ST M27C800 User Manual

M27C800-100B1TR

M27C800

8 Mbit (1Mb x8 or 512Kb x16) UV EPROM and OTP EPROM

5V ± 10% SUPPLY VOLTAGE in READ OPERATION

ACCESS TIME: 50ns

BYTE-WIDE or WORD-WIDE CONFIGURABLE

8 Mbit MASK ROM REPLACEMENT

LOW POWER CONSUMPTION

Active Current 70mA at 8MHz

Stand-by Current 50µA

PROGRAMMING VOLTAGE: 12.5V ± 0.25V

PROGRAMMING TIME: 50µs/word

ELECTRONIC SIGNATURE

Manufacturer Code: 20h

Device Code: B2h

DESCRIPTION

The M27C800 is an 8 Mbit EPROM offered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems requiring large data or program storage. It is organised as either 1 Mwords of 8 bit or 512 Kwords of 16 bit. The pin-out is compatible with the most common 8 Mbit Mask ROM.

The FDIP42W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern.

A new pattern can then be written rapidly to the device by following the programming procedure.

For applications where the content is programmed only one time and erasure is not required, the M27C800 is offered in PDIP42, PLCC44 and SO44 packages.

42

42

1

1

FDIP42W (F)

PDIP42 (B)

 

44

 

1

PLCC44 (K)

SO44 (M)

Figure 1. Logic Diagram

 

VCC

 

19

A0-A18

Q15A–1

15

 

E

Q0-Q14

M27C800

 

G

 

BYTEVPP

 

 

VSS

 

AI01593

December 2001

1/18

ST M27C800 User Manual

M27C800

Figure 2A. DIP Connections

A18

1

 

42

NC

A17

2

 

41

A8

A7

3

 

40

A9

A6

 

 

4

 

39

A10

 

 

 

A5

 

 

5

 

38

A11

 

 

 

A4

6

 

37

A12

A3

7

 

36

A13

A2

8

 

35

A14

A1

9

 

34

A15

A0

10

M27C800

33

A16

 

 

 

 

 

 

 

 

 

 

E

11

32

BYTEVPP

VSS

12

 

31

VSS

G

13

 

30

Q15A–1

Q0

14

 

29

Q7

Q8

15

 

28

Q14

Q1

16

 

27

Q6

Q9

17

 

26

Q13

Q2

18

 

25

Q5

Q10

 

 

19

 

24

Q12

 

 

 

Q3

20

 

23

Q4

Q11

21

 

22

VCC

 

 

 

 

 

 

AI01594

 

 

Figure 2C. SO Connections

 

 

 

 

 

 

 

 

 

NC

1

 

44

NC

A18

2

 

43

NC

A17

3

 

42

A8

A7

4

 

41

A9

A6

5

 

40

A10

A5

6

 

39

A11

A4

7

 

38

A12

A3

8

 

37

A13

A2

9

 

36

A14

A1

10

 

35

A15

A0

11

M27C800

34

A16

 

 

 

 

33

 

 

 

 

E

12

 

BYTEVPP

VSS

13

 

32

VSS

G

14

 

31

Q15A–1

Q0

15

 

30

Q7

Q8

16

 

29

Q14

Q1

17

 

28

Q6

Q9

18

 

27

Q13

Q2

19

 

26

Q5

Q10

20

 

25

Q12

Q3

21

 

24

Q4

Q11

22

 

23

VCC

 

 

 

 

AI01595

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2B. LCC Connections

 

A5

A6

A7

A17

A18

SS

NC

A8

A9

A10

A11

 

 

V

 

A4

 

 

 

 

 

1

44

 

 

 

 

A12

 

 

 

 

 

 

 

 

 

 

 

A3

 

 

 

 

 

 

 

 

 

 

 

A13

A2

 

 

 

 

 

 

 

 

 

 

 

A14

A1

 

 

 

 

 

 

 

 

 

 

 

A15

A0

 

 

 

 

 

 

 

 

 

 

 

A16

E

12

 

 

 

M27C800

 

 

 

34

BYTEVPP

VSS

 

 

 

 

 

 

 

 

 

 

 

VSS

G

 

 

 

 

 

 

 

 

 

 

 

Q15A–1

Q0

 

 

 

 

 

 

 

 

 

 

 

Q7

Q8

 

 

 

 

 

 

 

 

 

 

 

Q14

Q1

 

 

 

 

 

23

 

 

 

 

 

Q6

 

 

 

 

 

 

 

 

 

 

 

 

 

Q9

Q2

Q10

Q3

Q11

NC

CC

Q4

Q12

Q5

Q13

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

AI02042

Table 1. Signal Names

 

A0-A18

Address Inputs

 

 

 

 

Q0-Q7

Data Outputs

 

 

 

 

Q8-Q14

Data Outputs

 

 

 

 

Q15A–1

Data Output / Address Input

 

 

 

 

 

 

 

 

 

 

Chip Enable

 

E

 

 

 

 

 

 

 

 

 

 

 

 

Output Enable

 

G

 

 

 

 

 

 

 

 

 

PP

 

 

BYTEV

Byte Mode / Program Supply

 

 

 

 

VCC

Supply Voltage

 

VSS

Ground

 

NC

Not Connected Internally

 

 

 

 

 

 

2/18

 

 

 

M27C800

Table 2. Absolute Maximum Ratings (1)

 

 

 

Symbol

Parameter

Value

 

Unit

 

 

 

 

 

TA

Ambient Operating Temperature (3)

–40 to 125

 

°C

TBIAS

Temperature Under Bias

–50 to 125

 

°C

 

 

 

 

 

TSTG

Storage Temperature

–65 to 150

 

°C

VIO (2)

Input or Output Voltage (except A9)

–2 to 7

 

V

VCC

Supply Voltage

–2 to 7

 

V

 

 

 

 

 

VA9 (2)

A9 Voltage

–2 to 13.5

 

V

VPP

Program Supply Voltage

–2 to 14

 

V

 

 

 

 

 

Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

2.Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than 20ns.

3.Depends on range.

Table 3. Operating Modes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mode

 

E

G

 

BYTEVPP

A9

Q15A–1

Q14-Q8

Q7-Q0

Read Word-wide

VIL

VIL

 

VIH

X

Data Out

Data Out

Data Out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Read Byte-wide Upper

VIL

VIL

 

VIL

X

VIH

Hi-Z

Data Out

Read Byte-wide Lower

VIL

VIL

 

VIL

X

VIL

Hi-Z

Data Out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Disable

VIL

VIH

 

X

X

Hi-Z

Hi-Z

Hi-Z

Program

VIL Pulse

VIH

 

VPP

X

Data In

Data In

Data In

Verify

VIH

VIL

 

VPP

X

Data Out

Data Out

Data Out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program Inhibit

VIH

VIH

 

VPP

X

Hi-Z

Hi-Z

Hi-Z

Standby

VIH

 

X

 

X

X

Hi-Z

Hi-Z

Hi-Z

Electronic Signature

VIL

VIL

 

VIH

VID

Code

Codes

Codes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: X = VIH or VIL, VID = 12V ± 0.5V.

Table 4. Electronic Signature

 

 

Q15

Q14

Q13

Q12

Q11

Q10

Q9

Q8

 

Identifier

A0

and

and

and

and

and

and

and

and

Hex Data

 

 

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

 

 

 

 

 

 

 

 

 

 

 

 

Manufacturer’s Code

VIL

0

0

1

0

0

0

0

0

20h

 

 

 

 

 

 

 

 

 

 

 

Device Code

VIH

1

0

1

1

0

0

1

0

B2h

3/18

M27C800

Table 5. AC Measurement Conditions

 

High Speed

Standard

 

 

 

Input Rise and Fall Times

10ns

20ns

 

 

 

Input Pulse Voltages

0 to 3V

0.4V to 2.4V

 

 

 

Input and Output Timing Ref. Voltages

1.5V

0.8V and 2V

 

 

 

Figure 3. AC Testing Input Output Waveform

 

Figure 4. AC Testing Load Circuit

 

 

 

 

 

 

 

 

 

1.3V

 

High Speed

 

 

 

 

 

 

 

 

 

 

 

 

3V

 

 

 

 

 

 

 

 

 

 

1N914

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5V

 

 

 

 

 

 

 

 

 

 

3.3kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEVICE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard

 

 

UNDER

 

 

 

 

 

 

 

 

OUT

 

 

 

 

 

TEST

 

 

 

 

 

 

 

 

 

2.4V

 

2.0V

 

 

 

 

 

 

 

 

 

 

CL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4V

 

0.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

AI01822

 

 

CL = 30pF for High Speed

 

 

 

 

 

 

 

 

 

 

CL = 100pF for Standard

 

 

 

 

 

 

 

 

 

 

 

 

CL includes JIG capacitance

AI01823B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEVICE OPERATION

The operating modes of the M27C800 are listed in the Operating Modes Table. A single power supply is required in the read mode. All inputs are TTL compatible except for VPP and 12V on A9 for the Electronic Signature.

Read Mode

The M27C800 has two organisations, Word-wide and Byte-wide. The organisation is selected by the signal level on the BYTEVPP pin. When BYTEVPP is at VIH the Word-wide organisation is selected and the Q15A–1 pin is used for Q15 Data Output. When the BYTEVPP pin is at VIL the Byte-wide organisation is selected and the Q15A–1 pin is used for the Address Input A–1. When the memory is logically regarded as 16 bit wide, but read in the Byte-wide organisation, then with A–1 at VIL the

lower 8 bits of the 16 bit data are selected and with A–1 at VIH the upper 8 bits of the 16 bit data are selected.

The M27C800 has two control functions, both of which must be logically active in order to obtain data at the outputs. In addition the Word-wide or Bytewide organisation must be selected.

Chip Enable (E) is the power control and should be used for device selection. Output Enable (G) is the output control and should be used to gate data to the output pins independent of device selection. Assuming that the addresses are stable, the ad-

dress access time (tAVQV) is equal to the delay from E to output (tELQV). Data is available at the output after a delay of tGLQV from the falling edge of G, assuming that E has been low and the ad-

dresses have been stable for at least tAVQV-tGLQV.

4/18

 

 

 

 

 

 

 

 

 

M27C800

Table 6. Capacitance (1) (TA = 25 °C, f = 1 MHz)

 

 

 

 

 

Symbol

Parameter

Test Condition

Min

Max

 

Unit

 

 

 

 

 

 

 

 

 

 

Input Capacitance (except

 

PP)

VIN = 0V

 

 

 

 

CIN

BYTEV

 

10

 

pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Capacitance (BYTEVPP)

VIN = 0V

 

120

 

pF

 

 

 

COUT

Output Capacitance

VOUT = 0V

 

12

 

pF

Note: 1. Sampled only, not 100% tested.

Table 7. Read Mode DC Characteristics (1)

(TA = 0 to 70 °C or –40 to 85 °C; V CC = 5V ± 5% or 5V ± 10%; VPP = VCC)

Symbol

Parameter

 

Test Condition

Min

Max

Unit

 

 

 

 

 

 

 

 

ILI

Input Leakage Current

 

 

0V VIN VCC

 

±1

µA

ILO

Output Leakage Current

0V VOUT VCC

 

±10

µA

 

 

 

 

 

 

= VIL,

 

= VIL,

 

 

 

 

 

 

E

 

G

 

70

mA

 

 

IOUT = 0mA, f = 8MHz

 

ICC

Supply Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E = VIL, G = VIL,

 

50

mA

 

 

 

 

 

 

IOUT = 0mA, f = 5MHz

 

 

 

 

 

 

ICC1

 

 

 

 

 

 

 

= VIH

 

 

 

Supply Current (Standby) TTL

 

 

 

 

 

E

 

1

mA

 

 

 

 

 

 

 

 

ICC2

 

 

 

 

 

> VCC – 0.2V

 

 

 

Supply Current (Standby) CMOS

 

 

E

 

50

µA

IPP

Program Current

 

 

 

 

VPP = VCC

 

10

µA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL

Input Low Voltage

 

 

 

 

 

 

 

 

 

–0.3

0.8

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIH (2)

Input High Voltage

 

 

 

 

 

 

 

 

 

2

VCC + 1

V

VOL

Output Low Voltage

 

 

 

 

IOL = 2.1mA

 

0.4

V

VOH

Output High Voltage TTL

 

 

IOH = –400µA

2.4

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Maximum DC voltage on Output is VCC + 0.5V.

Standby Mode

The M27C800 has a standby mode which reduces the supply current from 50mA to 100µA. The

M27C800 is placed in the standby mode by applying a CMOS high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the G input.

5/18

M27C800

Table 8A. Read Mode AC Characteristics (1)

(TA = 0 to 70 °C or –40 to 85 °C; V CC = 5V ± 5% or 5V ± 10%; VPP = VCC)

 

 

 

 

 

 

 

 

 

 

 

 

 

M27C800

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Alt

Parameter

 

Test Condition

-50 (3)

 

-70

 

-90

Unit

 

 

 

 

 

 

 

 

 

 

 

Min

Max

Min

 

Max

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Address Valid to Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tAVQV

tACC

E = VIL, G = VIL

 

50

 

 

70

 

 

90

ns

Valid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BYTE High to Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tBHQV

tST

E = VIL, G = VIL

 

50

 

 

70

 

 

90

ns

Valid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chip Enable Low to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tELQV

tCE

 

 

G = VIL

 

50

 

 

70

 

 

90

ns

Output Valid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Enable Low to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tGLQV

tOE

 

 

E = VIL

 

30

 

 

35

 

 

45

ns

Output Valid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tBLQZ (2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tSTD

BYTE Low to Output Hi-Z

 

E = VIL, G = VIL

 

30

 

 

30

 

 

30

ns

tEHQZ (2)

 

Chip Enable High to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDF

 

 

G = VIL

0

30

0

 

30

0

 

30

ns

Output Hi-Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tGHQZ (2)

 

Output Enable High to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDF

 

 

E = VIL

0

30

0

 

30

0

 

30

ns

Output Hi-Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Address Transition to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tAXQX

tOH

E = VIL, G = VIL

5

 

5

 

 

5

 

 

ns

Output Transition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BYTE Low to Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tBLQX

tOH

E = VIL, G = VIL

5

 

5

 

 

5

 

 

ns

Transition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.

2.Sampled only, not 100% tested.

3.Speed obtained with High Speed AC measurement conditions.

Table 8B. Read Mode AC Characteristics (1)

(TA = 0 to 70 °C or –40 to 85 °C; V CC = 5V ± 5% or 5V ± 10%; VPP = VCC)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M27C800

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Alt

Parameter

 

Test Condition

-100

-120/150

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Min

Max

Min

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tAVQV

tACC

 

 

 

 

= VIL,

 

= VIL

 

 

 

 

 

Address Valid to Output Valid

 

E

 

G

 

100

 

120

ns

tBHQV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tST

BYTE High to Output Valid

 

E = VIL, G = VIL

 

100

 

120

ns

tELQV

tCE

 

 

 

 

 

 

 

= VIL

 

 

 

 

 

Chip Enable Low to Output Valid

 

 

 

 

G

 

100

 

120

ns

tGLQV

tOE

 

 

 

 

 

 

= VIL

 

 

 

 

 

Output Enable Low to Output Valid

 

 

 

 

E

 

50

 

60

ns

(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tSTD

BYTE Low to Output Hi-Z

 

E = VIL, G = VIL

 

40

 

50

ns

tBLQZ

 

 

 

(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDF

Chip Enable High to Output Hi-Z

 

 

 

 

G = VIL

0

40

0

50

ns

tEHQZ

 

 

 

 

(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDF

Output Enable High to Output Hi-Z

 

 

 

 

E = VIL

0

40

0

50

ns

tGHQZ

 

 

 

 

tAXQX

tOH

 

 

 

= VIL,

 

= VIL

 

 

 

 

 

Address Transition to Output Transition

 

E

G

5

 

5

 

ns

tBLQX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tOH

BYTE Low to Output Transition

 

E = VIL, G = VIL

5

 

5

 

ns

Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Sampled only, not 100% tested.

6/18

Loading...
+ 12 hidden pages