Datasheet M28W640FCT, M28W640FCB Datasheet (ST)

Page 1
SUPPLY VOLTAGE
–V –V –V
ACCESS TIME: 70, 85, 90,100ns
PROGRAMMING TIME:
10µs typical – Double Word Programming Option – Quadruple Word Programming Option
COMMON FLASH INTERFACE
MEMORY BLOCKS
Parameter Blocks (Top or Bottom – Main Blocks
BLOCK LOCKING
All blocks locked at Power Up – Any combination of blocks can be locked –WP
SECURITY
128 bit user Programmable OTP cells – 64 bit unique device identifier
AUTOMATIC STAND-BY MODE
PROGRAM and ERASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
Manufacturer Code: 20h – Top Device Code, M28W640FCT: 8848h – Bottom Device Code, M28W640FCB:
PACKAGES
Compliant with Lead-Free Soldering – Lead-Free Versions
= 2.7V to 3.6V Core Power Supply
DD
= 1.65V to 3.6V for Input/Output
DDQ
= 12V for fast Program (optional)
PP
location)
for Block Lock-Down
8849h
Processes
M28W640FCT
M28W640FCB
64 Mbit (4Mb x16, Boot Block)
3V Supply Flash Memory
PRELIMINARY DATA

Figure 1. Packages

FBGA
TFBGA48 (ZB)
6.39 x 10.5mm
TSOP48 (N)
12 x 20mm
April 2005
This is preliminary information on a new product no w in developmen t or undergoi ng evaluatio n. Details are subje ct to chan ge without no tic e.
1/55
Page 2
M28W640FCT, M28W640FCB
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E Output Enable (G Write Enable (W Write Protect (WP Reset (RP V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DD
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
V
DDQ
V
Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PP
V
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SS
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2/55
Page 3
M28W640FCT, M28W640FCB
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Lock Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 6. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Program, Erase Times and Program/Erase Endurance Cycles
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Unlocked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 10. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
. . . . . . . . . . . . . . . . . . . 16
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
V
Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PP
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 15. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 16. Read AC Characteristics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 10.Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 17. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3/55
Page 4
M28W640FCT, M28W640FCB
Figure 11.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12.Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 19. Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13.TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . . 30
Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 30 Figure 14.TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline 31 Table 21. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 31
Figure 15.TFBGA48 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 32
Figure 16.TFBGA48 Daisy Chain - PCB Connections proposal (Top view through package) . . . . 32
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 23. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 24. Top Boot Block Addresses, M28W640FCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 25. Bottom Boot Block Addresses, M28W640FCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 26. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 27. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 28. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 29. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 30. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 31. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 17.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 18.Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 19.Quadruple Word Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 20.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 47
Figure 21.Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 22.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 23.Locking Operations Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 24.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 51
APPENDIX D.COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE. . . . . . . . 52
Table 32. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 33. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 34. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4/55
Page 5

SUMMARY DESCRIPTION

The M28W640FCT and M28W640FCB are 64 Mbit (4 Mbit x 16) non-volatile Flash memories that can be erased electricall y at block level and pro­grammed in-system on a Word-by-Word basis us­ing a 2.7V to 3.6V V a 1.65V to 3.6V V pins. An optional 12V V ed to speed up customer programming.
The devices fe ature an asymmetric al blocked ar­chitecture. They have an array of 135 blocks: 8 Parameter Blocks of 4 KWord and 127 Main Blocks of 32 KWord. The M28W640FCT has the Parameter Blocks at the top of the memory ad­dress space while the M28 W640FCB locates the Parameter Blocks starting from the bottom. The memory maps are shown in Figure 5., Block Ad-
dresses.
The M28W640FCT and M28W640FCB feature an instant, individual block locking scheme that al­lows any block to be locked or unlocked with no la­tency, enabling instant c ode and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any accidental program ming or erasure. There i s an additional hardware protection against program and erase. When V tected against program or erase. All blocks are locked at Power Up.
Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be susp ended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles.
The device includ es a 192 bi t Protecti on Registe r to increase the protection of a system design. The Protection Register is divided into a 64 bit segment and a 128 bit segment. Th e 64 bit segment con­tains a unique device number written by ST, while the second one is one-time-pr ogrammabl e by the user. The user programmable segment can be permanently protected. Figure 6., shows the Pro­tection Register Memory Map.
Program and Erase co mmands are writte n to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the tim­ings necessary for program and erase operations. The end of a program or erase operation c an be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.
The memory is offered i n TSOP48 (12 X 20mm) and TFBGA48 (6.39 x 10.5mm, 0.75mm pitch) packages and is su pplied with all the bi ts erased (set to ’1’).
supply for the circuitry and
DD
supply for the Input/Out put
DDQ
power supply is provid-
PP
PP
V
all blocks are pro-
PPLK
M28W640FCT, M28W640FCB
In addition to the standard version, the pac kages are also available in Lead-free version, in compli­ance with JEDEC St d J-STD-020B, the ST ECO­PACK 7191395 Specification, and the RoHS (Restriction of Hazardous Substances) directive.
All packages are compliant with Lead-free solder­ing processes.

Figure 2. Logic Diagram

V
V
DDQVPP
DD
22
A0-A21
W
E
G
RP
WP
M28W640FCT M28W640FCB
V
SS

Table 1. Signal Names

A0-A21 Address Inputs DQ0-DQ15 Data Input/Output E G W RP WP V
DD
V
DDQ
V
PP
V
SS
NC Not Connected Inter na lly
Chip Enable Output Enable Write Enable Reset Write Protect Core Power Supply Power Supply for
Input/Output Optional Supply Voltage for
Fast Program & Erase Ground
16
DQ0-DQ15
AI09903
5/55
Page 6
M28W640FCT, M28W640FCB

Figure 3. TSOP Connections

A15 A14 A13 A12 A11
1
48
A16 V
DDQ
V
SS
DQ15 DQ7
A10 DQ14
A21 A20
RP
V
PP
WP A19 A18 A17
A9 A8
W
A7 A6 A5 A4 A3 A2 A1
12
M28W640FCT M28W640FCB
13
24 25
AI09904b
37 36
DQ6 DQ13 DQ5 DQ12 DQ4 V
DD
DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G V
SSQ
E A0
6/55
Page 7

Figure 4. TFBGA Connections (Top view through package)

M28W640FCT, M28W640FCB
87654321
A
B
C
D
E
F
V
A13
A14
DDQ
SS
DQ15
DQ7V
A8A11
DQ13
PP
RP A18
A21
DQ11
DQ12
DQ4
WP A19
A20
DQ2
DD
A7V
A5A17WA10
DQ0DQ9DQ3DQ6
DQ1DQ10V
V
A4
A2
A1A3A6A9A12A15
A0EDQ8DQ5DQ14A16
SSQ
G
AI04380b
7/55
Page 8
M28W640FCT, M28W640FCB

Figure 5. Block Addresses

M28W640FCT
Top Boot Block Addresses
3FFFFF
3FF000
3F8FFF
3F8000
3F7FFF
3F0000
00FFFF
008000
007FFF
000000
Note: Also see APPENDIX A., Tables 24 and 25 for a full listing of the Block Addresses.
4 KWords
Total of 8
4 KWord Blocks
4 KWords
32 KWords
Total of 127
32 KWord Blocks
32 KWords
32 KWords
Bottom Boot Block Addresses
3FFFFF
3F8000
3F7FFF
3F0000
00FFFF
008000
007FFF
007000
000FFF
000000
M28W640FCB
32 KWords
32 KWords
Total of 127
32 KWord Blocks
32 KWords
4 KWords
Total of 8
4 KWord Blocks
4 KWords
AI09905

Figure 6. Protection Register Memory Map

PROTECTION REGISTER
8Ch
User Programmable OTP
85h 84h
81h 80h
Unique device number
Protection Register Lock 1 0
AI05520b
8/55
Page 9

SIGNAL DESCRIPTIONS

See Figure 2., Logic Diagram and Table 1., Signal
Names, for a brief overview of the signals connect-

ed to this device. Address Inputs (A0-A21). The Address Inputs

select the cells in the memory array to access dur­ing Bus Read operations. During Bus Write opera­tions they control the commands sent to the Command Interface of the internal state machine.

Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be progra mmed d uring a Write Bus operation.

Chip Enable (E
vates the memory control lo gic, input buffers, de ­coders and sense amplifiers. When Chip Enable is at V
and Reset is at VIH the device is in active
IL
mode. When Chip Enable i s at V deselected, the outputs a re high impedance and the power consumption is reduced to the stand-by level.
Output Enable (G
data outputs during the Bus Read operation of the memory.
Write Enable (W
Bus Write operation of the memory’s Command Interface. The data and address inputs are latched on the rising edge of Chip En abl e, E able, W
, whichever occurs first.
Write Protect (WP
that gives an additional hardware protection for each block. When Write Protect is at V Down is enabled and the protection status of the block cannot be changed. When Write Protect is at V
, the Lock-Down is disa bled an d the bl ock c an
IH
be locked or unlocked. (refer to Table 7., Read
Protection Register and Lock Register).
Reset (RP
ware reset of the memory. When Re set is at V the memory is in reset mode: the outputs are high impedance and the curre nt consumption is mini­mized. After Reset all blocks are in the Locked
). The Chip Enable input acti-
the memory is
IH
). The Output Enable controls
). The Write Enabl e contro ls the
, or Write En-
). Write Protect is an input
, the Lock-
IL
). The Reset input provides a hard-
IL
M28W640FCT, M28W640FCB
state. When Reset is a t V operation. Exiting reset mode the device enters read array mode, but a negative transi tion of Chip Enable or a change of th e address is require d to ensure valid data outputs.
V
Supply Voltage. VDD provides the power
DD
supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase).
V
Supply Voltage. V
DDQ
supply to the I/O pins and enable s all Outputs to be powered independently from V tied to V
Program Supply Voltage. VPP is both a
V
PP
or can use a separate supply.
DD
control input and a power supply pin. The two functions are selected by the voltage range ap­plied to the pin . The Supply Voltage V Program Supply Voltage V any order.
If V
is kept in a low voltage range (0V to 3.6V)
PP
V
is seen as a co ntrol inpu t. In th is ca se a v olt-
PP
age lower than V
PPLK
against program or erase, whi le V ables these function s (see T able 15., DC Charac-
teristics, for the relevant values). V
sampled at the beginning of a program or erase; a change in its valu e afte r the o per ati on has st ar ted does not have any effect on Program or Erase, however for Double or Quadr uple Word Program the results are uncertain.
If V
is in the range 1 1.4V to 12.6V it acts as a
PP
power supply pin. In this condition V stable until the Pr ogram/Erase algorithm is com ­pleted (see Table 17. and Table 18.).
V
Ground. VSS is the reference for al l voltage
SS
measurements.
Note: Each device in a system should have V
,
DD, VDDQ
pacitor close to the pin. See Figure 8., AC Mea-
and VPP decoupled with a 0.1µF ca-
surement Load Circuit. The PCB track widths
should be sufficient to carry the required V program and erase currents.
, the device is in normal
IH
provides the power
DDQ
. V
DD
can be applied in
PP
gives an absolute protection
PP
DDQ
and the
DD
> V
is only
PP
must be
PP
can be
en-
PP1
PP
9/55
Page 10
M28W640FCT, M28W640FCB

BUS OPERATIONS

There are six standard bus operations that control the device. These are Bus Read, Bus Writ e, Out­put Disable, Standby, Automatic Standby and Re­set. See Table 2., Bus Op erations, for a summary.
Typically glitches of les s th an 5ns on C hip Enab le or Write Enable are ignored by the memory and do not affect bus operations.

Read. Read Bus operation s are used to output the contents of the Mem ory Array, the Electr onic Signature, the Status Regi ster and the Common Flash Interface. Both Chip Enable and Output En­able must be at V eration. The Chip E nable inp ut should be used to enable the devi ce. Ou tput E nab le should be us ed to gate data onto the output. The data read de­pends on the previous command written to the memory (see Command Interface section). See

Figure 9., Read AC Waveforms, and Table
16., Read AC Characteristics, for details of wh en
the output becomes valid. Read mode is the default state of the device when

exiting Reset or after power-up. Write. Bus Write oper ations write Commands to

the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at V V
. Commands, Input Data and Addresses are
IH
latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
See Figure 10. and Figure 11., Write AC Wave- forms, and Table 17. and Table 18., Write AC
in order to perform a read op-
IL
with Output Enable at
IL
Characteristics, for details of the timing require­ments.

Output Disable. The data outputs are high im­pedance when the Output Enable is at V

IH
.

Standby. Standby disables most o f the internal circuitry allowing a substantial reduction of the cur­rent consumption. The memory is in stand-by when Chip Enable is at V

and the device is in
IH
read mode. The power consumption is reduced to the stand-by level and the ou tputs are set to high impedance, independently from the Output Enable or Write Enable inpu ts. If Chi p E nab le swi tc hes to V
during a program or eras e operation, the de-
IH

vice enters Standby mode when finished. Automatic Standby. Automatic Standby pro-

vides a low power consumption state during Read mode. Following a read operation, the device en­ters Automatic Standby after 150ns of bus inactiv­ity even if Chip Enable is Low, V current is reduced to I
. The data Inputs/Out-
DD1
, and the supply
IL
puts will st ill ou tp ut dat a if a bus Read ope rati on is in progress.

Reset. During Reset mode w hen Output E nable is Low, V

, the memory is deselected and the out-
IL
puts are high impedance. The memory is in Reset mode when Reset is at V
. The power consump-
IL
tion is reduced to the Standby level, independently from the Chip Enable, Output Enabl e or Write En ­able inputs. If Reset is pulled to V
during a Pro-
SS
gram or Erase, this operation is aborted and the memory content is no longer valid.

Table 2. Bus Operations

Operation E G W RP WP
Bus Read Bus Write Output Disable Standby Reset X X X
Note: X = VIL or VIH, V
10/55
V V V
V
= 12V ± 5%.
PPH
IL
IL
IL
IH
V
IL
V
IH
V
IH
XX
V
IH
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
V
IL
V
PP
X Don't Care Data Output
V
X X Don't Care Hi-Z X Don't Care Hi-Z X Don't Care Hi-Z
DD
or V
PPH
DQ0-DQ15
Data Input
Page 11

COMMAND INTERFACE

All Bus Write operations to the memory are inter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. An internal Program /Erase Control ler han­dles all timings and veri fies the correct executi on of the Program and Eras e commands. The Pro­gram/Erase Controlle r provides a Status Registe r whose output may be read at any time dur ing, to monitor the progress of the operation, or the Pro ­gram/Erase states. See Table 3., Command
Codes, for a summary of the c ommands and s ee APPENDIX D., Table 32., Write State Machine Current/Next, sheet 1 of 2., for a summary of the
Command Interface. The Command Interface is reset to Read mode
when power is first applied, when exiting from Re­set or whenever V mand sequences must be followed exactly. Any invalid combination of commands will reset the de­vice to Read mode. Refer to Table 4., Commands, in conjunction with the text descriptions below.

Read Memory Array Command

The Read command returns the memory to its Read mode. One Bus Write cycle is required to is­sue the Read Memory Array command and return the memory to Read mode. Subseque nt read op­erations will read t he address ed lo catio n a nd out ­put the data. When a device Reset occurs, the memory defaults to Read mode.

Read Status Register Command

The Status Register indicates w hen a prog ram or erase operation is complete and the success or failure of the operation itself. Is sue a Read Status Register command to read the S tatus Register’s contents. Subseque nt Bus Read operations re ad the Status Register at a ny address, until anothe r command is issued . S ee Tabl e 1 1., Status Regi s-
ter Bits, for details on the definitions of the bits.
The Read Status Regist er command may be is­sued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will auto matically o utput the con­tent of the Status Register.

Read Electronic Signature Command

The Read Electronic Signature command reads the Manufacturer and Device Codes and the Block Locking Status, or the Protection Register.
The Read Electronic Signature command consists of one write cycle, a subsequent read wil l output the Manufacturer Code, the Device Code, the Block Lock and L ock-Dow n Stat us, or the Pro tec­tion and Lock Regi ster. Se e Tab les 5, 6 and 7 for the valid address.
is lower than V
DD
LKO
. Com-
M28W640FCT, M28W640FCB

Table 3. Command Codes

Hex Code Command
01h
10h Program 20h Erase
2Fh
30h Double Word Program 40h Program 50h Clear Status Register 56h Quadruple Word Program
60h
70h Read Status Register 90h Read Electronic Signature 98h Read CFI Query
B0h Program/Erase Suspend
C0h Protection Registe r Prog ram
D0h
FFh Read Memory Array

Read CFI Query Command

The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area, allowing programming equipment or appli­cations to automatically match their interface to the characteristics of the device. One Bus Write cycle is required to issue the Read Query Com ­mand. Once the comm and is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See APPENDIX
B., COMMON FLASH INTERFACE (CFI), Tables 26, 27, 28, 29, 30 and 31 for details on the infor-
mation contained in the Com mon Flash Interface memory area.

Block Erase Command

The Block Erase command can be used to eras e a block. It sets all the bits within the selected block to ’1’. All previous data in the bloc k is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error.
Two Bus Write cycles are required to issue the command.
The first bus cycle sets up the Erase
command.
Block Lock confirm
Block Lock-Down confirm
Block Lock, Block Unlock, Block Lock­Down
Program/Erase Resume, Block Unlock confirm
11/55
Page 12
M28W640FCT, M28W640FCB
The second latches the block address in the
internal state machine and starts the Program/ Erase Controller.
If the second bus cycle is not Write Erase Confirm (D0h), Status Regist er bits b4 and b5 are s et and the command aborts.
Erase aborts if Reset turns to V
. As data integrity
IL
cannot be guaranteed when the Erase operation is aborted, the block must be erased again.
During Erase operations the memo ry will accept the Read Status Regis ter command a nd the Pro­gram/Erase Suspend command, all other com­mands will be ignored. Typical Erase times are given in Table 8., Program, Erase Times and Pro-
gram/Erase Endurance Cycles.
See APPENDIX C., Figure 21., Erase Flowchart
and Pseudo Code, for a suggested flowc hart for
using the Erase command.

Program Command

The memory array can be programmed word-by­word. Two bus write cycles ar e required to issue the Program Command.
The first bus cycle sets up the Program
command.
The second latches the Address and the Data
to be written and starts the Program/Erase Controller.
During Program operations the memory will ac­cept the Read Statu s Register comm and and the Program/Erase Sus pend command. Typical Pro­gram times are given in Tabl e 8., Program , Erase
Times and Program/Erase Endurance Cycles.
Programming aborts if Rese t goes to V
. As data
IL
integrity cannot be gu aranteed wh en the p rogram operation is aborted, the block containing the memory location must be erased and repro­grammed.
See APPENDIX C., Figure 17., Program Flow-
chart and Pseudo Code, for the flowchart for using
the Program command.

Double Word Program Command

This feature is offered to improve the programming throughput, writing a page of two adjacent words in parallel.The two wor ds must differ only for the address A0. Programm ing shoul d not be attempt ­ed when V
is not at V
PP
PPH
.
Three bus write cy cles ar e ne ce ss ar y to i ss ue the Double Word Program command.
The first bus cycle sets up the Double Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and
the Data of the second word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program ­ming aborts if Reset goes to V
. As data integrit y
IL
cannot be guaranteed when the program opera­tion is aborted, the blo ck containing the memory location must be erased and reprogrammed.
See APPENDIX C., Figure 18., Double Word Pro-
gram Flowchart and Pseudo Code for the flow-
chart for using the Double Word Program command.

Quadruple Word Program Command

This feature is offered to improve the programming throughput, writing a page of four adjacent words in parallel.The fou r words must differ on ly for the addresses A0 and A1. Programming should not be attempted when V
is not at V
PP
PPH
.
Five bus write cycles are necessary to issue the Quadruple Word Program command.
The first bus cycle sets up the Quadruple
Word Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and
the Data of the second word to be written.
The fourth bus cycle latches the Address and
the Data of the third word to be written.
The fifth bus cycle latches the Address and the
Data of the fourth word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program ­ming aborts if Reset goes to V
. As data integrit y
IL
cannot be guaranteed when the program opera­tion is aborted, the blo ck containing the memory location must be erased and reprogrammed.
See APPENDIX C., Figure 19., Quadruple Word
Program Flowchart and Pseudo Code, for the
flowchart for using the Q uadruple Word Program command.

Clear Status Register Command

The Clear Status Regist er co mm and ca n be used to reset bits 1, 3, 4 and 5 in the Status Register to ‘0’. One bus write cycle is required to issue the Clear Status Register command.
The bits in the Status Register do not automatical­ly return to ‘0’ when a new Program or Erase com­mand is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command.

Program/Erase Suspend Command

The Program/Erase Suspend command is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase command and pause the Program/Erase control­ler.
12/55
Page 13
M28W640FCT, M28W640FCB
During Program/Erase Suspend the Command In­terface will accept the Program/Erase Resume, Read Array, Read Status Register, Read Electron­ic Signature and Read CFI Query commands. Ad­ditionally, if the suspend operation was Erase then the Program, Double Word Program, Quadruple Word Program, Block Lock, Block Lock-Down or Protection Program commands will also be ac­cepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protec­tion Program commands. When the Program/ Erase Resume command is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly.
During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Enable to V Reset turns to V
. Program/Erase is aborted if
IH
.
IL
See APPENDIX C., Figure 20., Program Suspend
& Resume Flowchart and Pseudo Cod e, and Fig­ure 22., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Pro-
gram/Erase Suspend command.

Program/Erase Resume Command

The Program/Erase Resume command can be used to restart the Program/E rase Controller after a Program/Erase Sus pend operation has paused it. One Bus Write cycle is required to issue the command. Once the command is issu ed subse­quent Bus Read opera tions read th e Status Reg­ister.
See APPENDIX C., Figure 20., Program Suspend
& Resume Flowchart and Pseudo Cod e, and Fig­ure 22., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Pro-
gram/Erase Resume command.

Protection Register Program Command

The Protection Register Program command is used to Program the 128 bit u ser One-Time-Pro­grammable (OTP) segment of the Protection Reg­ister. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to ‘1’. The user can only program the bits to ‘0’.
Two write cycles are re quire d to is su e th e Pr o tec ­tion Register Program command.
The first bus cycle sets up the Protection
Register Program command.
The second latches the Address and the Data
to be written to the Protection Register and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has started.
The segment can be protected by programming bit 1 of the Protection Lock Register (see Figure
6., Protection Register Memory Map). Attem pting
to program a previously protected Protection Reg-
ister will result in a Status Register error. The pro­tection of the Protection Register is not reversible.
The Protection Register Progra m cannot be sus­pended.

Block Lock Command

The Block Lock comma nd is used to loc k a block and prevent Program or Erase operations from changing the data in it. All blocks are locked at power-up or reset.
Two Bus Write cycles are required to issue the Block Lock command.
The first bus cycle sets up the Block Lock
command.
The second Bu s Writ e cycl e latc hes t he b lock
address.
The lock status can be mo nitored for each block using the Read Electronic Signature command.
Table 10. shows the protection status after issuing
a Block Lock command. The Block Lock bits are vol atile, onc e set th ey re-
main set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation.

Block Unlock Command

The Block Unlock c ommand is used to unlock a block, allowing the block to be programmed or erased. Two Bus Wr ite cycles are required to is­sue the Block Unlock command.
The first bus cycle sets up the Block Unlock
command.
The second Bu s Writ e cycl e latc hes t he b lock
address.
The lock status can be mo nitored for each block using the Read Electronic Signature command.
Table 10. shows the protection status after issuing
a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation.

Block Lock-Down Command

A locked block cannot be Programmed or Erased, or have its protection s tatu s cha nge d whe n W P low, V
. When WP is high, V
IL
the Lock-Down
IH,
is
function is disabl ed and the locked blocks c an be individually unlocked by the Block Unlock com­mand.
Two Bus Write cycles are required to issue the Block Lock-Down command.
The first bus cycle sets up the Block Lock
command.
The second Bu s Writ e cycl e latc hes t he b lock
address.
The lock status can be mo nitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not
13/55
Page 14
M28W640FCT, M28W640FCB
locked-down) state when the device is reset on power-down. Table 10. shows the protection sta-
Refer to the section, Block Loc king, for a deta iled explanation.
tus after issuing a Block Lock-Down command.

Table 4. Commands

Bus Write Operations
Commands
Read Memory Array
Read Status Register
Read Electronic Signature
Read CFI Query 1+ Wri t e X 98h Read QA QD Erase 2WriteX 20hWriteBA D0h
Program 2 Write X
Double Word Program
Quadruple Word Program
Clear Status Register
Program/Erase Suspend
Program/Erase Resume
Block Lock 2 Write X 60h Write Block Unlock 2 W ri te X 60h Write Block Lock-Down 2 Wri te X 60h Write Protection
Register Program
Note: 1. X = Don't Care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (Manufacture and Device Code),
(3)
(4)
QA=Query Address, QD=Q uery Data, BA =Block Addr ess, PA=Progr am Addres s, PD=Progra m Data, PRA= Protection Re gister Ad­dress, PRD =P r otection Regi ster Data.
2. The signature addresses are listed in Tables 5, 6 and 7.
3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0.
4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
1+ Write X FFh
1+ Write X 70h Read X SRD
1+ Write X 90h Read
1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle
Cycles
Op. Add Data Op. Add Data Op. Add Data Op. Add Data Op. Add Data
RA RD
Read
(2)
IDh
SA
40h or
Write PA PD
10h
3 Write X 30h Write PA1 PD1 Write PA2 PD2
5 W rite X 56h Write PA1 PD1 Write PA2 PD2 Write PA3 PD3 Write PA4 PD4
1Write X 50h
1Write X B0h
1Write X D0h
01h
BA BA D0h
2Fh
BA
2Write X C0hWrite
PRA
PRD

Table 5. Read Electronic Signature

Code Device E G W A0 A1 A2-A7 A8-A21 DQ0-DQ7 DQ8-DQ15
Manufacture Code
M28W640FCT
Device Code
M28W640FCB
Note: RP = VIH.
14/55
V
V
IL
ILVIHVIL
V
V
IL
ILVIHVIHVIL
V
V
IL
ILVIHVIHVIL
V
IL
0 Don't Care 20h 00h
0 Don't Care 48h 88h 0 Don't Care 49h 88h
Page 15
M28W640FCT, M28W640FCB

Table 6. Read Block Lock Signature

Block Status E G W A0 A1 A2-A7 A8-A11 A12-A21 DQ0 DQ1 DQ2-DQ15
Locked Block Unlocked Block Locked-Down
Block
Note: 1. A Locked-Down Block can be locked "DQ0 = 1" or unlocked "DQ0 = 0"; see Blo ck Locking section .

Table 7. Read Protection Register and Lock Register

Word E
Lock
Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3 OTP 4 OTP 5 OTP 6 OTP 7
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
0 Don't Care Block Address 1 0 00h 0 Don't Care Block Address 0 0 00h
0 Don't Care Block Address
X
(1)
1 00h
G W A0-A7 A8-A21 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15
V
ILVILVIH
V
ILVILVIH
VILVILV VILVILV V
ILVILVIH
VILVILV VILVILV V
ILVILVIH
VILVILV VILVILV VILVILV V
ILVILVIH
VILVILV
80h Don't Care 0
81h Don't Care ID data ID data ID data ID data ID data 82h Don't Care ID data ID data ID data ID data ID data
IH
83h Don't Care ID data ID data ID data ID data ID data
IH
84h Don't Care ID data ID data ID data ID data ID data 85h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta
IH
86h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta
IH
87h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta 88h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta
IH
89h D on't C are OTP data OTP da ta OTP data OT P data OTP da ta
IH
8Ah Don' t C are OT P data OTP data OTP d ata OTP data OTP d a ta
IH
8Bh Don' t C are OT P data OTP data OTP d ata OTP data OTP d a ta 8Ch D on't C are OTP data O TP data OTP data OT P data OTP da ta
IH
OTP Prot.
data
000h00h
15/55
Page 16
M28W640FCT, M28W640FCB

Table 8. Program, Erase Times and Program/Erase Endurance Cycles

Parameter Test Conditions
V
Word Pr ogram Double Word Program Quadruple Word Program
Main Block Program
Parameter Block Program
Main Block Erase
PP
V
= 12V ±5%
PP
= 12V ±5%
V
PP
= 12V ±5%
V
PP
V
PP
= 12V ±5%
V
PP
V
PP
V
= 12V ±5%
PP
V
PP
= V
= V
= V
= V
DD
DD
DD
DD
VPP = 12V ±5%
Parameter Block Erase
= V
V
PP
DD
Program/Erase Cycles (per Block) 100,000 cycles
Note: 1. Typical time to program a Main or Parameter Block us ing the Doubl e Word Pro gram and t he Q uadruple Word Prog ram comman ds
respectively.
M28W640FCT, M 2 8W 64 0F CB
Min Typ Max
10 200 µ s 10 200 µ s 10 200 µ s
0.16/0.08
(1)
5s
0.32 5 s
0.02/0.01
(1)
4s
0.04 4 s 110s 110s
0.4 10 s
0.4 10 s
Unit
16/55
Page 17

BLOCK LOCKING

The M28W640FCT and M28W640FCB feature an instant, individual block locking scheme that al­lows any block to be locked or unlocked with no la­tency. This locking scheme has three levels of protection.
Lock/Unlock - this first level allows software-
only control of block locking.
Lock-Down - this second level requires
hardware interaction before locking can be changed.
V
The protection status of each block can be set to Locked, Unlocked, and Lock-Down. Table 10., de­fines all of the possible protection states (WP DQ1, DQ0) , and APPENDIX C., Figure 23., shows a flowchart for the locking operations.

Reading a Block’s Lock Status

The lock status of every block can be read in the Read Electronic Signature mode of the device. To enter this mode write 90h to the device. Subse­quent reads at the address specified in Table 6., will output the protec tion sta tus of tha t block. T he lock status is represen ted b y D Q0 and DQ 1. DQ0 indicates the Block Lock/Unlock sta tus and is set by the Lock command and cleared by the Unl ock command. It is als o au tom ati ca ll y s et when enter­ing Lock-Down. DQ1 indicates the Lock-Down sta­tus and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down.
The following sections explain the operation of the locking system.

Locked State

The default status of all blo cks on po wer -up o r af ­ter a hardware reset is Locked (states (0,0,1) o r (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase oper­ations attempted on a locke d block will return an error in the Status Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software com­mands. An Unlocked block can be Locked by issu­ing the Lock command.

Unlocked State

Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware reset or when the device is powered-down. The status of an unlocked block can be changed to Locked or Locked-Down using the appropriate
PP
≤ V
- the third level offers a complete
PPLK
hardware protection against program and erase on all blocks.
M28W640FCT, M28W640FCB
software commands. A locked block can be un­locked by issuing the Unlock command.

Lock-Dow n St a t e

Blocks that are Locked-Down (state (0,1,x))are protected from program an d erase operati ons (as for Locked blocks) but the ir prote ction stat us can ­not be changed using so ftware comman ds alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down command. Locked­Down blocks revert to the Lock ed state whe n the device is reset or powered-down.
The Lock-Down function is depend ent on the W P input pin. When WP=0 (VIL), the blocks in the Lock-Down state (0,1,x) are protected from pro­gram, erase and protection status changes. When WP
,
=1 (VIH) the Lock-Down function is disabled (1,1,1) and Locked-Down blocks can be i ndividu­ally unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These bl ocks can th en be reloc ked (1,1,1) and unlock ed (1,1,0) as desired whi le WP remains high. When WP is low , blocks that were previously Locked-Down re turn to the Lock-Down state (0,1,x) regardless of any changes made while WP
was high. Device reset or power-down resets all blocks , including those in Lock-Down, to the Locked state.

Locking Operations During Erase Suspend

Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a bl oc k. T his is u se fu l in t h e c a se whe n another block needs to be updated while an erase operation is in progress.
To change block loc king during an erase opera­tion, first write the Erase Suspend command, then check the status register unti l it indicates that the erase operation h as been suspended. Next write the desired Lock command s equence to a block and the lock status will be changed. After complet­ing any desired lock, read, or program operations, resume the erase operation with the Erase Re­sume command.
If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immedi ately, but when the er ase is resumed, the erase operation will complete.
Locking operations cann ot be perfor med during a program suspend. Re fer to APPENDIX D., Com­mand Interface and Program/Erase Controller State, for detailed information on which com­mands are valid during erase suspend.
17/55
Page 18
M28W640FCT, M28W640FCB

Table 9. Block Lock Status

Item Address Data
Block Lock Configuration
Block is Unlocked DQ0=0
xx002
Block is Locked DQ0=1
Block is Locked-Down DQ1=1

Table 10. Protection Status

Allowed
(1)
After Block
Lock Command
Next Protection Status
(WP, DQ1, DQ0)
After Block
Unlock
Command
After Block Lock-
Down Command
Current Protection Status
(WP, DQ1, DQ0)
Current State
Program/Erase
1,0,0 yes 1,0,1 1,0,0 1,1,1 0,0,0
1,0,1
(2)
no 1,0,1 1,0,0 1,1,1 0,0,1
1,1,0 yes 1,1,1 1,1,0 1,1,1 0,1,1 1,1,1 no 1,1,1 1,1,0 1,1,1 0,1,1 0,0,0 yes 0,0,1 0,0,0 0,1,1 1,0,0
0,0,1
(2)
no 0,0,1 0,0,0 0,1,1 1,0,1
0,1,1 no 0,1,1 0,1,1 0,1,1
Note: 1. The lock status is defined by the write p rot ect pin and by DQ1 (‘1’ for a lo cked-do wn blo ck) and DQ0 ( ‘1’ f or a locked block) as read
in the Read Electronic Signature command with A1 = V
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP
3. A WP
transition to VIH on a locked block will restore the previou s DQ0 value, giving a 111 or 110.
and A0 = VIL.
IH
(1)
status.
LOCK
After WP
transition
1,1,1 or 1,1,0
(3)
18/55
Page 19

STATUS REGISTER

The Status Register p rovides information on the current or previo us Program or Erase operati on. The various bits convey in formation and errors on the operation. To read the Status register the Read Status Register command can be issued, re­fer to Read Status Register Command section. To output the contents, the Status Register is latched on the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip Enable or Output Enable returns to V able or Output Ena ble must be toggled to update the latched data.
Bus Read operations from any address always read the Status Register during Program and Erase operations.
The bits in the Status R egi st er are s umm ar iz ed in
Table 11., Status Register Bits. Refer to Table 11.
in conjunction with the following text descriptions. Program/Erase Controller Status (Bit 7). The
Program/Erase Controller Status bit indicates whether the Program/Er as e Cont ro ller is a ct ive o r inactive. When the Program /Er as e Con troll er Sta ­tus bit is Low (set to ‘0’ ), the Program/Erase Con­troller is active; when the bit is High (set to ‘1’), the Program/Erase Con troller is inacti ve, and the de­vice is ready to process a new command.
The Program/Erase Control ler Status is Low im­mediately after a Program/Erase Suspend com­mand is issued until the Program/Erase Controller pauses. After the Program/E ras e Contr ol le r paus ­es the bit is High .
During Program, Erase, op erations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Reg­ister should not be tested until the Program/Erase Controller completes th e operation and the bit is High.
After the Program/Eras e Controller completes its operation the Erase S tatus, Program Status , V Status and Block Lock Status bits should be tested for errors.
Erase Suspend Status (Bit 6). The Erase Sus­pend Status bit indica tes that an Erase op eration has been suspended or is going to be suspended. When the Erase Suspend Status bit is High (set to ‘1’), a Program/Erase Suspend command has been issued and the memor y is waitin g for a Pro ­gram/Erase Resume command.
The Erase Suspend Status should only be consid­ered valid when the Program/Erase Controller Sta­tus bit is High (Program/Erase Controller inactive). Bit 7 is set within 30µs of the Program/Erase Sus­pend command being issued therefore the memo­ry may still complete the operation rather than entering the Suspend mode.
. Either Chip En-
IH
PP
M28W640FCT, M28W640FCB
When a Program/Erase Resume command is is­sued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5). The Erase St atus bit can be used to identify if the memory has faile d to verify that the block has erased correctly. When the Erase Status bit is High (set to ‘1 ’), the Program/ Erase Controller has appli ed the maximum num­ber of pulses to th e block and still fa iled to verify that the block has erased correctly. The Erase Sta­tus bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Con ­troller inactive).
Once set High, the Erase Status bit can only be re­set Low by a Clear Status Register command or a hardware reset. If set High it should be r eset be­fore a new Program or Erase comm and is is su ed, otherwise the new command will appear to fail.
Program Status (Bit 4). The Progr am Status bit is used to identify a Program failure. When the Program Status bit is High (set to ‘1’), the Pro­gram/Erase Controller has applied the maximum number of pulses to the byte and still failed to ver­ify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Con ­troller inactive).
Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset be­fore a new command is issued, otherwise the new command will appear to fail.
V
Status (Bit 3). The VPP Status bit can be
PP
used to identify an invali d voltage on the V during Program and Erase operations. The V pin is only sampled at the beginning of a Program or Erase operation. Indeterminate res ults can oc ­cur if V
When the V age on the V when the V
becomes invalid during an operation.
PP
Status bit is Low (set to ‘0’), the volt-
PP
pin was sampled at a valid voltage;
PP
Status bit is High (set to ‘1’), the V
PP
pin has a voltage that is belo w the VPP Lockout Voltage, V
, the memory is protect ed a n d Pro-
PPLK
gram and Erase operations cannot be performed. Once set High, the V
Status bit can only be reset
PP
Low by a Clear Status Register command or a hardware reset. If set High it should be r eset be­fore a new Program or Erase comm and is is su ed, otherwise the new command will appear to fail.
Program Suspend Status (Bit 2). The Program Suspend S t atu s bit indica tes that a Program ope r­ation has been suspended. When the Program Suspend Status bit is High (s et to ‘1’ ), a Pr og r am/ Erase Suspend command has been issued and the memory is waiting for a Program/Erase Re­sume command. The Program Suspend Status should only be considered valid when the Pro-
PP
pin
PP
PP
19/55
Page 20
M28W640FCT, M28W640FCB
gram/Erase Controller Status bit is High (Program/ Erase Controller inactive). Bit 2 is set within 5µs of the Program/Erase Susp end command being is­sued therefore the memory may still complete the operation rather than entering the Suspend mode.
When a Program/Erase Res ume command is is­sued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1). The Block Pro­tection Status bi t can be used to ide ntify if a Pro­gram or Erase operation has tried to modify the contents of a locked block.
When the Block Protect ion Status bit is Hi gh (set to ‘1’), a Program or Erase operation has been at­tempted on a locked block.
Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register com­mand or a hardware reset. If s et Hi gh it sho uld be reset before a new command is is su ed, otherwise the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register i s reserved. Its value must be masked.
Note: Refer to APPENDIX C., FLOWCHARTS
AND PSEUDO CODES, for using the Status
Register.

Table 11. Status Register Bits

Bit Name Logic Level Definition
7 P/E.C. Status
6 Erase Suspend Status
5 Erase Status
4 Program Status
Status
3
2 Program Suspend Status
1 Block Protection Status
0 Reserved
Note: Logic level '1' is High, '0' is Low.
V
PP
'1' Ready '0' Busy '1' Suspended '0' In progress or Completed '1' Erase Error '0' Erase Success '1' Program Error '0' Program Success
V
'1' '0' '1' Suspended '0' In Progress or Completed '1' Program/Erase on protected Block, Abort '0' No operation to protected blocks
Invalid, Abort
PP
V
OK
PP
20/55
Page 21
M28W640FCT, M28W640FCB

MAXIMUM RATING

Stressing the device above the ra ting l isted in the Absolute Maximum Ratin gs table ma y cause per­manent damage to the device. Thes e are stress ratings only and operation of the device at these or any other conditions abo ve those indica ted in the Operating sections of this specification is not im-

Table 12. Absolute Maximum Ratings

Symbol Parameter
T
A
T
BIAS
T
STG
T
LEAD
V
IO
, V
V
DD
DDQ
V
PP
Note: 1. Depends on range.
2. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the ST ECOPACK and the European directive on Restr i ctions on Hazardous Substances (RoHS) 2002/95/EU.
Ambient Operating Temperature Temperature Under Bias – 40 125 °C Storage Tempera tur e – 55 155 °C Lead Temperature during Soldering (2) °C Input or Output Voltage – 0.6 Supply Voltage – 0.6 4.1 V Program Voltage – 0.6 13 V
(1)
plied. Exposu re to Abso lute Max imum Rati ng con­ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and o ther relevant quality docu­ments.
Min Max
– 40 85 °C
Value
V
+0.6
DDQ
®
7191395 specification,
Unit
V
21/55
Page 22
M28W640FCT, M28W640FCB

DC AND AC PARAMETERS

This section summ arizes the operati ng and mea­surement conditions , and the D C an d AC charac ­teristics of the device. The parameters in th e DC and AC characteri stics Tabl es th at follow , are de­rived from tests performed under the Measure-

Table 13. Operating and AC Measurement Conditions

ment Conditions summarized in Table
13., Operating and AC Measurement Conditi ons.
Designers should check that the operating condi­tions in their circuit match the measurement condi­tions when relying on the quoted parameters.
M28W640FCT, M28W640FCB
Parameter
70 85 90 10
MinMaxMinMaxMinMaxMinMax
Supply Voltage
V
DD
Supply Voltage (V
V
DDQ
VDD)
DDQ
2.7 3.6 2.7 3.6 2.7 3.6 2.7 3.6 V
2.7 3.6 2.7 3.6 2.7 3.6 1.65 3.6 V
Ambient Operating Temperature –40 85 –40 85 –40 85 –40 85 °C Load Capacitance (C
)
L
50 50 50 50 pF Input Rise and Fall Times 5 5 5 5 ns Input Pulse Voltages Input and Output Timing Ref.
Voltages
0 to V
V
DDQ
DDQ
/2 V
0 to V
DDQ
DDQ
/2 V
0 to V
DDQ
DDQ
/2 V
0 to V
DDQ
DDQ
/2

Figure 7. AC Measurement I/O Waveform Figure 8. AC Measurement Load Circuit

V
DDQ
V
DDQ
V
/2
DDQ
0V
AI00610
V
DDQ
V
DD
25k
Units
V
V
DEVICE
UNDER
TEST
0.1µF
0.1µF
CL includes JIG capacitance
CL

Table 14. Capacitance

Symbol Parameter Test Condition Min Max Unit
V
V
IN
OUT
= 0V
= 0V
6pF
12 pF
C
IN
C
OUT
Note: Sampled only, not 100% tested.
Input Capacitance Output Capacitance
22/55
25k
AI00609C
Page 23
M28W640FCT, M28W640FCB

Table 15. DC Characteristics

Symbol Parameter Test Condition Min Typ Max Unit
I
I
I
I
I
I I
I
I
V
V
V
V
V
V
I
LI
I
LO
I
DD
DD1
DD2
DD3
DD4
DD5
I
PP
PP1
PP2
PP3
PP4
V
IL
V
IH
OL
OH
PP1
PPH
PPLK
LKO
Input Leakage Current Output Leakage Current Supply Current (Read ) Supply Current (Stand-by or
Automatic Stand-by) Supply Current
(Reset)
Supply Current (Progr am )
Supply Current (Erase )
Supply Current (Program/Erase Su sp en d)
Program Current (Read or Stand-by)
Program Current (Read or Stand-by)
Program Current (Reset)
Program Current (Program)
Program Current (Erase)
Input Low Voltage
Input High Voltage
Output Low Voltage
Output High Voltage Program Voltage (Program or
Erase operations) Program Voltage
(Program or Erase operations)
Program Voltage (Program and Erase lock-out)
VDD Supply V ol tage (Progr am and Erase lock-out)
0V V
0V
E
= VSS, G = VIH, f = 5MHz
E
RP
RP
V
IN
V
V
OUT
= V
= V
DDQ
DDQ
± 0.2V,
± 0. 2V
= VSS ± 0.2V
DDQ
DDQ
Program in progress
VPP = 12V ± 5%
Program in progress
V
= V
PP
DD
Erase in progress
VPP = 12V ± 5%
Erase in progress
V
= V
PP
DD
E
= V
DDQ
± 0.2V,
Erase suspended
> V
V
PP
DD
V
V
PP
DD
RP
= VSS ± 0.2V
Program in progress
V
= 12V ± 5%
PP
Program in progress
V
= V
PP
DD
Erase in progress
V
= 12V ± 5%
PP
Erase in progress
V
= V
PP
DD
2.7V
V
DDQ
2.7V 0.7 V
V
DDQ
I
= 100µA, VDD = V
OL
V
= V
DDQ
I
= –100µA, VDD = V
OH
V
DDQ
= V
DDQ
DDQ
min
min
DD
DD
min,
min,
±1 µA
±10 µA
918mA
15 50 µ A
15 50 µ A
510mA
10 20 mA
520mA
10 20 mA
15 50 µ A
400 µA
15µA 15µA 110mA
15µA
310mA
15µA
–0.5 0.4 V –0.5 0.8 V
V
–0.4 V
DDQ
DDQ
V
DDQ DDQ
+0.4 +0.4
0.1 V
V
–0.1
DDQ
1.65 3.6 V
11.4 12.6 V
1V
2V
V V
V
23/55
Page 24
M28W640FCT, M28W640FCB

Figure 9. Read AC Waveforms

tAVAV
A0-A21
tAVQV
E
tELQX
G
tGLQX
DQ0-DQ15
ADDR. VALID
CHIP ENABLE

Table 16. Read AC Characteristics

Symbol Alt Parameter
t
AVAV
t
AVQV
t
AXQX
t
EHQX
t
EHQZ
t
ELQV
t
ELQX
t
GHQX
t
GHQZ
t
GLQV
t
GLQX
Note: 1. Sampled only, not 100% tested.
2. G
t
Address Valid to Next Address Valid Min 70 85 90 100 ns
RC
t
Address Valid to Output Valid Max 70 85 90 100 ns
ACC
(1)
t
(1)
(1)
(2)
(1)
(1)
(1)
(2)
(1)
may be delayed by up to t
Address Transition to Output Transition Min 0 0 0 0 ns
OH
t
Chip Enable High to Outpu t Transition M in 0 0 0 0 ns
OH
t
Chip Enable High to Outpu t Hi-Z Max 20 20 25 25 ns
HZ
t
Chip Enable Low to Output Valid Max 70 85 90 100 ns
CE
t
Chip Enable Low to Output Transition Min 0 0 0 0 ns
LZ
t
Output Enable High to Output Transition Min 0 0 0 0 ns
OH
t
Output Enable High to Output Hi-Z Max 20 20 25 25 ns
DF
t
Output Enable Low to Output Valid Max 20 20 30 30 ns
OE
t
Output Enable Low to Output Transition Min 0 0 0 0 ns
OLZ
ELQV
- t
after the falling edge of E without increas i ng t
GLQV
tELQV
tGLQV
OUTPUTS ENABLED
VALID
tEHQX
tEHQZ
tGHQX
tGHQZ
VALID
DATA VALID STANDBY
M28W640FCT, M28W640FCB
70 85 90 10
.
ELQV
tAXQX
AI04387
Unit
24/55
Page 25

Figure 10. Write AC Waveforms, Write Enable Controlled

M28W640FCT, M28W640FCB
AI04388
tWHAX
PROGRAM OR ERASE
tAVAV
VALIDA0-A21
tAVWH
tWHGL
tELQV
tWHEL
tQVWPL
STATUS REGISTER
tQVVPL
READ
1st POLLING
STATUS REGISTER
OR DATA INPUT
E
tELWL tWHEH
WP
tVPHWH
PP
V
SET-UP COMMAND CONFIRM COMMAND
tWPHWH
tWHWL
G
W
tWHDX
tWLWH
tDVWH
DQ0-DQ15 COMMAND CMD or DATA
25/55
Page 26
M28W640FCT, M28W640FCB

Table 17. Write AC Characteristics, Write Enable Controlled

Symbol Alt Parameter
t
AVAV
t
AVWH
t
DVWH
t
ELWL
t
ELQV
t
QVVPL
t
QVWPL
t
VPHWH
t
WHAX
t
WHDX
t
WHEH
t
WHEL
t
WHGL
t
WHWL
t
WLWH
t
WPHWH
Note: 1. Sampled only, not 100% tested.
2. A p pl i cable if V
(1,2)
(1)
t
Write Cycle Time M in 7 0 8 5 90 100 ns
WC
t
Address Valid to Write Enable High Min 45 45 50 50 ns
AS
t
Data Valid to Write Enable High Min 45 45 50 50 ns
DS
t
Chip Enable Low to Write Enable Low Min 0 0 0 0 ns
CS
Chip Enable Low to Output Valid Min 70 85 90 100 ns Output Valid to VPP Low
Min 0 0 0 0 ns
Output Valid to Write Protect Low Min 0 0 0 0 ns
t
VPSVPP
t
AH
t
DH
t
CH
High to Write Enable High
Min 200 200 200 200 ns
Write Enable High to Address Transition Min 0 0 0 0 ns Write Enable High to Data Transition Min 0 0 0 0 ns Write Enable High to Chip Enabl e High Min 0 0 0 0 ns Write Enable High to Chip Enabl e Low M in 2 5 2 5 30 30 ns Write Enable High to Output Ena ble Low Min 20 20 30 30 ns
t
Write Enable High to Write Enable Low M in 2 5 2 5 30 30 ns
WPH
t
Write Enable Low to Write Enable High Min 45 45 50 50 ns
WP
Write Protect High to Write Enable High M in 4 5 4 5 50 50 ns
is seen as a logic input (VPP < 3.6V).
PP
M28W640FCT, M28W640FCB
Unit
70 85 90 10
26/55
Page 27

Figure 11. Write AC Waveforms, Chip Enable Controlled

M28W640FCT, M28W640FCB
AI04389
tEHAX
PROGRAM OR ERASE
tAVAV
VALIDA0-A21
tAVEH
tEHGL
tELQV
tQVWPL
CMD or DATA STATUS REGISTER
tQVVPL
READ
1st POLLING
STATUS REGISTER
OR DATA INPUT
CONFIRM COMMAND
W
tWLEL tEHWH
WP
tVPHEH
PP
V
POWER-UP AND
SET-UP COMMAND
tWPHEH
tEHEL
G
E
tEHDX
tELEH
tDVEH
DQ0-DQ15 COMMAND
27/55
Page 28
M28W640FCT, M28W640FCB

Table 18. Write AC Characteristics, Chip Enable Controlled

Symbol Alt Parameter
t
AVAV
t
AVEH
t
DVEH
t
EHAX
t
EHDX
t
EHEL
t
EHGL
t
EHWH
t
ELEH
t
ELQV
t
QVVPL
t
QVWPL
t
VPHEH
t
WLEL
t
WPHEH
Note: 1. Sampled only, not 100% tested.
2. A p pl i cable if V
(1,2)
(1)
t
Write Cycle Time Min708590100ns
WC
t
Address Valid to Chip Enable High Min 45 45 50 50 ns
AS
t
Data Valid to Chip Enable High Min 45 45 50 50 ns
DS
Chip Enable High to Addre ss
t
AH
Transition
t
Chip Enable High to Data Transition M in 0 0 0 0 ns
DH
t
Chip Enable High to Chip Ena bl e Low Min 25 25 30 30 ns
CPH
Chip Enable High to Outpu t Ena ble Low
t
Chip Enable High to Write Enable High M in 0 0 0 0 ns
WH
t
Chip Enable Low to Chip Enable High Min 45 45 50 50 ns
CP
Min0000ns
Min25253030ns
Chip Enable Low to Output Valid Min 70 85 90 100 ns Output Valid to VPP Low
Min0000ns
Data Valid to Write Protect Low Min 0 0 0 0 ns
t
VPSVPP
t
CS
High to Chip Enable High
Min 200 200 200 200 ns
Write Enable Low to Chip Enable Low Min 0 0 0 0 ns Write Protect High to Chip Enable High Min 45 45 50 50 ns
is seen as a logic input (VPP < 3.6V).
PP
M28W640FCT, M28W640FCB
Unit
70 85 90 10
28/55
Page 29

Figure 12. Power-Up and Reset AC Waveforms

E, G
W,
RP
tPHWL
tPHEL tPHGL
M28W640FCT, M28W640FCB
tPHWL
tPHEL
tPHGL
tVDHPH
VDD, VDDQ
Power-Up Reset

Table 19. Power-Up and Reset AC Characteristics

Symbol Parameter Test Condition
t
PHWL
t
PHEL
t
PHGL
t
PLPH
t
VDHPH
Note: 1. The device Reset is possible but not guaranteed if t
Reset High to Write Enable Low, Chip Enable Low, Output Enable Low
(1,2)
Reset Low to Reset High Min 100 100 100 100 ns
(3)
Supply Voltages High to Reset High Min 50 50 50 50 µs
2. Sampled only, not 100% tested.
3. It is important to assert RP
in order to allow proper CPU initialization during power up or reset.
During Pr ogram
and Erase
others Min 30 30 30 30 ns
< 100ns.
PLPH
tPLPH
AI03537b
M28W640FCT, M28W640FCB
Unit
70 85 90 10
Min 50 50 50 50 µ s
29/55
Page 30
M28W640FCT, M28W640FCB

PACKAGE MECHANICAL

Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline

1
48
e
D1
24
E1
B
25
L1
A2
E
DIE
LA1 α
C
CP
Note: Drawing is not to scale.
TSOP-G

Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data

Symbol
Typ Min Max Typ Min Max
A 1.200 0.0472 A1 0.100 0.050 0.150 0.0039 0.0020 0.0059 A2 1.000 0.950 1.050 0.0394 0.0374 0.0413
B 0.220 0.170 0.270 0.0087 0.0067 0.0106
C 0.100 0.210 0.0039 0.0083
CP 0.100 0.0039 D1 12.000 11.900 12.100 0.4724 0.4685 0.4764
E 20.000 19.800 20.200 0.7874 0.7795 0.7953 E1 18.400 18.300 18.500 0.7244 0.7205 0.7283
e 0.500 0.0197
L 0.600 0.500 0.700 0.0236 0.0197 0.0276 L1 0.800 0.0315
α
millimeters inches
A
30/55
Page 31
M28W640FCT, M28W640FCB

Figure 14. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline

D
D1
FD
FE
E1E
BALL "A1"
A
Note: Drawing is not to scale.
SD
SE
e
ddd
e
b
A2
A1
BGA-Z34

Table 21. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data

Symbol
Typ Min Max Typ Min Max
A 1.200 0.0472 A1 0.260 0.0102 A2 1.000 0.0394
b 0.400 0.350 0.450 0.0157 0.0138 0.0177
D 6.390 6.290 6.490 0.2516 0.2476 0.2555
D1 5.250 0.2067
ddd 0.100 0.0039
E 10.500 10.400 10.600 0.4134 0.4094 0.4173 E1 3.750 0.1476
e 0.750 0.0295 – FD 0.570 0.0224 – FE 3.375 0.1329 – SD 0.375 0.0148 – SE 0.375 0.0148
millimeters inches
31/55
Page 32
M28W640FCT, M28W640FCB

Figure 15. TFBGA48 Daisy Chain - Package Connections (Top view through package)

87654321
A
B
C
D
E
F
AI04390

Figure 16. TFBGA48 Daisy Chain - PCB Connections proposal (Top view through package)

87654321
A
B
C
D
E
F
START
POINT
END
POINT
32/55
AI04391
Page 33
M28W640FCT, M28W640FCB

PART NUMBERING

Table 22. Ordering Information Scheme

Example: M28W640FCT 90 N 6 T
Device Type
M28
Operating Voltage
W = VDD = 2.7V to 3.6V; V
Device Function
640FC = 64 Mbit (4 Mb x16), Boot Block, 0.13µm
Array Matrix
T = Top Boot B = Bottom Boot
Speed
70 = 70ns 85 = 85ns 90 = 90ns 10 = 100ns
= 1.65V to 3.6V
DDQ
Package
N = TSOP48: 12 x 20 mm ZB = TFBGA48: 6.39 x 10.5mm, 0.75 mm pitch
Temperature Range
1 = 0 to 70 °C 6 = –40 to 85 °C
Option
Blank = Standard Package T = Tape & Reel Packing E = Lead-Free and RoHS Package, Standard Packing F = Lead-Free and RoHS Package, Tape & Reel Packing
33/55
Page 34
M28W640FCT, M28W640FCB

Table 23. Daisy Chain Ordering Scheme

Example: M28W640FC -ZB T
Device Type
M28W640FC
Daisy Chain
-ZB = TFBGA48: 6.39 x 10.5mm, 0.75 mm pitch
Option
Blank = Standard Packing E = Lead-Free and RoHS Package, Standard Packing F = Lead-Free and RoHS Package, Tape & Reel Packing, 24mm T = Tape & Reel Packing, 24mm
Note:Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available
options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.
34/55
Page 35

APPENDIX A. BLOCK ADDRESS TABLE S

M28W640FCT, M28W640FCB

Table 24. Top Boot Block Addresses, M28W640FCT

#
0 4 3FF000-3FFFFF 1 4 3FE000-3FEFFF 2 4 3FD000-3FDFFF 3 4 3FC000-3FCFFF 4 4 3FB000-3FBFFF 5 4 3FA000-3FAFFF 6 4 3F9000-3F9FFF 7 4 3F8000-3F8FFF 8 32 3F0000-3F7FFF 9 32 3E8000-3EFFFF
10 32 3E0000-3E7FFF
11 32 3D8000-3DFFFF 12 32 3D0000-3D7FFF 13 32 3C8000-3CFFFF 14 32 3C0000-3C7FFF 15 32 3B8000-3BFFFF 16 32 3B0000-3B7FFF 17 32 3A8000-3AFFFF 18 32 3A0000-3A7FFF 19 32 398000-39FFFF 20 32 390000-397FFF 21 32 388000-38FFFF 22 32 380000-387FFF 23 32 378000-37FFFF 24 32 370000-377FFF 25 32 368000-36FFFF 26 32 360000-367FFF 27 32 358000-35FFFF 28 32 350000-357FFF 29 32 348000-34FFFF 30 32 340000-347FFF 31 32 338000-33FFFF 32 32 330000-337FFF 33 32 328000-32FFFF 34 32 320000-327FFF 35 32 318000-31FFFF 36 32 310000-317FFF 37 32 308000-30FFFF 38 32 300000-307FFF 39 32 2F8000-2FFFFF
Size
(KWord)
Address Range
#
40 32 2F0000-2F7FFF 41 32 2E8000-2EFFFF 42 32 2E0000-2E7FFF 43 32 2D8000-2DFFFF 44 32 2D0000-2D7FFF 45 32 2C8000-2CFFFF 46 32 2C0000-2C7FFF 47 32 2B8000-2BFFFF 48 32 2B0000-2B7FFF 49 32 2A8000-2AFFFF 50 32 2A0000-2A7FFF 51 32 298000-29FFFF 52 32 290000-297FFF 53 32 288000-28FFFF 54 32 280000-287FFF 55 32 278000-27FFFF 56 32 270000-277FFF 57 32 268000-26FFFF 58 32 260000-267FFF 59 32 258000-25FFFF 60 32 250000-257FFF 61 32 248000-24FFFF 62 32 240000-247FFF 63 32 238000-23FFFF 64 32 230000-237FFF 65 32 228000-22FFFF 66 32 220000-227FFF 67 32 218000-21FFFF 68 32 210000-217FFF 69 32 208000-20FFFF 70 32 200000-207FFF 71 32 1F8000-1FFFFF 72 32 1F0000-1F7FFF 73 32 1E8000-1EFFFF 74 32 1E0000-1E7FFF 75 32 1D8000-1DFFFF 76 32 1D0000-1D7FFF 77 32 1C8000-1CFFFF 78 32 1C0000-1C7FFF 79 32 1B8000-1BFFFF 80 32 1B0000-1B7FFF 81 32 1A8000-1AFFFF
Size
(KWord)
Address Range
35/55
Page 36
M28W640FCT, M28W640FCB
#
82 32 1A0000-1A7FFF 83 32 198000-19FFFF 84 32 190000-197FFF 85 32 188000-18FFFF 86 32 180000-187FFF 87 32 178000-17FFFF 88 32 170000-177FFF 89 32 168000-16FFFF 90 32 160000-167FFF 91 32 158000-15FFFF 92 32 150000-157FFF 93 32 148000-14FFFF 94 32 140000-147FFF 95 32 138000-13FFFF 96 32 130000-137FFF 97 32 128000-12FFFF 98 32 120000-127FFF 99 32 118000-11FFFF
100 32 110000-117FFF 101 32 108000-10FFFF 102 32 100000-107FFF 103 32 0F8000-0FFFFF 104 32 0F0000-0F7FFF 105 32 0E8000-0EFFFF 106 32 0E0000-0E7FFF 107 32 0D8000-0DFFFF 108 32 0D0000-0D7FFF 109 32 0C8000-0CFFFF 110 32 0C0000-0C7FFF
111 32 0B8000-0BFFFF 112 32 0B0000-0B7FFF 113 32 0A8000-0AFFFF 114 32 0A0000-0A7FFF 115 32 098000-09FFFF 116 32 090000-097FFF 117 32 088000-08FFFF 118 32 080000-087FFF 119 32 078000-07FFFF 120 32 070000-077FFF 121 32 068000-06FFFF 122 32 060000-067FFF 123 32 058000-05FFFF 124 32 050000-057FFF 125 32 048000-04FFFF
Size
(KWord)
Address Range
#
126 32 040000-047FFF 127 32 038000-03FFFF 128 32 030000-037FFF 129 32 028000-02FFFF 130 32 020000-027FFF 131 32 018000-01FFFF 132 32 010000-017FFF 133 32 008000-00FFFF 134 32 000000-007FFF
Size
(KWord)
Address Range
36/55
Page 37
M28W640FCT, M28W640FCB

Table 25. Bottom Boot Block Addresses, M28W640FCB

#
134 32 3F8000-3FFFFF 133 32 3F0000-3F7FFF 132 32 3E8000-3EFFFF 131 32 3E0000-3E7FFF 130 32 3D8000-3DFFFF 129 32 3D0000-3D7FFF 128 32 3C8000-3CFFFF 127 32 3C0000-3C7FFF 126 32 3B8000-3BFFFF 125 32 3B0000-3B7FFF 124 32 3A8000-3AFFFF 123 32 3A0000-3A7FFF 122 32 398000-39FFFF 121 32 390000-397FFF 120 32 388000-38FFFF 119 32 380000-387FFF 118 32 378000-37FFFF 117 32 370000-377FFF 116 32 368000-36FFFF 115 32 360000-367FFF 114 32 358000-35FFFF 113 32 350000-357FFF 112 32 348000-34FFFF
111 32 340000-347FFF 110 32 338000-33FFFF 109 32 330000-337FFF 108 32 328000-32FFFF 107 32 320000-327FFF 106 32 318000-31FFFF 105 32 310000-317FFF 104 32 308000-30FFFF 103 32 300000-307FFF 102 32 2F8000-2FFFFF 101 32 2F0000-2F7FFF 100 32 2E8000-2EFFFF
99 32 2E0000-2E7FFF 98 32 2D8000-2DFFFF 97 32 2D0000-2D7FFF 96 32 2C8000-2CFFFF 95 32 2C0000-2C7FFF 94 32 2B8000-2BFFFF 93 32 2B0000-2B7FFF
Size
(KWord)
Address Range
#
92 32 2A8000-2AFFFF 91 32 2A0000-2A7FFF 90 32 298000-29FFFF 89 32 290000-297FFF 88 32 288000-28FFFF 87 32 280000-287FFF 86 32 278000-27FFFF 85 32 270000-277FFF 84 32 268000-26FFFF 83 32 260000-267FFF 82 32 258000-25FFFF 81 32 250000-257FFF 80 32 248000-24FFFF 79 32 240000-247FFF 78 32 238000-23FFFF 77 32 230000-237FFF 76 32 228000-22FFFF 75 32 220000-227FFF 74 32 218000-21FFFF 73 32 210000-217FFF 72 32 208000-20FFFF 71 32 200000-207FFF 70 32 1F8000-1FFFFF 69 32 1F0000-1F7FFF 68 32 1E8000-1EFFFF 67 32 1E0000-1E7FFF 66 32 1D8000-1DFFFF 65 32 1D0000-1D7FFF 64 32 1C8000-1CFFFF 63 32 1C0000-1C7FFF 62 32 1B8000-1BFFFF 61 32 1B0000-1B7FFF 60 32 1A8000-1AFFFF 59 32 1A0000-1A7FFF 58 32 198000-19FFFF 57 32 190000-197FFF 56 32 188000-18FFFF 55 32 180000-187FFF 54 32 178000-17FFFF 53 32 170000-177FFF 52 32 168000-16FFFF 51 32 160000-167FFF 50 32 158000-15FFFF 49 32 150000-157FFF
Size
(KWord)
Address Range
37/55
Page 38
M28W640FCT, M28W640FCB
#
48 32 148000-14FFFF 47 32 140000-147FFF 46 32 138000-13FFFF 45 32 130000-137FFF 44 32 128000-12FFFF 43 32 120000-127FFF 42 32 118000-11FFFF 41 32 110000-117FFF 40 32 108000-10FFFF 39 32 100000-107FFF 38 32 0F8000-0FFFFF 37 32 0F0000-0F7FFF 36 32 0E8000-0EFFFF 35 32 0E0000-0E7FFF 34 32 0D8000-0DFFFF 33 32 0D0000-0D7FFF 32 32 0C8000-0CFFFF 31 32 0C0000-0C7FFF 30 32 0B8000-0BFFFF 29 32 0B0000-0B7FFF 28 32 0A8000-0AFFFF 27 32 0A0000-0A7FFF 26 32 098000-09FFFF 25 32 090000-097FFF 24 32 088000-08FFFF 23 32 080000-087FFF 22 32 078000-07FFFF 21 32 070000-077FFF 20 32 068000-06FFFF 19 32 060000-067FFF 18 32 058000-05FFFF 17 32 050000-057FFF 16 32 048000-04FFFF 15 32 040000-047FFF 14 32 038000-03FFFF 13 32 030000-037FFF 12 32 028000-02FFFF
11 32 020000-027FFF
10 32 018000-01FFFF
9 32 010000-017FFF 8 32 008000-00FFFF 7 4 007000-007FFF 6 4 006000-006FFF 5 4 005000-005FFF
Size
(KWord)
Address Range
#
4 4 004000-004FFF 3 4 003000-003FFF 2 4 002000-002FFF 1 4 001000-001FFF 0 4 000000-000FFF
Size
(KWord)
Address Range
38/55
Page 39
M28W640FCT, M28W640FCB

APPENDIX B. COMMON FLASH INTERFACE (CFI)

The Common Flash Interface is a JEDEC ap­proved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the de vice to de termine various electrical a nd timing parameters, density information and functions su pported by the mem ­ory. The system can interface easily with the de­vice, enabling the so ftwar e to u pgr ade it se lf wh en necessary.
When the CFI Query Comma nd (RCFI) is issued the device enters CFI Query mode and the data

Table 26. Query Structure Overview

Offset Sub-section Name Description
00h Reserved Reserved for algorithm-specific information 10h CF I Que ry Ide nt ific atio n String Command set ID and algo rith m data offset
1Bh System Interface Information Device timing & voltage information
27h Device Geometry Definition Flash device layout
P Primary Algorithm-specific Extended Query table
A Alternate Algorithm-specific Extended Query table
Note: Query data are always presented on the lowest order data outputs.
structure is read fro m th e me mor y. T abl es 26, 27,
28, 29, 30 and 31 show the addresses used to re-
trieve the data. The CFI data structure also contains a security
area where a 64 bit unique security number is writ­ten (see Table 31., Security Code Area). This area can be accessed onl y in Read mode by the final user. It is imposs ible to chang e the secur ity num ­ber after it has been written b y ST. Issu e a Read command to return to Read mode.
Additional information specific to the Primary Algorithm (optional)
Additional information specific to the Alternate Algorithm (optional)

Table 27. CFI Query Identification Stri ng

Offset Data Description Value
00h 0020h Manufacturer Code ST
01h
02h-0Fh reserved Reserved
10h 0051h "Q" 11h 0052h Query Unique ASCII String "QRY" "R" 12h 0059h "Y" 13h 0003h 14h 0000h 15h 0035h 16h 0000h 17h 0000h 18h 0000h 19h 0000h
1Ah 0000h
Note: Query data are always presented on the lowes t order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
8848h 8849h
Device Code
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm
Address for Primary Algorithm extended Query table (see Table 29.)P = 35h
Alternate Vendor Command Set and Control Interface ID Code second vendor ­specified algorithm supported (0000h means none exists)
Address for Alternate Algorithm extended Query table (0000h means none exists)
compatible
Top
Bottom
Intel
NA
NA
39/55
Page 40
M28W640FCT, M28W640FCB

Table 28. CFI Query System Interface Information

Offset Data Description Value
Logic Supply Minimum Program/Erase or Write voltage
V
1Bh 0027h
1Ch 0036h
1Dh 00B4h
1Eh 00C6h
DD
bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV
Logic Supply Maximum Program/Erase or Write voltage
V
DD
bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV
[Programming] Supply Minimum Program/Erase voltage
V
PP
bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV
[Programming] Supply Maximum Program/Erase voltage
V
PP
bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV
2.7V
3.6V
11.4V
12.6V
1Fh 0004h 20h 0004h 21h 000Ah 22h 0000h 23h 0005h 24h 0005h 25h 0003h 26h 0000h
Typical time-out per single word program = 2n µs Typical time-out for Double/Quadruple Word Program = 2 Typical time-out per individual block erase = 2 Typical time-out for full chip erase = 2
n
Maximum time-out for Word program = 2
n
ms
n
times typical
ms
n
Maximum time-out for Double/Quadruple Word Program = 2 Maximum time-out per individual block erase = 2 Maximum time-out for chip erase = 2
n
times typical
n
times typical
µs
n
times typical
16µs 16µs
1s
NA 512µs 512µs
8s
NA
40/55
Page 41

Table 29. Device Geometry Definition

Offset Word
Mode
27h 0017h 28h
29h
2Ah 2Bh
2Ch 0002h
2Dh 2Eh
2Fh 30h
31h 32h
M28W640FCT
33h 34h
2Dh 2Eh
2Fh 30h
31h 32h
M28W640FCB
33h 34h
Data Description Value
Device Size = 2
0001h 0000h
0003h 0000h
007Eh 0000h
0000h 0001h
0007h 0000h
0020h 0000h
0007h 0000h
0020h 0000h
007Eh 0000h
0000h 0001h
Flash Device Interface Code description
Maximum number of bytes in multi-byte program or page = 2 Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous Erase Blocks of the same size.
Region 1 Information Number of identical-size erase block = 007Eh+1
Region 1 Information Block size in Region 1 = 0100h * 256 byte
Region 2 Information Number of identical-size erase block = 0007h+1
Region 2 Information Block size in Region 2 = 0020h * 256 byte
Region 1 Information Number of identical-size erase block = 0007h+1
Region 1 Information Block size in Region 1 = 0020h * 256 byte
Region 2 Information Number of identical-size erase block = 007Eh=1
Region 2 Information Block size in Region 2 = 0100h * 256 byte
n
in number of bytes
M28W640FCT, M28W640FCB
8 MByte
x16
Async.
n
8
2
127
64 KByte
8
8 KByte
8
8 KByte
127
64 KByte
41/55
Page 42
M28W640FCT, M28W640FCB

Table 30. Primary Algorithm-Specific Extended Query Table

Offset
P = 35h
(1)
(P+0)h = 35h 0050h (P+1)h = 36h 0052h "R" (P+2)h = 37h 0049h "I" (P+3)h = 38h 0031h Major version number, ASCII "1"
(P+4)h = 39h 0030h Minor version number, ASCII "0" (P+5)h = 3Ah 0066h Extended Query table contents for Primary Algorithm. Address (P+5)h (P+6)h = 3Bh 0000h (P+7)h = 3Ch 0000h (P+8)h = 3Dh 0000h
(P+9)h = 3Eh 0001h Su pp ort ed Func tio ns after Susp end
(P+A)h = 3Fh 0003h Block Lock Status (P+B)h = 40h 0000h
(P+C)h = 41h 0030h V
(P+D)h = 42h 00C0h V
(P+E)h = 43h 0001h Number of Protection register fields in JEDEC ID space.
(P+F)h = 44h 0080h Protection Field 1: Protection De sc ript ion
(P+10)h = 45h 0000h 00h (P+11)h = 46h 0003h 8 Byte (P+12)h = 47h 0004h 16 Byte
(P+13)h = 48h Reserved
Note: 1. See Table 27., offset 15 for P pointer definition.
Data Description Value
"P"
Primary Algorithm extended Query table unique ASCII string “PRI”
contains less significant by te.
bit 0Chip Erase supported(1 = Yes, 0 = No) bit 1Suspend Erase supported(1 = Yes, 0 = No) bit 2Suspend Program supported(1 = Yes, 0 = No) bit 3Legacy Lock/Unlock supported(1 = Yes, 0 = No) bit 4Queued Erase supported(1 = Yes, 0 = No) bit 5Instant individual block locking supported(1 = Yes, 0 = No) bit 6Protection bits supported(1 = Yes, 0 = No) bit 7Page mode read supported(1 = Yes, 0 = No) bit 8Synchronous read supported(1 = Yes, 0 = No) bit 31 to 9Reserved; undefined bits are ‘0’
No Yes Yes
No
No Yes Yes
No
No
Read Array, Read Status Register and CFI Query are always supported during Erase or Program oper ati on
bit 0Program supported after Erase Suspend (1 = Yes, 0 = No) bit 7 to 1Reserved; undefined bits are ‘0’ Yes
Defines which bits in the Block Status Register section of the Query are implemented. Address (P+A)h contains less significant byte
bit 0Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No) bit 1Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)
Yes Yes
bit 15 to 2Reserved for future use; undefined bits are ‘0’
Logic Supply Optimum Program/Erase voltage (highest performance)
DD
3V bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV
Supply Optimum Program/Erase voltage
PP
12V bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV
01
"00h," indicates that 256 protection bytes are available
80h
This field describes user-available One Time Programmable (OTP) Protection register bytes. Some are pre-programmed with device unique serial numbers. Others are user programmable. Bits 0–15 point to the Protection register Lock byte, the section’s first byte. The following bytes are factory pre-programmed and user-programmable.
bit 0 to 7 Lock/bytes JEDEC-plane physical low address bit 8 to 15Lock/bytes JEDEC-plane physical high address bit 16 to 23 "n" such that 2n = factory pre-programmed bytes
n
bit 24 to 31 "n" such that 2
= user programmable bytes
42/55
Page 43

Table 31. Security Code Area

Offset Data Description
80h 00XX Protection Register Lock 81h XXXX 82h XXXX 83h XXXX 84h XXXX 85h XXXX 86h XXXX 87h XXXX 88h XXXX
89h XXXX 8Ah XXXX 8Bh XXXX 8Ch XXXX
64 bits: unique device number
128 bits: User Programmable OTP
M28W640FCT, M28W640FCB
43/55
Page 44
M28W640FCT, M28W640FCB

APPENDIX C. FLOWCHARTS AND PSEUDO CODES

Figure 17. Program Flowchart and Pseudo Code

Start
Write 40h or 10h
Write Address
& Data
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
YES
b1 = 0
YES
End
NO
NO
NO
NO
VPP Invalid
Error (1, 2)
Error (1, 2)
Program to Protected
Block Error (1, 2)
Program
program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0x40) ; /*or writeToFlash (any_address, 0x10) ; */
writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI03538b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Eras e Controller operations.
44/55
Page 45

Figure 18. Double Word Program Flowchart and Pseudo Code

Start
M28W640FCT, M28W640FCB
Write 30h
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
NO
NO
NO
VPP Invalid
Error (1, 2)
Program
Error (1, 2)
double_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2) { writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */ writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ /*Memory enters read status state after the Program command*/
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
YES
NO
b1 = 0
YES
End
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.
Program to Protected
Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI03539b
45/55
Page 46
M28W640FCT, M28W640FCB

Figure 19. Quadruple Word Program Flowchart and Pseudo Code

Start
Write 56h
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
Write Address 3
& Data 3 (3)
Write Address 4
& Data 4 (3)
Read Status
Register
b7 = 1
YES
quadruple_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2, addressToProgram3, dataToProgram3, addressToProgram4, dataToProgram4) { writeToFlash (any_address, 0x56) ;
writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */
writeToFlash (addressToProgram3, dataToProgram3) ; /*see note (3) */
writeToFlash (addressToProgram4, dataToProgram4) ; /*see note (3) */
/*Memory enters read status state after the Program command*/
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
NO
} while (status_register.b7== 0) ;
b3 = 0
b4 = 0
b1 = 0
End
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.
NO
YES
NO
YES
NO
YES
VPP Invalid
Error (1, 2)
Program
Error (1, 2)
Program to Protected
Block Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI06233
46/55
Page 47
M28W640FCT, M28W640FCB

Figure 20. Program Suspend & Resume Flowchart and Pseudo Code

Start
program_suspend_command ( ) {
Write B0h
Write 70h
Read Status
Register
writeToFlash (any_address, 0xB0) ; writeToFlash (any_address, 0x70) ;
/* read status register to check if program has already completed */
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
b7 = 1
YES
b2 = 1
YES
Write FFh
Read data from
another address
Write D0h
Program Continues
NO
NO
Program Complete
Write FFh
Read Data
} while (status_register.b7== 0) ;
if (status_register.b2==0) /*program completed */ { writeToFlash (any_address, 0xFF) ; read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
} else { writeToFlash (any_address, 0xFF) ; read_data ( ); /*read data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume program*/ } }
AI03540b
47/55
Page 48
M28W640FCT, M28W640FCB

Figure 21. Erase Flowchart and Pseudo Code

Start
Write 20h
Write Block
Address & D0h
erase_command ( blockToErase ) { writeToFlash (any_address, 0x20) ;
writeToFlash (blockToErase, 0xD0) ; /* only A12-A20 are significannt */ /* Memory enters read status state after
the Erase Command */
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4, b5 = 1
NO
b5 = 0
YES
b1 = 0
YES
End
NO
NO
YES
NO
NO
VPP Invalid
Error (1)
Command
Sequence Error (1)
Erase Error (1)
Erase to Protected
Block Error (1)
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
if ( (status_register.b4==1) && (status_register.b5==1) ) /* command sequence error */ error_handler ( ) ;
if ( (status_register.b5==1) ) /* erase error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI03541b
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations .
48/55
Page 49

Figure 22. Erase Suspend & Resume Flowchart and Pseudo Code

Start
M28W640FCT, M28W640FCB
Write B0h
Write 70h
Read Status
Register
b7 = 1
b6 = 1
Write FFh
Read data from
another block
Program/Protection Program
Block Protect/Unprotect/Lock
or or
Write D0h
Erase Continues
NO
YES
NO
YES
Erase Complete
Write FFh
Read Data
erase_suspend_command ( ) { writeToFlash (any_address, 0xB0) ;
writeToFlash (any_address, 0x70) ; /* read status register to check if erase has already completed */
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b6==0) /*erase completed */ { writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
} else { writeToFlash (any_address, 0xFF) ; read_program_data ( ); /*read or program data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume erase*/ } }
AI03542b
49/55
Page 50
M28W640FCT, M28W640FCB

Figure 23. Locking Operations Flowchart and Pseudo Code

Start
Write 60h
Write
01h, D0h or 2Fh
Write 90h
Read Block Lock States
Locking change
confirmed?
YES
Write FFh
End
NO
locking_operation_command (address, lock_operation) { writeToFlash (any_address, 0x60) ; /*configuration setup*/
if (lock_operation==LOCK) /*to protect the block*/ writeToFlash (address, 0x01) ; else if (lock_operation==UNLOCK) /*to unprotect the block*/ writeToFlash (address, 0xD0) ; else if (lock_operation==LOCK-DOWN) /*to lock the block*/ writeToFlash (address, 0x2F) ;
writeToFlash (any_address, 0x90) ;
if (readFlash (address) ! = locking_state_expected) error_handler () ; /*Check the locking state (see Read Block Signature table )*/
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/ }
AI04364
50/55
Page 51
M28W640FCT, M28W640FCB

Figure 24. Protection Register Program Flowchart and Pseudo Code

Start
Write C0h
Write Address
& Data
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
YES
b1 = 0
YES
End
NO
NO
NO
NO
VPP Invalid
Error (1, 2)
Error (1, 2)
Program to Protected
Block Error (1, 2)
Program
protection_register_program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0xC0) ;
writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI04381
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Eras e Controller operations.
51/55
Page 52
M28W640FCT, M28W640FCB

APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE

Table 32. Write State Machine Current/Next, sheet 1 of 2.

Current
State
Read Array “1” Array Read Array Prog.Setup Ers. Setup Read Array Read Sts. Read Array
Read
Status
Read
Elect.Sg.
Read CFI
Query
Lock Setup “1” Status Lock Command Error
Lock Cmd
Error Lock
(complete)
Prot. Prog.
Setup
Prot. Prog.
(continue)
Prot. Prog. (complete)
Prog. Setup “1” Status Program
Program
(continue)
Prog. Sus
Status
Prog. Sus
Read Array
Prog. Sus
Read
Elect.Sg.
Prog. Sus Read CFI
Program
(complete)
Erase Setup
Erase
Cmd.Error
Erase
(continue)
Erase Sus
Read Sts
Erase Sus
Read Array
Erase Sus
Read
Elect.Sg.
Erase Sus
Read CFI
Erase
(complete)
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program , Prot = Protection, Sus = Suspend.
SR
bit 7
Data
When
Read
“1” Status Read Array
Electronic
“1”
Signature
“1” CFI Read Array
“1” Status Read Array
“1” Status Read Array
“1” Status Protectio n R e gi s t er Pr o g ra m
“0” Status Protection Register Program continue
“1” Status Read Array
“0” Status Program (continue)
“1” Status
“1” Array
Electronic
“1”
Signature
“1” CFI
“1” Status Read Array
“1” Status Erase Command Error
“1” Status Read Array
“0” Status Erase (continue)
“1” Status
“1” Array
Electronic
“1”
Signature
“1” CFI
“1” Status Read Array
Read Array (FFh)
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Program
Setup
(10/40h)
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program Suspend to
Read Array
Program Suspend to
Read Array
Program Suspend to
Read Array
Program Suspend to
Read Array
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Command Input (and Next State)
Erase Setup
(20h)
Erase Setup
Erase Setup
Erase Setup
Erase Setup
Erase Setup
Erase Setup
Erase Setup
Erase Setup
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Setup
Erase
Confirm
(D0h)
Lock
(complete)
Program
(continue)
Program
(continue)
Program
(continue)
Program
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Prog/Ers Suspend
(B0h)
Read Array
Read Array
Read Array
Lock Cmd
Error
Read Array
Read Array
Read Array
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array Read Array
Erase
CmdError
Read Array
Erase Sus
Read Sts
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array Read Array
Prog/Ers
Resume
(D0h)
Lock
(complete)
Program
(continue)
Program
(continue)
Program
(continue)
Program
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Read
Status
(70h)
Read
Status
Read
Status
Read
Status
Lock Command Error
Read
Status
Read
Status
Read
Status
Program (continue)
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Read
Status
Erase Command Error
Read
Status
Erase (continue)
Erase Sus
Read Sts
Erase Sus
Read Sts
Erase Sus
Read Sts
Erase Sus
Read Sts
Read
Status
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array Read Array
Read Array
Read Array
Read Array
Read Array
Read Array Read Array
Clear
Status
(50h)
Prog. Sus
Prog. Sus
Prog. Sus
Prog. Sus
Erase Sus
Erase Sus
Erase Sus
Erase Sus
52/55
Page 53
M28W640FCT, M28W640FCB

Table 33. Write State Machine Current/Next, sheet 2 of 2.

Command Input (and Next State)
Current State
Read Array Read Elect.Sg. Read CFI Query Lock Setup
Read Status Read Elect.Sg. Read CFI Query Lock Setup
Read Elect.Sg. Read Elect.Sg. Read CFI Query Lock Setup
Read CFI Query Read Elect.Sg. Read CFI Query Lock Setup
Lock Setup Lock Command Error Lock (complete)
Lock Cmd Error Read Elect.Sg. Read CFI Query Lock Setup
Lock (complete) Read Elect.Sg. Read CFI Query Lock Setup
Prot. Prog.
Setup
Prot. Prog.
(continue)
Prot. Prog. (complete)
Prog. Setup Program
Program
(continue)
Prog. Suspend
Read Status
Prog. Suspend
Read Array
Prog. Suspend Read Elect.Sg.
Prog. Suspend
Read CFI
Program
(complete)
Erase Setup Erase Command Error
Erase
Cmd.Error
Erase (continue) Erase (continue)
Erase Suspend
Read Ststus
Erase Suspend
Read Array
Erase Suspend
Read Elect.Sg.
Erase Suspend
Read CFI Query
Erase
(complete)
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.
Read Elect.Sg.
(90h)
Read Elect.Sg. Read CFI Query Lock Setup
Prog. Suspend Read Elect.Sg.
Prog. Suspend Read Elect.Sg.
Prog. Suspend Read Elect.Sg.
Prog. Suspend Read Elect.Sg.
Read Elect.Sg. Read CFIQuery Lock Setup
Read Elect.Sg. Read CFI Query Lock Setup
Erase Suspend Read Elect.Sg.
Erase Suspend Read Elect.Sg.
Erase Suspend Read Elect.Sg.
Erase Suspend Read Elect.Sg.
Read Elect.Sg. Read CFI Query Lock Setup
Read CFI
Query
(98h)
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Lock Setup
(60h)
Protection Register Program
Protection Register Program (continue)
Lock Setup Erase Suspend Read Array
Lock Setup Erase Suspend Read Array
Lock Setup Erase Suspend Read Array
Lock Setup Erase Suspend Read Array
Prot. Prog.
Setup (C0h)
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Program (continue)
Program Suspend Read Array
Program Suspend Read Array
Program Suspend Read Array
Program Suspend Read Array
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Lock Confirm
(01h)
Confirm (2Fh)
Lock Down
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Unlock
Confirm
(D0h)
Program
(continue)
Program
(continue)
Program
(continue)
Program
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
53/55
Page 54
M28W640FCT, M28W640FCB

REVISION HISTORY

Table 34. Document Revision History

Date Version Revision Details
24-May-2004 0.1 First Issue
23-Aug-2004 0.2
08-Apr-2005 1.0
Figure 3., TSOP Connections and Figure 4., TFBGA Connectio ns ( T op v i ew t hr o ug h package) updated .
Datasheet maturity changed to PRELIMINARY DATA. TSOP48 Package Mechanical Data updated in Table 20., TSOP48 - 48 lead Plastic
Thin Small Outline, 12 x 20mm, Package Mechanical Data.
54/55
Page 55
M28W640FCT, M28W640FCB
Information furnished is be lieved to be a ccur ate and reli able. Howe ver, STMicroele ctronic s assu mes no r esponsib ilit y for th e consequences of use of such information nor for any infrin gement of patent s or other rights of third parties which ma y result from it s use. No license is granted
by implication or otherwi se under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication ar e subject
to change without not ice. This pub licat ion su persed es and repl aces all in format ion previou sly su pplie d. STMicroele c tronic s prod ucts ar e no t
authorized for use as critical compone nts in life support devices or systems without express written approval of STMicroele ct ronics.
The ST logo is a registered trademark of STMicroelectronics.
ECOPACK is a registered trademark of STMicroelectronics .
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israe l - It aly - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
STMicroelectronics group of companies
www.st.com
55/55
Loading...