Ordering Information Scheme. Document promoted to full datasheet.
TSOP48 package information updated (see Figure 16 and Table 17). Cross-references updated on page 29, COMMON FLASH INTERFACE (CFI) Appendix. T emperature range 3 added.
38/39
M29F800DT, M29F800DB
Information furnishe d is bel i eved to be accurate and reliable. However, STMicroelectroni cs assumes no resp onsibility for t he consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implic ation or otherwise unde r any patent or patent ri ghts of STMicroelectronics. Speci fications me ntioned in th i s publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as crit i cal component s in l i fe support dev i ces or systems wi t hout express written approv al of STMicroelectronics.
The ST log o i s registered trademark of STM i croelect ronics All other nam es are the property of their respective owners
© 2003 STMicroelectronics - All Rights Reserved
Australi a - Brazil - Cana da - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - M al ta -
Morocc o - Singapore - S pai n - Sweden - Swit zerland - United Kingdom - United States
STMicroelect ro n ics GRO UP OF COMPANI ES
www.st.com
39/39
Loading...