ST M28W640FCT, M28W640FCB User Manual

SUPPLY VOLTAGE
–V –V –V
ACCESS TIME: 70, 85, 90,100ns
PROGRAMMING TIME:
10µs typical – Double Word Programming Option – Quadruple Word Programming Option
COMMON FLASH INTERFACE
MEMORY BLOCKS
Parameter Blocks (Top or Bottom – Main Blocks
BLOCK LOCKING
All blocks locked at Power Up – Any combination of blocks can be locked –WP
SECURITY
128 bit user Programmable OTP cells – 64 bit unique device identifier
AUTOMATIC STAND-BY MODE
PROGRAM and ERASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
Manufacturer Code: 20h – Top Device Code, M28W640FCT: 8848h – Bottom Device Code, M28W640FCB:
PACKAGES
Compliant with Lead-Free Soldering – Lead-Free Versions
= 2.7V to 3.6V Core Power Supply
DD
= 1.65V to 3.6V for Input/Output
DDQ
= 12V for fast Program (optional)
PP
location)
for Block Lock-Down
8849h
Processes
M28W640FCT
M28W640FCB
64 Mbit (4Mb x16, Boot Block)
3V Supply Flash Memory
PRELIMINARY DATA

Figure 1. Packages

FBGA
TFBGA48 (ZB)
6.39 x 10.5mm
TSOP48 (N)
12 x 20mm
April 2005
This is preliminary information on a new product no w in developmen t or undergoi ng evaluatio n. Details are subje ct to chan ge without no tic e.
1/55
M28W640FCT, M28W640FCB
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E Output Enable (G Write Enable (W Write Protect (WP Reset (RP V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DD
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
V
DDQ
V
Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PP
V
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SS
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2/55
M28W640FCT, M28W640FCB
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Lock Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 6. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Program, Erase Times and Program/Erase Endurance Cycles
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Unlocked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 10. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
. . . . . . . . . . . . . . . . . . . 16
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
V
Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PP
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 15. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 16. Read AC Characteristics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 10.Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 17. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3/55
M28W640FCT, M28W640FCB
Figure 11.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12.Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 19. Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13.TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . . 30
Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 30 Figure 14.TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline 31 Table 21. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 31
Figure 15.TFBGA48 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 32
Figure 16.TFBGA48 Daisy Chain - PCB Connections proposal (Top view through package) . . . . 32
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 23. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 24. Top Boot Block Addresses, M28W640FCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 25. Bottom Boot Block Addresses, M28W640FCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 26. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 27. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 28. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 29. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 30. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 31. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 17.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 18.Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 19.Quadruple Word Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 20.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 47
Figure 21.Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 22.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 23.Locking Operations Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 24.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 51
APPENDIX D.COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE. . . . . . . . 52
Table 32. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 33. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 34. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4/55

SUMMARY DESCRIPTION

The M28W640FCT and M28W640FCB are 64 Mbit (4 Mbit x 16) non-volatile Flash memories that can be erased electricall y at block level and pro­grammed in-system on a Word-by-Word basis us­ing a 2.7V to 3.6V V a 1.65V to 3.6V V pins. An optional 12V V ed to speed up customer programming.
The devices fe ature an asymmetric al blocked ar­chitecture. They have an array of 135 blocks: 8 Parameter Blocks of 4 KWord and 127 Main Blocks of 32 KWord. The M28W640FCT has the Parameter Blocks at the top of the memory ad­dress space while the M28 W640FCB locates the Parameter Blocks starting from the bottom. The memory maps are shown in Figure 5., Block Ad-
dresses.
The M28W640FCT and M28W640FCB feature an instant, individual block locking scheme that al­lows any block to be locked or unlocked with no la­tency, enabling instant c ode and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any accidental program ming or erasure. There i s an additional hardware protection against program and erase. When V tected against program or erase. All blocks are locked at Power Up.
Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be susp ended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles.
The device includ es a 192 bi t Protecti on Registe r to increase the protection of a system design. The Protection Register is divided into a 64 bit segment and a 128 bit segment. Th e 64 bit segment con­tains a unique device number written by ST, while the second one is one-time-pr ogrammabl e by the user. The user programmable segment can be permanently protected. Figure 6., shows the Pro­tection Register Memory Map.
Program and Erase co mmands are writte n to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the tim­ings necessary for program and erase operations. The end of a program or erase operation c an be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.
The memory is offered i n TSOP48 (12 X 20mm) and TFBGA48 (6.39 x 10.5mm, 0.75mm pitch) packages and is su pplied with all the bi ts erased (set to ’1’).
supply for the circuitry and
DD
supply for the Input/Out put
DDQ
power supply is provid-
PP
PP
V
all blocks are pro-
PPLK
M28W640FCT, M28W640FCB
In addition to the standard version, the pac kages are also available in Lead-free version, in compli­ance with JEDEC St d J-STD-020B, the ST ECO­PACK 7191395 Specification, and the RoHS (Restriction of Hazardous Substances) directive.
All packages are compliant with Lead-free solder­ing processes.

Figure 2. Logic Diagram

V
V
DDQVPP
DD
22
A0-A21
W
E
G
RP
WP
M28W640FCT M28W640FCB
V
SS

Table 1. Signal Names

A0-A21 Address Inputs DQ0-DQ15 Data Input/Output E G W RP WP V
DD
V
DDQ
V
PP
V
SS
NC Not Connected Inter na lly
Chip Enable Output Enable Write Enable Reset Write Protect Core Power Supply Power Supply for
Input/Output Optional Supply Voltage for
Fast Program & Erase Ground
16
DQ0-DQ15
AI09903
5/55
M28W640FCT, M28W640FCB

Figure 3. TSOP Connections

A15 A14 A13 A12 A11
1
48
A16 V
DDQ
V
SS
DQ15 DQ7
A10 DQ14
A21 A20
RP
V
PP
WP A19 A18 A17
A9 A8
W
A7 A6 A5 A4 A3 A2 A1
12
M28W640FCT M28W640FCB
13
24 25
AI09904b
37 36
DQ6 DQ13 DQ5 DQ12 DQ4 V
DD
DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G V
SSQ
E A0
6/55

Figure 4. TFBGA Connections (Top view through package)

M28W640FCT, M28W640FCB
87654321
A
B
C
D
E
F
V
A13
A14
DDQ
SS
DQ15
DQ7V
A8A11
DQ13
PP
RP A18
A21
DQ11
DQ12
DQ4
WP A19
A20
DQ2
DD
A7V
A5A17WA10
DQ0DQ9DQ3DQ6
DQ1DQ10V
V
A4
A2
A1A3A6A9A12A15
A0EDQ8DQ5DQ14A16
SSQ
G
AI04380b
7/55
M28W640FCT, M28W640FCB

Figure 5. Block Addresses

M28W640FCT
Top Boot Block Addresses
3FFFFF
3FF000
3F8FFF
3F8000
3F7FFF
3F0000
00FFFF
008000
007FFF
000000
Note: Also see APPENDIX A., Tables 24 and 25 for a full listing of the Block Addresses.
4 KWords
Total of 8
4 KWord Blocks
4 KWords
32 KWords
Total of 127
32 KWord Blocks
32 KWords
32 KWords
Bottom Boot Block Addresses
3FFFFF
3F8000
3F7FFF
3F0000
00FFFF
008000
007FFF
007000
000FFF
000000
M28W640FCB
32 KWords
32 KWords
Total of 127
32 KWord Blocks
32 KWords
4 KWords
Total of 8
4 KWord Blocks
4 KWords
AI09905

Figure 6. Protection Register Memory Map

PROTECTION REGISTER
8Ch
User Programmable OTP
85h 84h
81h 80h
Unique device number
Protection Register Lock 1 0
AI05520b
8/55

SIGNAL DESCRIPTIONS

See Figure 2., Logic Diagram and Table 1., Signal
Names, for a brief overview of the signals connect-

ed to this device. Address Inputs (A0-A21). The Address Inputs

select the cells in the memory array to access dur­ing Bus Read operations. During Bus Write opera­tions they control the commands sent to the Command Interface of the internal state machine.

Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be progra mmed d uring a Write Bus operation.

Chip Enable (E
vates the memory control lo gic, input buffers, de ­coders and sense amplifiers. When Chip Enable is at V
and Reset is at VIH the device is in active
IL
mode. When Chip Enable i s at V deselected, the outputs a re high impedance and the power consumption is reduced to the stand-by level.
Output Enable (G
data outputs during the Bus Read operation of the memory.
Write Enable (W
Bus Write operation of the memory’s Command Interface. The data and address inputs are latched on the rising edge of Chip En abl e, E able, W
, whichever occurs first.
Write Protect (WP
that gives an additional hardware protection for each block. When Write Protect is at V Down is enabled and the protection status of the block cannot be changed. When Write Protect is at V
, the Lock-Down is disa bled an d the bl ock c an
IH
be locked or unlocked. (refer to Table 7., Read
Protection Register and Lock Register).
Reset (RP
ware reset of the memory. When Re set is at V the memory is in reset mode: the outputs are high impedance and the curre nt consumption is mini­mized. After Reset all blocks are in the Locked
). The Chip Enable input acti-
the memory is
IH
). The Output Enable controls
). The Write Enabl e contro ls the
, or Write En-
). Write Protect is an input
, the Lock-
IL
). The Reset input provides a hard-
IL
M28W640FCT, M28W640FCB
state. When Reset is a t V operation. Exiting reset mode the device enters read array mode, but a negative transi tion of Chip Enable or a change of th e address is require d to ensure valid data outputs.
V
Supply Voltage. VDD provides the power
DD
supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase).
V
Supply Voltage. V
DDQ
supply to the I/O pins and enable s all Outputs to be powered independently from V tied to V
Program Supply Voltage. VPP is both a
V
PP
or can use a separate supply.
DD
control input and a power supply pin. The two functions are selected by the voltage range ap­plied to the pin . The Supply Voltage V Program Supply Voltage V any order.
If V
is kept in a low voltage range (0V to 3.6V)
PP
V
is seen as a co ntrol inpu t. In th is ca se a v olt-
PP
age lower than V
PPLK
against program or erase, whi le V ables these function s (see T able 15., DC Charac-
teristics, for the relevant values). V
sampled at the beginning of a program or erase; a change in its valu e afte r the o per ati on has st ar ted does not have any effect on Program or Erase, however for Double or Quadr uple Word Program the results are uncertain.
If V
is in the range 1 1.4V to 12.6V it acts as a
PP
power supply pin. In this condition V stable until the Pr ogram/Erase algorithm is com ­pleted (see Table 17. and Table 18.).
V
Ground. VSS is the reference for al l voltage
SS
measurements.
Note: Each device in a system should have V
,
DD, VDDQ
pacitor close to the pin. See Figure 8., AC Mea-
and VPP decoupled with a 0.1µF ca-
surement Load Circuit. The PCB track widths
should be sufficient to carry the required V program and erase currents.
, the device is in normal
IH
provides the power
DDQ
. V
DD
can be applied in
PP
gives an absolute protection
PP
DDQ
and the
DD
> V
is only
PP
must be
PP
can be
en-
PP1
PP
9/55
M28W640FCT, M28W640FCB

BUS OPERATIONS

There are six standard bus operations that control the device. These are Bus Read, Bus Writ e, Out­put Disable, Standby, Automatic Standby and Re­set. See Table 2., Bus Op erations, for a summary.
Typically glitches of les s th an 5ns on C hip Enab le or Write Enable are ignored by the memory and do not affect bus operations.

Read. Read Bus operation s are used to output the contents of the Mem ory Array, the Electr onic Signature, the Status Regi ster and the Common Flash Interface. Both Chip Enable and Output En­able must be at V eration. The Chip E nable inp ut should be used to enable the devi ce. Ou tput E nab le should be us ed to gate data onto the output. The data read de­pends on the previous command written to the memory (see Command Interface section). See

Figure 9., Read AC Waveforms, and Table
16., Read AC Characteristics, for details of wh en
the output becomes valid. Read mode is the default state of the device when

exiting Reset or after power-up. Write. Bus Write oper ations write Commands to

the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at V V
. Commands, Input Data and Addresses are
IH
latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
See Figure 10. and Figure 11., Write AC Wave- forms, and Table 17. and Table 18., Write AC
in order to perform a read op-
IL
with Output Enable at
IL
Characteristics, for details of the timing require­ments.

Output Disable. The data outputs are high im­pedance when the Output Enable is at V

IH
.

Standby. Standby disables most o f the internal circuitry allowing a substantial reduction of the cur­rent consumption. The memory is in stand-by when Chip Enable is at V

and the device is in
IH
read mode. The power consumption is reduced to the stand-by level and the ou tputs are set to high impedance, independently from the Output Enable or Write Enable inpu ts. If Chi p E nab le swi tc hes to V
during a program or eras e operation, the de-
IH

vice enters Standby mode when finished. Automatic Standby. Automatic Standby pro-

vides a low power consumption state during Read mode. Following a read operation, the device en­ters Automatic Standby after 150ns of bus inactiv­ity even if Chip Enable is Low, V current is reduced to I
. The data Inputs/Out-
DD1
, and the supply
IL
puts will st ill ou tp ut dat a if a bus Read ope rati on is in progress.

Reset. During Reset mode w hen Output E nable is Low, V

, the memory is deselected and the out-
IL
puts are high impedance. The memory is in Reset mode when Reset is at V
. The power consump-
IL
tion is reduced to the Standby level, independently from the Chip Enable, Output Enabl e or Write En ­able inputs. If Reset is pulled to V
during a Pro-
SS
gram or Erase, this operation is aborted and the memory content is no longer valid.

Table 2. Bus Operations

Operation E G W RP WP
Bus Read Bus Write Output Disable Standby Reset X X X
Note: X = VIL or VIH, V
10/55
V V V
V
= 12V ± 5%.
PPH
IL
IL
IL
IH
V
IL
V
IH
V
IH
XX
V
IH
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
V
IL
V
PP
X Don't Care Data Output
V
X X Don't Care Hi-Z X Don't Care Hi-Z X Don't Care Hi-Z
DD
or V
PPH
DQ0-DQ15
Data Input

COMMAND INTERFACE

All Bus Write operations to the memory are inter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. An internal Program /Erase Control ler han­dles all timings and veri fies the correct executi on of the Program and Eras e commands. The Pro­gram/Erase Controlle r provides a Status Registe r whose output may be read at any time dur ing, to monitor the progress of the operation, or the Pro ­gram/Erase states. See Table 3., Command
Codes, for a summary of the c ommands and s ee APPENDIX D., Table 32., Write State Machine Current/Next, sheet 1 of 2., for a summary of the
Command Interface. The Command Interface is reset to Read mode
when power is first applied, when exiting from Re­set or whenever V mand sequences must be followed exactly. Any invalid combination of commands will reset the de­vice to Read mode. Refer to Table 4., Commands, in conjunction with the text descriptions below.

Read Memory Array Command

The Read command returns the memory to its Read mode. One Bus Write cycle is required to is­sue the Read Memory Array command and return the memory to Read mode. Subseque nt read op­erations will read t he address ed lo catio n a nd out ­put the data. When a device Reset occurs, the memory defaults to Read mode.

Read Status Register Command

The Status Register indicates w hen a prog ram or erase operation is complete and the success or failure of the operation itself. Is sue a Read Status Register command to read the S tatus Register’s contents. Subseque nt Bus Read operations re ad the Status Register at a ny address, until anothe r command is issued . S ee Tabl e 1 1., Status Regi s-
ter Bits, for details on the definitions of the bits.
The Read Status Regist er command may be is­sued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will auto matically o utput the con­tent of the Status Register.

Read Electronic Signature Command

The Read Electronic Signature command reads the Manufacturer and Device Codes and the Block Locking Status, or the Protection Register.
The Read Electronic Signature command consists of one write cycle, a subsequent read wil l output the Manufacturer Code, the Device Code, the Block Lock and L ock-Dow n Stat us, or the Pro tec­tion and Lock Regi ster. Se e Tab les 5, 6 and 7 for the valid address.
is lower than V
DD
LKO
. Com-
M28W640FCT, M28W640FCB

Table 3. Command Codes

Hex Code Command
01h
10h Program 20h Erase
2Fh
30h Double Word Program 40h Program 50h Clear Status Register 56h Quadruple Word Program
60h
70h Read Status Register 90h Read Electronic Signature 98h Read CFI Query
B0h Program/Erase Suspend
C0h Protection Registe r Prog ram
D0h
FFh Read Memory Array

Read CFI Query Command

The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area, allowing programming equipment or appli­cations to automatically match their interface to the characteristics of the device. One Bus Write cycle is required to issue the Read Query Com ­mand. Once the comm and is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See APPENDIX
B., COMMON FLASH INTERFACE (CFI), Tables 26, 27, 28, 29, 30 and 31 for details on the infor-
mation contained in the Com mon Flash Interface memory area.

Block Erase Command

The Block Erase command can be used to eras e a block. It sets all the bits within the selected block to ’1’. All previous data in the bloc k is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error.
Two Bus Write cycles are required to issue the command.
The first bus cycle sets up the Erase
command.
Block Lock confirm
Block Lock-Down confirm
Block Lock, Block Unlock, Block Lock­Down
Program/Erase Resume, Block Unlock confirm
11/55
M28W640FCT, M28W640FCB
The second latches the block address in the
internal state machine and starts the Program/ Erase Controller.
If the second bus cycle is not Write Erase Confirm (D0h), Status Regist er bits b4 and b5 are s et and the command aborts.
Erase aborts if Reset turns to V
. As data integrity
IL
cannot be guaranteed when the Erase operation is aborted, the block must be erased again.
During Erase operations the memo ry will accept the Read Status Regis ter command a nd the Pro­gram/Erase Suspend command, all other com­mands will be ignored. Typical Erase times are given in Table 8., Program, Erase Times and Pro-
gram/Erase Endurance Cycles.
See APPENDIX C., Figure 21., Erase Flowchart
and Pseudo Code, for a suggested flowc hart for
using the Erase command.

Program Command

The memory array can be programmed word-by­word. Two bus write cycles ar e required to issue the Program Command.
The first bus cycle sets up the Program
command.
The second latches the Address and the Data
to be written and starts the Program/Erase Controller.
During Program operations the memory will ac­cept the Read Statu s Register comm and and the Program/Erase Sus pend command. Typical Pro­gram times are given in Tabl e 8., Program , Erase
Times and Program/Erase Endurance Cycles.
Programming aborts if Rese t goes to V
. As data
IL
integrity cannot be gu aranteed wh en the p rogram operation is aborted, the block containing the memory location must be erased and repro­grammed.
See APPENDIX C., Figure 17., Program Flow-
chart and Pseudo Code, for the flowchart for using
the Program command.

Double Word Program Command

This feature is offered to improve the programming throughput, writing a page of two adjacent words in parallel.The two wor ds must differ only for the address A0. Programm ing shoul d not be attempt ­ed when V
is not at V
PP
PPH
.
Three bus write cy cles ar e ne ce ss ar y to i ss ue the Double Word Program command.
The first bus cycle sets up the Double Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and
the Data of the second word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program ­ming aborts if Reset goes to V
. As data integrit y
IL
cannot be guaranteed when the program opera­tion is aborted, the blo ck containing the memory location must be erased and reprogrammed.
See APPENDIX C., Figure 18., Double Word Pro-
gram Flowchart and Pseudo Code for the flow-
chart for using the Double Word Program command.

Quadruple Word Program Command

This feature is offered to improve the programming throughput, writing a page of four adjacent words in parallel.The fou r words must differ on ly for the addresses A0 and A1. Programming should not be attempted when V
is not at V
PP
PPH
.
Five bus write cycles are necessary to issue the Quadruple Word Program command.
The first bus cycle sets up the Quadruple
Word Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and
the Data of the second word to be written.
The fourth bus cycle latches the Address and
the Data of the third word to be written.
The fifth bus cycle latches the Address and the
Data of the fourth word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program ­ming aborts if Reset goes to V
. As data integrit y
IL
cannot be guaranteed when the program opera­tion is aborted, the blo ck containing the memory location must be erased and reprogrammed.
See APPENDIX C., Figure 19., Quadruple Word
Program Flowchart and Pseudo Code, for the
flowchart for using the Q uadruple Word Program command.

Clear Status Register Command

The Clear Status Regist er co mm and ca n be used to reset bits 1, 3, 4 and 5 in the Status Register to ‘0’. One bus write cycle is required to issue the Clear Status Register command.
The bits in the Status Register do not automatical­ly return to ‘0’ when a new Program or Erase com­mand is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command.

Program/Erase Suspend Command

The Program/Erase Suspend command is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase command and pause the Program/Erase control­ler.
12/55
M28W640FCT, M28W640FCB
During Program/Erase Suspend the Command In­terface will accept the Program/Erase Resume, Read Array, Read Status Register, Read Electron­ic Signature and Read CFI Query commands. Ad­ditionally, if the suspend operation was Erase then the Program, Double Word Program, Quadruple Word Program, Block Lock, Block Lock-Down or Protection Program commands will also be ac­cepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protec­tion Program commands. When the Program/ Erase Resume command is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly.
During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Enable to V Reset turns to V
. Program/Erase is aborted if
IH
.
IL
See APPENDIX C., Figure 20., Program Suspend
& Resume Flowchart and Pseudo Cod e, and Fig­ure 22., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Pro-
gram/Erase Suspend command.

Program/Erase Resume Command

The Program/Erase Resume command can be used to restart the Program/E rase Controller after a Program/Erase Sus pend operation has paused it. One Bus Write cycle is required to issue the command. Once the command is issu ed subse­quent Bus Read opera tions read th e Status Reg­ister.
See APPENDIX C., Figure 20., Program Suspend
& Resume Flowchart and Pseudo Cod e, and Fig­ure 22., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Pro-
gram/Erase Resume command.

Protection Register Program Command

The Protection Register Program command is used to Program the 128 bit u ser One-Time-Pro­grammable (OTP) segment of the Protection Reg­ister. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to ‘1’. The user can only program the bits to ‘0’.
Two write cycles are re quire d to is su e th e Pr o tec ­tion Register Program command.
The first bus cycle sets up the Protection
Register Program command.
The second latches the Address and the Data
to be written to the Protection Register and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has started.
The segment can be protected by programming bit 1 of the Protection Lock Register (see Figure
6., Protection Register Memory Map). Attem pting
to program a previously protected Protection Reg-
ister will result in a Status Register error. The pro­tection of the Protection Register is not reversible.
The Protection Register Progra m cannot be sus­pended.

Block Lock Command

The Block Lock comma nd is used to loc k a block and prevent Program or Erase operations from changing the data in it. All blocks are locked at power-up or reset.
Two Bus Write cycles are required to issue the Block Lock command.
The first bus cycle sets up the Block Lock
command.
The second Bu s Writ e cycl e latc hes t he b lock
address.
The lock status can be mo nitored for each block using the Read Electronic Signature command.
Table 10. shows the protection status after issuing
a Block Lock command. The Block Lock bits are vol atile, onc e set th ey re-
main set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation.

Block Unlock Command

The Block Unlock c ommand is used to unlock a block, allowing the block to be programmed or erased. Two Bus Wr ite cycles are required to is­sue the Block Unlock command.
The first bus cycle sets up the Block Unlock
command.
The second Bu s Writ e cycl e latc hes t he b lock
address.
The lock status can be mo nitored for each block using the Read Electronic Signature command.
Table 10. shows the protection status after issuing
a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation.

Block Lock-Down Command

A locked block cannot be Programmed or Erased, or have its protection s tatu s cha nge d whe n W P low, V
. When WP is high, V
IL
the Lock-Down
IH,
is
function is disabl ed and the locked blocks c an be individually unlocked by the Block Unlock com­mand.
Two Bus Write cycles are required to issue the Block Lock-Down command.
The first bus cycle sets up the Block Lock
command.
The second Bu s Writ e cycl e latc hes t he b lock
address.
The lock status can be mo nitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not
13/55
M28W640FCT, M28W640FCB
locked-down) state when the device is reset on power-down. Table 10. shows the protection sta-
Refer to the section, Block Loc king, for a deta iled explanation.
tus after issuing a Block Lock-Down command.

Table 4. Commands

Bus Write Operations
Commands
Read Memory Array
Read Status Register
Read Electronic Signature
Read CFI Query 1+ Wri t e X 98h Read QA QD Erase 2WriteX 20hWriteBA D0h
Program 2 Write X
Double Word Program
Quadruple Word Program
Clear Status Register
Program/Erase Suspend
Program/Erase Resume
Block Lock 2 Write X 60h Write Block Unlock 2 W ri te X 60h Write Block Lock-Down 2 Wri te X 60h Write Protection
Register Program
Note: 1. X = Don't Care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (Manufacture and Device Code),
(3)
(4)
QA=Query Address, QD=Q uery Data, BA =Block Addr ess, PA=Progr am Addres s, PD=Progra m Data, PRA= Protection Re gister Ad­dress, PRD =P r otection Regi ster Data.
2. The signature addresses are listed in Tables 5, 6 and 7.
3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0.
4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
1+ Write X FFh
1+ Write X 70h Read X SRD
1+ Write X 90h Read
1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle
Cycles
Op. Add Data Op. Add Data Op. Add Data Op. Add Data Op. Add Data
RA RD
Read
(2)
IDh
SA
40h or
Write PA PD
10h
3 Write X 30h Write PA1 PD1 Write PA2 PD2
5 W rite X 56h Write PA1 PD1 Write PA2 PD2 Write PA3 PD3 Write PA4 PD4
1Write X 50h
1Write X B0h
1Write X D0h
01h
BA BA D0h
2Fh
BA
2Write X C0hWrite
PRA
PRD

Table 5. Read Electronic Signature

Code Device E G W A0 A1 A2-A7 A8-A21 DQ0-DQ7 DQ8-DQ15
Manufacture Code
M28W640FCT
Device Code
M28W640FCB
Note: RP = VIH.
14/55
V
V
IL
ILVIHVIL
V
V
IL
ILVIHVIHVIL
V
V
IL
ILVIHVIHVIL
V
IL
0 Don't Care 20h 00h
0 Don't Care 48h 88h 0 Don't Care 49h 88h
M28W640FCT, M28W640FCB

Table 6. Read Block Lock Signature

Block Status E G W A0 A1 A2-A7 A8-A11 A12-A21 DQ0 DQ1 DQ2-DQ15
Locked Block Unlocked Block Locked-Down
Block
Note: 1. A Locked-Down Block can be locked "DQ0 = 1" or unlocked "DQ0 = 0"; see Blo ck Locking section .

Table 7. Read Protection Register and Lock Register

Word E
Lock
Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3 OTP 4 OTP 5 OTP 6 OTP 7
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
0 Don't Care Block Address 1 0 00h 0 Don't Care Block Address 0 0 00h
0 Don't Care Block Address
X
(1)
1 00h
G W A0-A7 A8-A21 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15
V
ILVILVIH
V
ILVILVIH
VILVILV VILVILV V
ILVILVIH
VILVILV VILVILV V
ILVILVIH
VILVILV VILVILV VILVILV V
ILVILVIH
VILVILV
80h Don't Care 0
81h Don't Care ID data ID data ID data ID data ID data 82h Don't Care ID data ID data ID data ID data ID data
IH
83h Don't Care ID data ID data ID data ID data ID data
IH
84h Don't Care ID data ID data ID data ID data ID data 85h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta
IH
86h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta
IH
87h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta 88h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta
IH
89h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta
IH
8Ah Don' t C are OT P data OTP data OTP d ata OTP data OTP d a ta
IH
8Bh Don' t C are OT P data OTP data OTP d ata OTP data OTP d a ta 8Ch D on't C are OTP data O TP data OTP data OT P data OTP da ta
IH
OTP Prot.
data
000h00h
15/55
M28W640FCT, M28W640FCB

Table 8. Program, Erase Times and Program/Erase Endurance Cycles

Parameter Test Conditions
V
Word Pr ogram Double Word Program Quadruple Word Program
Main Block Program
Parameter Block Program
Main Block Erase
PP
V
= 12V ±5%
PP
= 12V ±5%
V
PP
= 12V ±5%
V
PP
V
PP
= 12V ±5%
V
PP
V
PP
V
= 12V ±5%
PP
V
PP
= V
= V
= V
= V
DD
DD
DD
DD
VPP = 12V ±5%
Parameter Block Erase
= V
V
PP
DD
Program/Erase Cycles (per Block) 100,000 cycles
Note: 1. Typical time to program a Main or Parameter Block us ing the Doubl e Word Pro gram and t he Q uadruple Word Prog ram comman ds
respectively.
M28W640FCT, M 2 8W 64 0F CB
Min Typ Max
10 200 µ s 10 200 µ s 10 200 µ s
0.16/0.08
(1)
5s
0.32 5 s
0.02/0.01
(1)
4s
0.04 4 s 110s 110s
0.4 10 s
0.4 10 s
Unit
16/55

BLOCK LOCKING

The M28W640FCT and M28W640FCB feature an instant, individual block locking scheme that al­lows any block to be locked or unlocked with no la­tency. This locking scheme has three levels of protection.
Lock/Unlock - this first level allows software-
only control of block locking.
Lock-Down - this second level requires
hardware interaction before locking can be changed.
V
The protection status of each block can be set to Locked, Unlocked, and Lock-Down. Table 10., de­fines all of the possible protection states (WP DQ1, DQ0) , and APPENDIX C., Figure 23., shows a flowchart for the locking operations.

Reading a Block’s Lock Status

The lock status of every block can be read in the Read Electronic Signature mode of the device. To enter this mode write 90h to the device. Subse­quent reads at the address specified in Table 6., will output the protec tion sta tus of tha t block. T he lock status is represen ted b y D Q0 and DQ 1. DQ0 indicates the Block Lock/Unlock sta tus and is set by the Lock command and cleared by the Unl ock command. It is als o au tom ati ca ll y s et when enter­ing Lock-Down. DQ1 indicates the Lock-Down sta­tus and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down.
The following sections explain the operation of the locking system.

Locked State

The default status of all blo cks on po wer -up o r af ­ter a hardware reset is Locked (states (0,0,1) o r (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase oper­ations attempted on a locke d block will return an error in the Status Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software com­mands. An Unlocked block can be Locked by issu­ing the Lock command.

Unlocked State

Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware reset or when the device is powered-down. The status of an unlocked block can be changed to Locked or Locked-Down using the appropriate
PP
≤ V
- the third level offers a complete
PPLK
hardware protection against program and erase on all blocks.
M28W640FCT, M28W640FCB
software commands. A locked block can be un­locked by issuing the Unlock command.

Lock-Dow n St a t e

Blocks that are Locked-Down (state (0,1,x))are protected from program an d erase operati ons (as for Locked blocks) but the ir prote ction stat us can ­not be changed using so ftware comman ds alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down command. Locked­Down blocks revert to the Lock ed state whe n the device is reset or powered-down.
The Lock-Down function is depend ent on the W P input pin. When WP=0 (VIL), the blocks in the Lock-Down state (0,1,x) are protected from pro­gram, erase and protection status changes. When WP
,
=1 (VIH) the Lock-Down function is disabled (1,1,1) and Locked-Down blocks can be i ndividu­ally unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These bl ocks can th en be reloc ked (1,1,1) and unlock ed (1,1,0) as desired whi le WP remains high. When WP is low , blocks that were previously Locked-Down re turn to the Lock-Down state (0,1,x) regardless of any changes made while WP
was high. Device reset or power-down resets all blocks , including those in Lock-Down, to the Locked state.

Locking Operations During Erase Suspend

Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a bl oc k. T his is u se fu l in t h e c a se whe n another block needs to be updated while an erase operation is in progress.
To change block loc king during an erase opera­tion, first write the Erase Suspend command, then check the status register unti l it indicates that the erase operation h as been suspended. Next write the desired Lock command s equence to a block and the lock status will be changed. After complet­ing any desired lock, read, or program operations, resume the erase operation with the Erase Re­sume command.
If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immedi ately, but when the er ase is resumed, the erase operation will complete.
Locking operations cann ot be perfor med during a program suspend. Re fer to APPENDIX D., Com­mand Interface and Program/Erase Controller State, for detailed information on which com­mands are valid during erase suspend.
17/55
Loading...
+ 38 hidden pages